Abstract

Density currents generated by marine brine discharges, e.g., from desalination plants, can have a negative impact on marine ecosystems. It is therefore important to accurately predict their behavior. Predictions are often made using computational hydrodynamic models, which should be validated using field or laboratory measurements. This paper focuses on the setup and validation of three-dimensional (3D) models for estimating the transport and mixing processes that occur in these types of flows. Through a comprehensive sensitivity analysis based on the reproduction of several laboratory-generated density currents, a set of recommendations are made regarding the modeling aspects, including the domain discretization, the treatment of momentum at the density current source, the hydrostatic hypothesis and the selection of turbulence closure models. Finally, the proposed numerical model setup is validated using different experimental data showing good agreement in terms of the main variables considered: errors of less than 1.3% for dilution and of 6% for velocity. This study serves as a first step toward the full validation of these 3D hydrodynamic models for the simulation of field-scale density currents.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This study was partially funded by the Ministry of Economy and Competitiveness (MINECO) under research project TRA2011-28900 (PLVMA3D). B. Pérez-Díaz would like to thank MINECO for providing funding under the FPI Program (research fellowship, reference number BES-2012-053693) and the Coasts and Ocean Group of HR Wallingford for their assistance with numerical tasks.

References

Aidun, C. K., and J. R. Clausen. 2010. “Lattice-Boltzmann method for complex flows.” Annu. Rev. Fluid Mech. 42 (1): 439–472. https://doi.org/10.1146/annurev-fluid-121108-145519.
Akiyama, J., and H. Stefan. 1985. “Turbidity current with erosion and deposition.” J. Hydraul. Eng. 111 (12): 1473–1496. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:12(1473).
Alavian, V. 1986. “Behavior of density currents on an incline.” J. Hydraul. Eng. 112 (1): 27–42. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:1(27).
Almgren, A. S., J. B. Bell, and W. G. Szymczak. 1996. “A numerical method for the incompressible Navier-Stokes equations based on an approximate projection.” SIAM J. Sci. Comput. 17 (2): 358–369. https://doi.org/10.1137/S1064827593244213.
Birman, V., J. Margin, and E. Meigurg. 2005. “The non-Boussinesq lock-exchange problem. Part 2: High-resolution simulations.” J. Fluid Mech. 537: 101–124. https://doi.org/10.1017/S0022112005005033.
Bombardelli, F. A., and M. H. Garca. 2002. Three-dimensional hydrodynamic modeling of density current in the Chicago River, Illinois. Urbana, IL: Univ. of Illinois.
Bourban, S. E. 2013. “Stratified shallow flow modelling.” Ph.D. thesis, Open Univ.
Bournet, P. E., D. Dartus, B. Tassin, and B. Vinçon-Leite. 1999. “Numerical investigation of plunging density current.” J. Hydraul. Eng. 125 (6): 584–594. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:6(584).
Bradford, S. F., N. D. Katopodes, and G. Parker. 1997. “Characteristic of turbid underflows.” J. Hydraul. Eng. 123 (5): 420–431. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:5(420).
Brørs, B. R., and K. J. Eidsvik. 1992. “Dynamic Reynolds stress modeling of turbidity currents.” J. Geophys. Res. 97 (C6): 9645. https://doi.org/10.1029/92JC00587.
Cantero, M. I., S. Balachandar, and M. H. Garcia. 2007. “High-resolution simulations of cylindrical density currents.” J. Fluid Mech. 590 (3): 437–469. https://doi.org/10.1017/S0022112007008166.
Cantero, M. I., S. Balachandar, M. H. Garcia, and J. P. Ferry. 2006. “Direct numerical simulations of planar and cylindrical density currents.” J. Appl. Mech. 73 (6): 923. https://doi.org/10.1115/1.2173671.
Choi, S. U. 1999. “Layer-averaged modeling of two-dimensional turbidity currents with a dissipative-Galerkin finite element method. Part II: Sensitivity analysis and experimental verification.” J. Hydraul. Res. 37 (2): 257–271. https://doi.org/10.1080/00221689909498310.
