Case Studies
Nov 24, 2020

Toward Discharge Estimation for Water Resources Management with a Semidistributed Model and Local Ensemble Kalman Filter Data Assimilation

Publication: Journal of Hydrologic Engineering
Volume 26, Issue 2

Abstract

Estimating discharges is a major challenge in water resources management, and techniques such as data assimilation (DA) can be used to improve these estimates. This study assessed application of the local ensemble Kalman filter (LEnKF) DA scheme within a large-scale hydrological-hydrodynamic model to improve discharge estimates. Different scenarios with assimilation and validation gauges were performed to obtain an optimal setup of localization, ensemble size, assimilation parameters, and observation type (discharge or logarithm of discharge). These parameters were used to analyze the estimated discharge series and reference discharge values for maximum, minimum, and average flows. Results showed that joint perturbation of precipitation and groundwater reservoir volume leads to the most sensitive model responses. Furthermore, using the adequate setup of LEnKF parameters and assimilating the logarithm of discharge, better estimates of reference discharge values were obtained with the DA scheme when compared to a simple regionalization method, leading to reduction of errors of more than double in many cases.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The historical hydrologic and meteorological data are available from the Brazilian National Water Agency and the Brazilian National Institute of Meteorology. The model-simulated data and code are available from the corresponding author upon reasonable request.

Acknowledgments

The first author is grateful for a grant from the Brazilian agency CAPES (Grant No. PROEX–0487); the second author, for a grant from the CNPq Agency (Grant No. 141161/2017-5). This study was carried out as part of the SWOT-MOD project (https://swot.jpl.nasa.gov/st_projects.htm). The authors are grateful to the contributions of Vinícius Siqueira (M.Sc.) for data supply, and Professor Walter Collischonn for ideas and constructive comments. Thank go as well to Dr. Gaia Piazzi for contributions and to three anonymous reviewers for their comments and suggestions, which helped significantly in improving this article.

