Abstract

This paper shows how low-impact development (LID) practices affect the resilience of stormwater drainage system under climate change scenarios. A rainfall-runoff model was calibrated and evaluated a in a tropical watershed located in Midwestern Brazil. An ensemble of 17 general circulation model outputs forced by Representative Concentration Pathways (RCP 4.5 and RCP 8.5) was used to create future climate change scenarios up to 2095. The LID efficiency was evaluated based on the runoff peak reduction and the resilience of stormwater drainage by means of a resilience index. Overall, LID combinations showed a reduction in runoff peak higher than 20%, and the best LID combination had a reduction of as much as 46%. This represents a significant improvement in the resilience against flooding in the study area. Therefore, the findings can contribute to the increase in widespread adoption of LID and can encourage decisionmakers to provide such practices for urban flood management.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by grants from the Ministry of Science, Technology, Innovation and Communication (MCTIC) and the National Council for Scientific and Technological Development (CNPq) (Grants 422947/2018-0, 441289/2017-7, and 306830/2017-5), and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES) (Finance code 001 and Capes PrInt). The authors acknowledge Computational Hydraulics International (CHI) for providing a university grant to use PCSWMM for this project.

References

Abera, L. E., C. Q. Surbeck, and A. M. O’Reilly. 2018. “Simulated performance of in-place pervious concrete under varying storms, surface areas, and infiltration rates.” J. Sustainable Water Built Environ. 4 (2): 04018003. https://doi.org/10.1061/JSWBAY.0000852.
Ahiablame, L. M., B. A. Engel, and I. Chaubey. 2013. “Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement.” J. Environ. Manage. 119 (Apr): 151–161. https://doi.org/10.1016/j.jenvman.2013.01.019.
Ahmed, K., D. A. Sachindra, S. Shahid, M. C. Demirel, and E.-S. Chung. 2019. “Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics.” Hydrol. Earth Syst. Sci. 23 (11): 4803–4824. https://doi.org/10.5194/hess-23-4803-2019.
Ahmed, S., and I. Tsanis. 2016. “Climate change impact on design storm and performance of urban storm-water management system—A case study on west central mountain drainage area in Canada.” Hydrol. Curr. Res. 7 (1): 1–11. https://doi.org/10.4172/2157-7587.1000229.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. de Moraes Gonçalves, and G. Sparovek. 2013. “Köppen’s climate classification map for Brazil.” Meteorol. Z. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
AON. 2019. “Global catastrophe recap: March 2019.” In AON empower results. London: AON.
Back, Á. J., J. L. R. Oliveira, and A. Henn. 2012. “Relações entre precipitações intensas de diferentes durações para desagregação da chuva diária em Santa Catarina.” Revista Brasileira de Engenharia Agrícola e Ambiental 16 (4): 391–398. https://doi.org/10.1590/S1415-43662012000400009.
Behroozi, A., M. H. Niksokhan, and M. Nazariha. 2018. “Developing a simulation-optimisation model for quantitative and qualitative control of urban run-off using best management practices.” Supplement, J. Flood Risk Manage. 11 (S1): S340–S351. https://doi.org/10.1111/jfr3.12210.
Bertilsson, L., K. Wiklund, I. de Moura Tebaldi, O. M. Rezende, A. P. Veról, and M. G. Miguez. 2019. “Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning.” J. Hydrol. 573 (Jun): 970–982. https://doi.org/10.1016/j.jhydrol.2018.06.052.
Birgani, Y. T., and F. Yazdandoost. 2016. “Resilience in urban drainage risk management systems.” Proc. Inst. Civ. Eng. Water Manage. 169 (1): 3–16. https://doi.org/10.1680/wama.14.00043.
Braud, I., P. Breil, F. Thollet, M. Lagouy, F. Branger, C. Jacqueminet, S. Kermadi, and K. Michel. 2013. “Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France.” J. Hydrol. 485 (Apr): 5–23. https://doi.org/10.1016/j.jhydrol.2012.04.049.
Chin, D. A. 2013. Water-resources engineering. Upper Saddle River, NJ: Pearson Education.
Chow, V. T., D. R. Maidment, and L. W. Mays. 2013. Applied hydrology. 2nd ed. New York: McGraw-Hill.