Choi, S. U., and M. H. Garcia. 1995. “Modeling of one-dimensional turbidity currents with a dissipative-Galerkin finite element method.” J. Hydraul. Res. 33 (5): 623–648. https://doi.org/10.1080/00221689509498561.
Choi, S. U., and M. H. Garcia. 2001. “Spreading of gravity plumes on an incline.” Coastal Eng. J. 43 (4): 221–237. https://doi.org/10.1142/S0578563401000359.
Choi, S. U., and M. H. Garcia. 2002. “k-ϵ turbulence modeling of density currents developing two dimensionally on a slope.” J. Hydraul. Eng. 128 (1): 55–63. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(55).
Chu, V. H., and G. H. Jirka. 1987. “Surface buoyant jets and plumes.” In Encyclopedia of fluid mechanics. Houston: Gulf Publishing.
Dallimore, C. J., J. Imberger, and T. Ishikawa. 2001. “Entrainment and turbulence in saline underflow in Lake Ogawara.” J. Hydraul. Eng. 127 (11): 937–948. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(937).
Dawoud, M. A., and M. M. Al Mulla. 2012. “Environmental impacts of seawater desalination: Arabian gulf case study.” Int. J. Environ. Sustainability 1 (3): 22–37. https://doi.org/10.24102/ijes.v1i3.96.
Eidsvik, K. J., and B. R. Brørs. 1989. “Self-accelerated turbidity current prediction based upon (k-ϵ) turbulence.” Cont. Shelf Res. 9 (7): 617–627. https://doi.org/10.1016/0278-4343(89)90033-2.
Ellison, T. H., and J. S. Turner. 1959. “Turbulent entrainment in stratified flows.” J. Fluid Mech. 6 (3): 423. https://doi.org/10.1017/S0022112059000738.
Farrell, G. J., and H. G. Stefan. 1988. “Mathematical modeling of plunging reservoir flows.” J. Hydraul. Res. 26 (5): 525–537. https://doi.org/10.1080/00221688809499191.
Fernandez, R. L., and J. Imberger. 2006. “Bed roughness induced entrainment in a high Richardson number underflow.” J. Hydraul. Res. 44 (6): 725–738. https://doi.org/10.1080/00221686.2006.9521724.
Firoozabadi, B., H. Afshin, and E. Aram. 2009. “Three-dimensional modeling of density current in a straight channel.” J. Hydraul. Eng. 135 (5): 393–402. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000026.
Garcia, M. H. 1993. “Hydraulic jumps in sediment driven bottom currents.” J. Hydraul. Eng. 119 (10): 1094–1117. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:10(1094).
Gerber, G., G. Diedericks, and G. R. Basson. 2011. “Particle image velocimetry measurements and numerical modeling of a saline density current.” J. Hydraul. Eng. 137 (3): 333–342. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000304.
Gray, T. E., J. Alexander, and M. R. Leeder. 2006. “Longitudinal flow evolution and turbulence structure of dynamically similar, sustained, saline density and turbidity currents.” J. Geophys. Res. 111 (C8): C08015. https://doi.org/10.1029/2005JC003089.
Härtel, C., E. Meiburg, and F. Necker. 2000. “Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1: Flow topology and front speed for slip and no-slip boundaries.” J. Fluid Mech. 418: 189–212. https://doi.org/10.1017/S0022112000001221.
Hebbert, B., J. Patterson, I. Loh, and J. Imberger. 1979. “Collie river underflow into the Wellington reservoir.” J. Hydraul. Div. 105 (5): 533–545.
Heller, V. 2011. “Scale effects in physical hydraulic engineering models.” J. Hydraul. Res. 49 (3): 293–306. https://doi.org/10.1080/00221686.2011.578914.
Hervouet, J.-M. 2007. Hydrodynamics of free surface flows: Modelling with the finite element method. Hoboken, NJ: Wiley.
Hodges, B. R., J. E. Furnans, and P. S. Kulis. 2011. “Thin-layer gravity current with implications for desalination brine disposal.” J. Hydraul. Eng. 137 (3): 356–371. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000310.
Hossain, M. S., and W. Rodi. 1982. Turbulent buoyant jets and plumes. New York: Pergamon Press.