References

Abbaris, A., H. Dakhlaoui, S. Thiria, and Z. Bargaoui. 2014. “Variational data assimilation with the YAO platform for hydrological forecasting.” Proc. Int. Assoc. Hydrol. Sci. 364 (Jun): 3–8. https://doi.org/10.5194/piahs-364-3-2014.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large area hydrologic modeling and assessment. Part I: Model development.” J. Am. Water Resour. Assoc. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
Arsenault, R., and F. Brissette. 2016a. “Analysis of continuous streamflow regionalization methods within a virtual setting.” Hydrol. Sci. J. 61 (15): 2680–2693. https://doi.org/10.1080/02626667.2016.1154557.
Arsenault, R., and F. Brissette. 2016b. “Multi-model averaging for continuous streamflow prediction in ungauged basins.” Hydrol. Sci. J. 61 (13): 2443–2454. https://doi.org/10.1080/02626667.2015.1117088.
Asadi, P., S. Engelke, and A. C. Davison. 2016. “Statistical regionalization for estimation of extreme river discharges.” Preprint, submitted November 10, 2016. https://arxiv.org/abs/1611.03219.
Bates, P. D., M. S. Horritt, and T. J. Fewtrell. 2010. “A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling.” J. Hydrol. 387 (1–2): 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027.
Beck, M. B. 1987. “Water quality modeling: A review of the analysis of uncertainty.” Water Resour. Res. 23 (8): 1393–1442. https://doi.org/10.1029/WR023i008p01393.
Beskow, S., C. R. de Mello, M. M. Vargas, L. D. L. Corrêa, T. L. Caldeira, M. F. Durães, and M. S. de Aguiar. 2016. “Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions.” J. Hydrol. 541 (Part B): 1406–1419. https://doi.org/10.1016/j.jhydrol.2016.08.046.
Biancamaria, S., M. Durand, K. M. Andreadis, P. D. Bates, A. Boone, N. M. Mognard, E. Rodríguez, D. E. Alsdorf, D. P. Lettenmaier, and E. A. Clark. 2011. “Assimilation of virtual wide swath altimetry to improve Arctic river modeling.” Remote Sens. Environ. 115 (2): 373–381. https://doi.org/10.1016/j.rse.2010.09.008.
Bonan, B., C. Albergel, Y. Zheng, A. L. Barbu, D. Fairbairn, S. Munier, and J.-C. Calvet. 2020. “An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the land data assimilation system LDAS-Monde: Application over the Euro-Mediterranean region.” Hydrol. Earth Syst. Sci. 24 (1): 325–347. https://doi.org/10.5194/hess-24-325-2020.
Castiglioni, S., A. Castellarin, and A. Montanari. 2009. “Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation.” J. Hydrol. 378 (3): 272–280. https://doi.org/10.1016/j.jhydrol.2009.09.032.
Chen, H., D. Yang, Y. Hong, J. J. Gourley, and Y. Zhang. 2013. “Hydrological data assimilation with the Ensemble Square-Root-Filter: Use of streamflow observations to update model states for real-time flash flood forecasting.” Adv. Water Resour. 59 (Sep): 209–220. https://doi.org/10.1016/j.advwatres.2013.06.010.
Clark, M. P., D. E. Rupp, R. A. Woods, X. Zheng, R. P. Ibbitt, A. G. Slater, J. Schmidt, and M. J. Uddstrom. 2008. “Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model.” Adv. Water Resour. 31 (10): 1309–1324. https://doi.org/10.1016/j.advwatres.2008.06.005.
Clark, M. P., and A. G. Slater. 2006. “Probabilistic quantitative precipitation estimation in complex terrain.” J. Hydrometeorol. 7 (1): 3–22. https://doi.org/10.1175/JHM474.1.
Collischonn, W., D. Allasia, B. C. da Silva, and C. E. M. Tucci. 2007. “The MGB-IPH model for large-scale rainfall-runoff modelling.” Hydrol. Sci. J. 52 (5): 878–895. https://doi.org/10.1623/hysj.52.5.878.
Dooge, J. C. I. 1986. “Looking for hydrologic laws.” Water Resour. Res. 22 (9S): 46–58. https://doi.org/10.1029/WR022i09Sp0046S.
Eaton, B., M. Church, and D. Ham. 2002. “Scaling and regionalization of flood flows in British Columbia, Canada.” Hydrol. Processes 16 (16): 3245–3263. https://doi.org/10.1002/hyp.1100.
Entekhabi, D. 1994. “A simple model of the hydrologic cycle and climate: 1. Model construct and sensitivity to the land surface boundary.” Adv. Water Resour. 17 (1): 79–91. https://doi.org/10.1016/0309-1708(94)90025-6.
Evensen, G. 1994. “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.” J. Geophys. Res. 99 (C5): 10143–10162. https://doi.org/10.1029/94JC00572.
Evensen, G. 2003. “The ensemble Kalman filter: Theoretical formulation and practical implementation.” Ocean Dyn. 53 (4): 343–367. https://doi.org/10.1007/s10236-003-0036-9.
Fadel, A. 2015. Incorporação do risco de prejuízo no gerenciamento de medidas de controle de inundação. Porto Alegre, Brazil: Universidade Federal do Rio Grande do Sul.
Fisher, C. K., M. Pan, and E. F. Wood. 2020. “Spatiotemporal assimilation-interpolation of discharge records through inverse streamflow routing.” Hydrol. Earth Syst. Sci. 24 (1): 293–305. https://doi.org/10.5194/hess-24-293-2020.