Crosbie, R. S., J. L. McCallum, G. R. Walker, and F. H. S. Chiew. 2010. “Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia.” Hydrogeol. J. 18 (7): 1639–1656. https://doi.org/10.1007/s10040-010-0625-x.
Damé, R. C. F., C. B. M. Pedrotti, M. A. G. C. Cardoso, C. P. Silveira, L. A. Duarte, M. S. V. Ávila, and A. C. Moreira. 2006. “Comparação entre curvas intensidade-duração-frequência de ocorrência de precipitação obtidas a partir de dados pluviográficos com àquelas estimadas por técnicas de desagregação de chuva diária.” Rev. Bras. de Agrociência 12 (4): 5.
Damodaram, C., M. H. Giacomoni, C. Prakash Khedun, H. Holmes, A. Ryan, W. Saour, and E. M. Zechman. 2010. “Simulation of combined best management practices and low impact development for sustainable stormwater management.” J. Am. Water Resour. Assoc. 46 (5): 907–918. https://doi.org/10.1111/j.1752-1688.2010.00462.x.
Dhakal, K., V. G. Kakani, and E. Linde. 2018. “Climate change impact on wheat production in the Southern Great Plains of the US using downscaled climate data.” Atmos. Clim. Sci. 8 (2): 143–162. https://doi.org/10.4236/acs.2018.82011.
Dietz, M. E. 2007. “Low impact development practices: A review of current research and recommendations for future directions.” Water Air Soil Pollut. 186 (1): 351–363. https://doi.org/10.1007/s11270-007-9484-z.
Dottori, F., et al. 2018. “Increased human and economic losses from river flooding with anthropogenic warming.” Nat. Clim. Change 8 (9): 781–786. https://doi.org/10.1038/s41558-018-0257-z.
Gesualdo, G. C., P. T. S. Oliveira, D. B. B. Rodrigues, and H. V. Gupta. 2019. “Assessing water security in the São Paulo metropolitan region under projected climate change.” Hydrol. Earth Syst. Sci. Discuss. 23 (12): 4955–4968. https://doi.org/10.5194/hess-23-4955-2019.
Golz, S., R. Schinke, and T. Naumann. 2015. “Assessing the effects of flood resilience technologies on building scale.” Urban Water J. 12 (1): 30–43. https://doi.org/10.1080/1573062X.2014.939090.
Goncalves, M. L. R., J. Zischg, S. Rau, M. Sitzmann, W. Rauch, and M. Kleidorfer. 2018. “Modeling the effects of introducing low impact development in a tropical city: A case study from Joinville, Brazil.” Sustainability 10 (3): 728. https://doi.org/10.3390/su10030728.
Hailegeorgis, T. T., and K. Alfredsen. 2017. “Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure.” J. Hydrol. 544 (Jan): 290–305. https://doi.org/10.1016/j.jhydrol.2016.11.037.
Hammond, M. J., A. S. Chen, S. Djordjević, D. Butler, and O. Mark. 2015. “Urban flood impact assessment: A state-of-the-art review.” Urban Water J. 12 (1): 14–29. https://doi.org/10.1080/1573062X.2013.857421.
Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae. 2013. “Global flood risk under climate change.” Nat. Clim. Change 3 (9): 816–821. https://doi.org/10.1038/nclimate1911.
Holling, C. S. 1973. “Resilience and stability of ecological systems.” Ann. Rev. Ecol. Syst. 4 (1): 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245.
Huang, J., J. He, C. Valeo, and A. Chu. 2016. “Temporal evolution modeling of hydraulic and water quality performance of permeable pavements.” J. Hydrol. 533 (Feb): 15–27. https://doi.org/10.1016/j.jhydrol.2015.11.042.
Huang, Y., Y. Liu, Y. Liu, and J. C. Knievel. 2019. “Budget analyses of a record-breaking rainfall event in the coastal metropolitan City of Guangzhou, China.” J. Geophys. Res.: Atmos. 124 (16): 9391–9406. https://doi.org/10.1029/2018JD030229.
Jones, P. G., and P. K. Thornton. 2000. “MarkSim: Software to generate daily weather data for latin America and Africa.” Agronomy J. 92 (3): 445–453. https://doi.org/10.1016/j.agsy.2012.08.002.