Huppert, H. E. 2006. “Gravity currents: A personal perspective.” J. Fluid Mech. 554: 299–322. https://doi.org/10.1017/S002211200600930X.
Imran, J., G. Parker, and N. Katopodes. 1998. “A numerical model of channel inception on submarine fans.” J. Geophys. Res. Oceans 103 (C1): 1219–1238. https://doi.org/10.1029/97JC01721.
Islam, M. A., and J. Imran. 2010. “Vertical structure of continuous release saline and turbidity currents.” J. Geophys. Res. 115 (C8): C08025. https://doi.org/10.1029/2009JC005365.
Kulis, P., and B. R. Hodges. 2006. “Modeling gravity currents in shallow bays using a sigma coordinate model.” In Proc., 7th Int. Conf. on Hydroscience and Engineering. Philadelphia: Drexel Univ. Libraries.
Kurganov, A., and G. Petrova. 2007. “A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system.” Commun. Math. Sci. 5 (1): 133–160.
La Rocca, M., C. Adduce, G. Sciortino, and A. B. Pinzon. 2008. “Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom.” Phys. Fluids 20 (10): 106603. https://doi.org/10.1063/1.3002381.
La Rocca, M., C. Adduce, G. Sciortino, A. B. Pinzon, and M. A. Boniforti. 2012. “A two-layer, shallow-water model for 3D gravity currents.” J. Hydraul. Res. 50 (2): 208–217. https://doi.org/10.1080/00221686.2012.667680.
La Rocca, M., and A. B. Pinzon. 2010. “Experimental and theoretical modelling of 3D gravity currents.” In Numerical simulations: Examples and applications in computational fluid dynamics. London: Intech.
Laspidou, C., K. Hadjibiros, and S. Gialis. 2010. “Minimizing the environmental impact of sea brine disposal by coupling desalination plants with solar saltworks: A case study for Greece.” Water 2 (1): 75–84. https://doi.org/10.3390/w2010075.
Lattemann, S., and T. Höpner. 2008. “Environmental impact and impact assessment of seawater desalination.” Desalination 220 (1): 1–15. https://doi.org/10.1016/j.desal.2007.03.009.
Launder, B. E., A. Morse, W. Rodi, and D. B. Spalding. 1973. “Prediction of free shear flows: A comparison of the performance of six turbulence models.” In Proc., NASA Conf. on Free Turbulent Shear Flows. London: Imperial College of Science and Technology.
Launder, B. E., and D. B. Spalding. 1974. “The numerical computation of turbulent flows.” Comput. Methods Appl. Mech. Eng. 3 (2): 269–289. https://doi.org/10.1016/0045-7825(74)90029-2.
LNHE (National Hydraulic and Environment Laboratory). 2007. Telemac modelling system: Telemac-3D code, operating manual. LNHE.
Lombardi, V., C. Adduce, and M. La Rocca. 2018. “Unconfined lock-exchange gravity currents with variable lock width: Laboratory experiments and shallow-water simulations.” J. Hydraul. Res. 56 (3): 399–411. https://doi.org/10.1080/00221686.2017.1372817.
Lombardi, V., C. Adduce, G. Sciortino, and M. La Rocca. 2015. “Gravity currents flowing upslope: Laboratory experiments and shallow-water simulations.” Phys. Fluids 27 (1): 016602. https://doi.org/10.1063/1.4905305.
Lowe, R. J., J. W. Rottman, and P. F. Linden. 2005. “The non-Boussinesq lock-exchange problem. Part 1: Theory and experiments.” J. Fluid Mech. 537: 101–124. https://doi.org/10.1017/S0022112005005069.
Madsen, P., M. Rugbjerg, and I. Warren. 1988. “Subgrid modelling in depth intergrated flows.” In Proc., 21st Coastal Engineering Conf., 505–5011. New York: ASCE.
Mahgoub, M., R. Hinkelmann, and M. L. Rocca. 2015. “Three-dimensional non-hydrostatic simulation of gravity currents using TELEMAC3D and comparison of results to experimental data.” Progress Comput. Fluid Dyn. Int. J. 15 (1): 56. https://doi.org/10.1504/PCFD.2015.067325.