Gaspari, G., and S. E. Cohn. 1999. “Construction of correlation functions in two and three dimensions.” Q. J. R. Meteorolog. Soc. 125 (554): 723–757. https://doi.org/10.1002/qj.49712555417.
Georgakakos, K. P., and O. W. Baumer. 1996. “Measurement and utilization of on-site soil moisture data.” J. Hydrol. 184 (1–2): 131–152. https://doi.org/10.1016/0022-1694(95)02971-0.
Getirana, A., C. Peters-Lidard, M. Rodell, and P. D. Bates. 2017. “Trade-off between cost and accuracy in large-scale surface water dynamic modeling.” Water Resour. Res. 53 (6): 4942–4955. https://doi.org/10.1002/2017WR020519.
Goniadzki, D., M. Thibeault, H. Lozza, U. Quirno, and D. Dadamia. 2011. “Assimilation of soil moisture estimates into flow-forecasting hydrologic models.” In Primer Encuentro de Investigadores en Formación en Recursos Hídricos (IFRH). Ezeiza, Argentina: Instituto Nacional del Agua.
Houtekamer, P. L., and H. L. Mitchell. 2001. “A sequential ensemble Kalman filter for atmospheric data assimilation.” Mon. Weather Rev. 129 (1): 123–137. https://doi.org/10.1175/1520-0493(2001)129%3C0123:ASEKFF%3E2.0.CO;2.
Houtekamer, P. L., and H. L. Mitchell. 2006. “Ensemble Kalman filtering.” Q. J. R. Meteorolog. Soc. 131 (613): 3269–3289. https://doi.org/10.1256/qj.05.135.
Hrachowitz, M., et al. 2013. “A decade of predictions in ungauged basins (PUB)—A review.” Hydrol. Sci. J. 58 (6): 1198–1255. https://doi.org/10.1080/02626667.2013.803183.
Instituto Brasileiro de Geografia e Estatistica (IBGE). 2020. “Mapas políticos dos estados.” Accessed January 25, 2020. https://www.ibge.gov.br/pt/inicio.html.
Jackson, T. J., T. J. Schugge, A. D. Nicks, G. A. Coleman, and E. T. Engman. 1981. “Soil moisture updating and microwave remote sensing for hydrological simulation.” Hydrol. Sci. Bull. 26 (3): 305–319. https://doi.org/10.1080/02626668109490889.
Kapangaziwiri, E., D. A. Hughes, and T. Wagener. 2012. “Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in Southern Africa.” Hydrol. Sci. J. 57 (5): 1000–1019. https://doi.org/10.1080/02626667.2012.690881.
Kitanidis, P. K., and R. L. Bras. 1980. “Real-time forecasting with a conceptual hydrologic model: 2. Applications and results.” Water Resour. Res. 16 (6): 1034–1044. https://doi.org/10.1029/WR016i006p01034.
Larentis, D., W. Collischonn, and C. Tucci. 2008. “Simulação da Qualidade de Água em Grandes Bacias: Rio Taquari-Antas, RS.” Rev. Bras. Recursos Hídricos 13 (3): 5–22. https://doi.org/10.21168/rbrh.v13n3.p5-22.
Lee, H., D. J. Seo, Y. Liu, V. Koren, P. McKee, and R. Corby. 2012. “Variational assimilation of streamflow into operational distributed hydrologic models: Effect of spatiotemporal scale of adjustment.” Hydrol. Earth Syst. Sci. 16 (7): 2233–2251. https://doi.org/10.5194/hess-16-2233-2012.
Liu, Y., et al. 2012. “Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities.” Hydrol. Earth Syst. Sci. 16 (10): 3863–3887. https://doi.org/10.5194/hess-16-3863-2012.
Liu, Y., and H. V. Gupta. 2007. “Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework.” Water Resour. Res. 43 (7): 1–18. https://doi.org/10.1029/2006WR005756.
Maxwell, D. H., B. M. Jackson, and J. McGregor. 2018. “Constraining the ensemble Kalman filter for improved streamflow forecasting.” J. Hydrol. 560 (May): 127–140. https://doi.org/10.1016/j.jhydrol.2018.03.015.
McCuen, R. H., and B. S. Levy. 2000. “Evaluation of peak discharge transposition.” J. Hydrol. Eng. 5 (3): 278–289. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(278).
McLaughlin, D. 1995. “Recent developments in hydrologic data assimilation.” Rev. Geophys. Supplement, 33 (S2): 977–984. https://doi.org/10.1029/95RG00740.
Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian. 2005a. “Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter.” Water Resour. Res. 41 (5): W05012. https://doi.org/10.1029/2004WR003604.
Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser. 2005b. “Dual state-parameter estimation of hydrological models using ensemble Kalman filter.” Adv. Water Resour. 28 (2): 135–147. https://doi.org/10.1016/j.advwatres.2004.09.002.
Neal, J. C., P. M. Atkinson, and C. W. Hutton. 2007. “Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurements.” J. Hydrol. 336 (3): 401–415. https://doi.org/10.1016/j.jhydrol.2007.01.012.
Nijssen, B., and D. P. Lettenmaier. 2004. “Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the global precipitation measurement satellites.” J. Geophys. Res. D: Atmos. 109 (2): 1–15. https://doi.org/10.1029/2003JD003497.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A. Yorke. 2004. “A local ensemble Kalman filter for atmospheric data assimilation.” Tellus A: Dyn. Meteorol. Oceanogr. 56 (5): 415–428. https://doi.org/10.3402/tellusa.v56i5.14462.