Jones, P. G., and P. K. Thornton. 2013. “Generating downscaled weather data from a suite of climate models for agricultural modelling applications.” Agric. Syst. 114 (Jan): 1–5. https://doi.org/10.1016/j.agsy.2012.08.002.
Khastagir, A., and L. N. N. Jayasuriya. 2010. “Impacts of using rainwater tanks on stormwater harvesting and runoff quality.” Water Sci. Technol. 62 (2): 324–329. https://doi.org/10.2166/wst.2010.283.
Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl. 2010. “Challenges in combining projections from multiple climate models.” J. Clim. 23 (10): 2739–2758. https://doi.org/10.1175/2009JCLI3361.1.
Lehmann, J., D. Coumou, and K. Frieler. 2015. “Increased record-breaking precipitation events under global warming.” Clim. Change 132 (4): 501–515. https://doi.org/10.1007/s10584-015-1434-y.
Liu, Y., L. M. Ahiablame, V. F. Bralts, and B. A. Engel. 2015. “Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.” J. Environ. Manage. 147 (Jan): 12–23. https://doi.org/10.1016/j.jenvman.2014.09.005.
Marengo, J. A., M. C. Valverde, and G. O. Obregon. 2013. “Observed and projected changes in rainfall extremes in the Metropolitan Area of São Paulo.” Clim. Res. 57 (1): 61–72. https://doi.org/10.3354/cr01160.
Miguez, M. G., and A. P. Veról. 2017. “A catchment scale integrated flood resilience index to support decision making in urban flood control design.” Environ. Plann. B: Urban Anal. City Sci. 44 (5): 925–946. https://doi.org/10.1016/j.ejrh.2017.06.006.
Miller, J. D., and M. Hutchins. 2017. “The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom.” J. Hydrol.: Reg. Stud. 12 (Aug): 345–362.
Miller, J. D., H. Kim, T. R. Kjeldsen, J. Packman, S. Grebby, and R. Dearden. 2014. “Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover.” J. Hydrol. 515 (Jul): 59–70. https://doi.org/10.1016/j.jhydrol.2014.04.011.
Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer. 2008. “Stationarity is dead: Whither water management?” Science 319 (5863): 573. https://doi.org/10.1126/science.1151915.
Mishra, B. K., A. Rafiei Emam, Y. Masago, P. Kumar, R. K. Regmi, and K. Fukushi. 2018. “Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River Basin, Jakarta.” Supplement, J. Flood Risk Manage. 11 (S2): S1105–S1115. https://doi.org/10.1111/jfr3.12311.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Mugume, S. N., D. E. Gomez, G. Fu, R. Farmani, and D. Butler. 2015. “A global analysis approach for investigating structural resilience in urban drainage systems.” Water Res. 81 (Sep): 15–26. https://doi.org/10.1016/j.watres.2015.05.030.
Muñoz, L. A., F. Olivera, M. Giglio, and P. Berke. 2018. “The impact of urbanization on the streamflows and the 100-year floodplain extent of the Sims Bayou in Houston, Texas.” Int. J. River Basin Manage. 16 (1): 61–69. https://doi.org/10.1080/15715124.2017.1372447.
Owotoki, P., N. Manojlovic, F. Mayer-Lindenberg, and E. Pasche. 2006. “A data mining approach for capacity building of stakeholders in integrated flood management.” In Proc., 6th Int. Conf. on Data Mining (ICDM’06), 446–455. New York: IEEE.
Page, J. L., R. J. Winston, D. B. Mayes, C. Perrin, and W. F. Hunt III. 2015. “Retrofitting with innovative stormwater control measures: Hydrologic mitigation of impervious cover in the municipal right-of-way.” J. Hydrol. 527 (Aug): 923–932. https://doi.org/10.1016/j.jhydrol.2015.04.046.
Palla, A., and I. Gnecco. 2015. “Hydrologic modeling of Low Impact Development systems at the urban catchment scale.” J. Hydrol. 528 (Sep): 361–368. https://doi.org/10.1016/j.jhydrol.2015.06.050.