Munk, W., and E. Anderson. 1948. “Notes on a theory of the thermocline.” J. Mar. Res. 7 (3): 276–295.
Nezu, I., and H. Nakagawa. 1993. Turbulence in open channel flows. IAHR monograph series. Rotterdam, Netherlands: A.A. Balkema.
Ottolenghi, L., C. Adduce, R. Inghilesi, V. Armenio, and F. Roman. 2016a. “Entrainment and mixing in unsteady gravity currents.” J. Hydraul. Res. 54 (5): 541–557. https://doi.org/10.1080/00221686.2016.1174961.
Ottolenghi, L., C. Adduce, R. Inghilesi, F. Roman, and V. Armenio. 2016b. “Mixing in lock-release gravity currents propagating up a slope.” Phys. Fluids 28 (5): 056604. https://doi.org/10.1063/1.4948760.
Ottolenghi, L., C. Adduce, F. Roman, and V. Armenio. 2017a. “Analysis of the flow in gravity currents propagating up a slope.” Ocean Modell. 115: 1–13. https://doi.org/10.1016/j.ocemod.2017.05.001.
Ottolenghi, L., C. Cenedese, and C. Adduce. 2017b. “Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid.” J. Phys. Oceanogr. 47 (3): 485–498. https://doi.org/10.1175/JPO-D-16-0175.1.
Ottolenghi, L., P. Prestininzi, A. Montessori, C. Adduce, and M. La Rocca. 2018. “Lattice Boltzmann simulations of gravity currents.” Eur. J. Mech. B. Fluids 67: 125–136. https://doi.org/10.1016/j.euromechflu.2017.09.003.
Palomar, P. 2014. “Experimental and numerical optimization of brine discharges in the marine environment.” Ph.D. thesis, Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente, Universidad de Cantabria.
Papakonstantis, I. G., and G. C. Christodoulou. 2010. “Spreading of round dense jets impinging on a horizontal bottom.” J. Hydro-environ. Res. 4 (4): 289–300. https://doi.org/10.1016/j.jher.2010.07.001.
Parker, G., Y. Fukushima, and H. M. Pantin. 1986. “Self-accelerating turbidity currents.” J. Fluid Mech. 171: 145–181. https://doi.org/10.1017/S0022112086001404.
Parker, G., M. Garcia, Y. Fukushima, and W. Yu. 1987. “Experiments on turbidity currents over an erodible bed.” J. Hydraul. Res. 25 (1): 123–147. https://doi.org/10.1080/00221688709499292.
Patterson, M. D., J. E. Simpson, S. B. Dalziel, and N. Nikiforakis. 2005. “Numerical modelling of two-dimensional and axisymmetric gravity currents.” Int. J. Numer. Methods Fluids 47 (10–11): 1221–1227. https://doi.org/10.1002/fld.841.
Patterson, M. D., J. E. Simpson, S. B. Dalziel, and G. J. F. van Heijst. 2006. “Vortical motion in the head of an axisymmetric gravity current.” Phys. Fluids 18 (4): 046601. https://doi.org/10.1063/1.2174717.
Pérez-Díaz, B., P. Palomar, and S. Castanedo. 2016. “PIV-PLIF characterization of density currents.” In Proc., 4th IAHR Europe Congress, 174–178. Liege, Belgium. London: Taylor and Francis Group.
Pérez-Díaz, B., P. Palomar, S. Castanedo, and A. Álvarez. 2018. “PIV-PLIF characterization of nonconfined saline density currents under different flow conditions.” J. Hydraul. Eng. 144 (9): 04018063. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001511.
Prestininzi, P., V. Lombardi, and M. L. Rocca. 2016. “Curved boundaries in multi-layer shallow water lattice Boltzmann methods: Bounce back versus immersed boundary.” J. Comput. Sci. 16: 16–28. https://doi.org/10.1016/j.jocs.2016.03.001.
Rocca, M. L., C. Adduce, V. Lombardi, G. Sciortino, and R. Hinkelmann. 2012. “Development of a lattice Boltzmann method for two-layered shallow-water flow.” Int. J. Numer. Methods Fluids 70 (8): 1048–1072. https://doi.org/10.1002/fld.2742.