PDDU (Plano Diretor de Drenagem Urbana). 2008. “Plano Diretor de Drenagem Urbana de Campo Grande.” In Proc., CONSÓRCIO-RES-Planejamento-em-Drenagem-Urbana, edited by Campo Grande, 350. Mato Grosso do Sul: PDDU.
Planurb. 1991. Carta Geotécnica de Campo Grande. Campo Grande, Brazil: Prefeitura Municipal de Campo Grande.
Pregnolato, M., A. Ford, C. Robson, V. Glenis, S. Barr, and R. Dawson. 2016. “Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.” R. Soc. Open Sci. 3 (5): 160023. https://doi.org/10.1098/rsos.160023.
Qin, H.-P., Z.-X. Li, and G. Fu. 2013. “The effects of low impact development on urban flooding under different rainfall characteristics.” J. Environ. Manage. 129 (Nov): 577–585. https://doi.org/10.1016/j.jenvman.2013.08.026.
Qiu, Y., A. Ichiba, I. D. S. R. Paz, F. Chen, P. A. Versini, D. Schertzer, and I. Tchiguirinskaia. 2019. “Evaluation of low impact development and nature-based solutions for stormwater management: A fully distributed modelling approach.” Hydrol. Earth Syst. Sci. Discuss. 2019 (Jul): 1–27. https://doi.org/10.5194/hess-2019-347.
Rezaei, A. R., Z. Ismail, M. H. Niksokhan, M. A. Dayarian, A. H. Ramli, and S. M. Shirazi. 2019. “A quantity–quality model to assess the effects of source control stormwater management on hydrology and water quality at the catchment scale.” Water 11 (7): 1415. https://doi.org/10.3390/w11071415.
Rosa, D. J., J. C. Clausen, and M. E. Dietz. 2015. “Calibration and verification of SWMM for low impact development.” J. Am. Water Resour. Assoc. 51 (3): 746–757. https://doi.org/10.1111/jawr.12272.
Rossman, L. A. 2015. Storm water management model user’s manual, version 5.1. Washington, DC: EPA.
Salman, S. A., S. Shahid, T. Ismail, K. Ahmed, and X.-J. Wang. 2018. “Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties.” Atmos. Res. 213 (Nov): 509–522. https://doi.org/10.1016/j.atmosres.2018.07.008.
Sayers, P., L. Yuanyuan, G. Galloway, E. Penning-Rowsell, S. Fuxin, W. Kang, C. Yiwei, and T. L. Quesne. 2013. Flood risk management: A strategic approach. Washington, DC: Asian Development Bank.
Sobrinho, T. A. 2015. “Relatório Técnico: Caracterização da infiltração da água e do escoamento superficial na área urbana de Campo Grande.” M.S. thesis, Dept. of Engineering, Universidade Federal de Mato Grosso do Sul.
Sohn, W., J.-H. Kim, M.-H. Li, and R. Brown. 2019. “The influence of climate on the effectiveness of low impact development: A systematic review.” J. Environ. Manage. 236 (Apr): 365–379. https://doi.org/10.1016/j.jenvman.2018.11.041.
Sorensen, J., and T. Emilsson. 2019. “Evaluating flood risk reduction by urban blue-green infrastructure using insurance data.” J. Water Resour. Plann. Manage. 145 (2): 04018099-1–04018099-11. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001037.
Tucci, C. E. M. 2009. Hidrologia: Ciência e aplicação. Porto Alegre, Brazil: Universidade Federal do Rio Grande do Sul.
van Vuuren, D. P., et al. 2011. “The representative concentration pathways: An overview.” Clim. Change 109 (1): 5. https://doi.org/10.1007/s10584-011-0148-z.
Vemula, S., K. S. Raju, S. S. Veena, and A. S. Kumar. 2019. “Urban floods in Hyderabad, India, under present and future rainfall scenarios: A case study.” Nat. Hazards 95 (3): 637–655. https://doi.org/10.1007/s11069-018-3511-9.
Wang, M., D. Q. Zhang, J. Su, J. W. Dong, and S. K. Tan. 2018. “Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling.” J. Cleaner Prod. 179 (Apr): 12–23. https://doi.org/10.1016/j.jclepro.2018.01.096.