Rodi, W. 1972. “The prediction of free turbulent boundary layers by use of a two-equation model of turbulence.” Ph.D. thesis, Imperial College London, Univ. of London.
Rodi, W. 1975. “A note on the empirical constant in the Kolmogorov-Prandtl eddy-viscosity expression.” J. Fluids Eng. 97 (3): 386. https://doi.org/10.1115/1.3447325.
Rodi, W. 1984. Turbulence models and their application in hydraulics: A state of the art review. Delft, Netherlands: International Association for Hydraulic Research (Section on Hydraulics Instrumentation).
Rodi, W. 1987. “Examples of calculation methods for flow and mixing in stratified fluids.” J. Geophys. Res. 92 (C5): 5305. https://doi.org/10.1029/JC092iC05p05305.
Sánchez-Lizaso, J. L., J. Romero, J. Ruiz, E. Gacia, J. L. Buceta, O. Invers, Y. Fernández Torquemada, J. Mas, A. Ruiz-Mateo, and M. Manzanera. 2008. “Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: Recommendations to minimize the impact of brine discharges from desalination plants.” Desalination 221 (1): 602–607. https://doi.org/10.1016/j.desal.2007.01.119.
Sciortino, G., C. Adduce, and V. Lombardi. 2018. “A new front condition for non-Boussinesq gravity currents.” J. Hydraul. Res. 56 (4): 517–525. https://doi.org/10.1080/00221686.2017.1395371.
Shao, D., A. W. Law, and H. Li. 2008. “Brine discharges into shallow coastal waters with mean and oscillatory tidal currents.” J. Hydro-environ. Res. 2 (2): 91–97. https://doi.org/10.1016/j.jher.2008.08.001.
Simpson, J. E. 1997. Gravity currents: The environment and the laboratory. New York: Cambridge University Press.
Smagorinsky, J. 1963. “General circulation experiments with the primitive equations.” Mon. Weather Rev. 91 (3): 99–164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
Stacey, M. W., and A. J. Bowen. 1988a. “The vertical structure of density and turbidity currents: Theory and observations.” J. Geophys. Res. 93 (C4): 3528. https://doi.org/10.1029/JC093iC04p03528.
Stacey, M. W., and A. J. Bowen. 1988b. “The vertical structure of turbidity currents and a necessary condition for self-maintenance.” J. Geophys. Res. 93 (C4): 3543. https://doi.org/10.1029/JC093iC04p03543.
Ungarish, M. 2007a. “Axisymmetric gravity currents at high Reynolds number: On the quality of shallow-water modeling of experimental observations.” Phys. Fluids 19 (3): 036602. https://doi.org/10.1063/1.2714990.
Ungarish, M. 2007b. “A shallow-water model for high-Reynolds-number gravity currents for a wide range of density differences and fractional depths.” J. Fluid Mech. 579: 373. https://doi.org/10.1017/S0022112.
Ungarish, M. 2008. “Energy balances and front speed conditions of two-layer models for gravity currents produced by lock release.” Acta Mech. 201 (1–4): 63–81. https://doi.org/10.1007/s00707-008-0073-z.
Viollet, P. L. 1988. “On the numerical modelling of stratified flows.” In Physical processes in estuaries, 257–277. Berlin: Springer.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 145Issue 3March 2019

History

Received: Feb 20, 2018
Accepted: Aug 1, 2018
Published online: Dec 20, 2018
Published in print: Mar 1, 2019
Discussion open until: May 20, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Environmental Hydraulics Institute “IH Cantabria,” Universidad de Cantabria, 39011 Santander, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-1987-2605. Email: [email protected]
S. Castanedo [email protected]
Associate Professor, Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente, Universidad de Cantabria, 39005 Santander, Spain. Email: [email protected]
Postdoctoral Researcher, Ministry of Agriculture, Food and Environment, Paseo de la Infanta Isabel 1, 28071 Madrid, Spain. Email: [email protected]
Scientist, Coasts and Oceans Group, HR Wallingford, Oxfordshire OX10 8BA, UK. Email: [email protected]
Principal Scientist, Coasts and Oceans Group, HR Wallingford, Oxfordshire OX10 8BA, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share