Wu, J., R. Yang, and J. Song. 2018. “Effectiveness of low-impact development for urban inundation risk mitigation under different scenarios: A case study in Shenzhen, China.” Nat. Hazards Earth Syst. Sci. 18 (9): 2525–2536. https://doi.org/10.5194/nhess-18-2525-2018.
Wu, J. Y., J. R. Thompson, R. K. Kolka, K. J. Franz, and T. W. Stewart. 2013. “Using the Storm Water Management Model to predict urban headwater stream hydrological response to climate and land cover change.” Hydrol. Earth Syst. Sci. 17 (12): 4743–4758. https://doi.org/10.5194/hess-17-4743-2013.
Xiong, L., L. Yan, T. Du, P. Yan, L. Li, and W. Xu. 2019. “Impacts of climate change on urban extreme rainfall and drainage infrastructure performance: A case study in Wuhan City, China.” Irrig. Drain. 68 (2): 152–164. https://doi.org/10.1002/ird.2316.
Zanandrea, F., and A. L. Lopes da Silveira. 2018. “Effects of LID implementation on hydrological processes in an urban catchment under consolidation in Brazil.” J. Environ. Eng. 144 (9): 04018072. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001417.
Zareian, M. J., S. Eslamian, and H. R. Safavi. 2015. “A modified regionalization weighting approach for climate change impact assessment at watershed scale.” Theor. Appl. Climatol. 122 (3): 497–516. https://doi.org/10.1007/s00704-014-1307-8.
Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith. 2018. “Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston.” Nature 563 (7731): 384–388. https://doi.org/10.1038/s41586-018-0676-z.
Zhu, Z. H., Z. H. Chen, X. H. Chen, and G. Yu. 2019. “An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives.” J. Environ. Manage. 231 (Feb): 504–514. https://doi.org/10.1016/j.jenvman.2018.10.046.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 12December 2021

History

Received: Nov 10, 2020
Accepted: Aug 13, 2021
Published online: Oct 4, 2021
Published in print: Dec 1, 2021
Discussion open until: Mar 4, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Tiago Souza Mattos [email protected]
Ph.D. Candidate, Faculty of Engineering, Architecture and Urbanism and Geography, Federal Univ. of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil. Email: [email protected]
Professor, Faculty of Engineering, Architecture and Urbanism and Geography, Federal Univ. of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-2806-0083. Email: [email protected]
Leonardo de Souza Bruno [email protected]
Faculty of Engineering, Architecture and Urbanism and Geography, Federal Univ. of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil. Email: [email protected]
Undergraduate Student, Faculty of Engineering, Architecture and Urbanism and Geography, Federal Univ. of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil. ORCID: https://orcid.org/0000-0002-9406-3373. Email: [email protected]
Professor, Dept. of Civil Engineering, Auburn Univ., Auburn, AL 36849-5337. ORCID: https://orcid.org/0000-0003-0438-4286. Email: [email protected]
Professor, Dept. of Civil Engineering, Federal Univ. of Technology, Paraná, PR 85502-970, Brazil. ORCID: https://orcid.org/0000-0002-1732-0241. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Low-Impact Development Scenarios in Terms of Construction Costs and Runoff Reduction, Journal of Hydrologic Engineering, 10.1061/JHYEFF.HEENG-6059, 29, 1, (2024).
  • Green Infrastructure for Urban Flood Resilience: A Review of Recent Literature on Bibliometrics, Methodologies, and Typologies, Water, 10.3390/w15030523, 15, 3, (523), (2023).
  • Towards flood risk reduction: Commonalities and differences between urban flood resilience and risk based on a case study in the Pearl River Delta, International Journal of Disaster Risk Reduction, 10.1016/j.ijdrr.2023.103568, 86, (103568), (2023).
  • Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City, International Journal of Environmental Research and Public Health, 10.3390/ijerph191912592, 19, 19, (12592), (2022).
  • Review of Urban Flood Resilience: Insights from Scientometric and Systematic Analysis, International Journal of Environmental Research and Public Health, 10.3390/ijerph19148837, 19, 14, (8837), (2022).
  • Towards reducing flood risk disasters in a tropical urban basin by the development of flood alert web application, Environmental Modelling & Software, 10.1016/j.envsoft.2022.105367, 151, (105367), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share