Paiva, R. C. D., W. Collischonn, M.-P. Bonnet, L. G. G. de Gonçalves, S. Calmant, A. Getirana, and J. Santos da Silva. 2013. “Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon.” Hydrol. Earth Syst. Sci. 17 (7): 2929–2946. https://doi.org/10.5194/hess-17-2929-2013.
Pauwels, V. R. N., and G. J. M. De Lannoy. 2006. “Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge.” J. Hydrometeorol. 7 (3): 458–477. https://doi.org/10.1175/JHM490.1.
Pontes, P. R. M., F. M. Fan, A. S. Fleischmann, R. C. D. de Paiva, D. C. Buarque, V. A. Siqueira, P. F. Jardim, M. V. Sorribas, and W. Collischonn. 2017. “MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS.” Environ. Modell. Software 94 (Aug): 1–20. https://doi.org/10.1016/j.envsoft.2017.03.029.
Porto, E. 2019. “Descarga gratuita de capas vectoriales.” Accessed November 14, 2019. https://tapiquen-sig.jimdofree.com/descargas-gratuitas/mundo/.
Postel, S. L., and A. T. Wolf. 2001. “Dehydrating conflict.” Foreign Policy 126 (Sep–Oct): 60–67. https://doi.org/10.2307/3183260.
Prevot, L., R. Bernard, O. Taconet, D. Vidal-Madjar, and J. L. Thony. 1984. “Evaporation from a bare soil evaluated using a soil water transfer model and remotely sensed surface soil moisture data.” Water Resour. Res. 20 (2): 311–316. https://doi.org/10.1029/WR020i002p00311.
Pruski, F. F., A. de Araújo Nunes, P. L. Pruski, and R. del Giudice Rodriguez. 2013. “Improved regionalization of streamflow by use of the streamflow equivalent of precipitation as an explanatory variable.” J. Hydrol. 476 (Jan): 52–71. https://doi.org/10.1016/j.jhydrol.2012.10.005.
Rasmussen, J., H. Madsen, K. H. Jensen, and J. C. Refsgaard. 2015. “Data assimilation in integrated hydrological modelling in the presence of observation bias.” Hydrol. Earth Syst. Sci. Discuss. 12 (8): 8131–8173. https://doi.org/10.5194/hessd-12-8131-2015.
Razavi, T., and P. Coulibaly. 2016. “Improving streamflow estimation in ungauged basins using a multi-modelling approach.” Hydrol. Sci. J. 61 (15): 2668–2679. https://doi.org/10.1080/02626667.2016.1154558.
Reichle, R. H. 2008. “Data assimilation methods in the earth sciences.” Adv. Water Resour. 31 (11): 1411–1418. https://doi.org/10.1016/j.advwatres.2008.01.001.
Revilla-Romero, B., N. Wanders, P. Burek, P. Salamon, and A. de Roo. 2016. “Integrating remotely sensed surface water extent into continental scale hydrology.” J. Hydrol. 543 (Part B): 659–670. https://doi.org/10.1016/j.jhydrol.2016.10.041.
Sakov, P., and L. Bertino. 2011. “Relation between two common localisation methods for the EnKF.” Computat. Geosci. 15 (2): 225–237. https://doi.org/10.1007/s10596-010-9202-6.
SEMA (Secretaria do Ambiente e Desenvolvimento Sustentável). 2014. Plano da Bacia Hidrográfica do Taquari-Antas. Rio Grande do Sul, Brazil: Estado do Rio Grande do Sul—Secretaria do Meio Ambiente.
Siqueira, V. A., W. Collischonn, F. M. Fan, and S. C. Chou. 2016. “Ensemble flood forecasting based on operational forecasts of the regional Eta EPS in the Taquari-Antas basin.” Rev. Bras. Recursos Hídricos 21 (3): 587–602. https://doi.org/10.1590/2318-0331.011616004.
Sivapalan, M. 2003. “Prediction in ungauged basins: A grand challenge for theoretical hydrology.” Hydrol. Processes 17 (15): 3163–3170. https://doi.org/10.1002/hyp.5155.
Sun, L., O. Seidou, I. Nistor, and K. Liu. 2016. “Review of the Kalman-type hydrological data assimilation.” Hydrol. Sci. J. 61 (13): 2348–2366. https://doi.org/10.1080/02626667.2015.1127376.
Tallaksen, L., and H. A. J. van Lanen, eds. 2004. “Hydrological drought: Processes and estimation methods for streamflow and groundwater.” In Vol. 48 of Developments in water science. Amsterdam: Elsevier.
Thiboult, A., and F. Anctil. 2015. “On the difficulty to optimally implement the ensemble Kalman filter: An experiment based on many hydrological models and catchments.” J. Hydrol. 529 (Part 3): 1147–1160. https://doi.org/10.1016/j.jhydrol.2015.09.036.
Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker. 2003. “Ensemble square root filters.” Mon. Weather Rev. 131 (7): 1485–1490. https://doi.org/10.1175/1520-0493(2003)131%3C1485:ESRF%3E2.0.CO;2.
Todini, E. 1996. “The ARNO rainfall-runoff model.” J. Hydrol. 175 (1): 339–382. https://doi.org/10.1016/S0022-1694(96)80016-3.
Tong, X. T. 2018. “Performance analysis of local ensemble Kalman filter.” J. Nonlinear Sci. 28 (4): 1397–1442. https://doi.org/10.1007/s00332-018-9453-2.
Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten. 2005. “Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation.” Water Resour. Res. 41 (1): 1–17. https://doi.org/10.1029/2004WR003059.
Vrugt, J. A., H. V. Gupta, B. Ó. Nualláin, and W. Bouten. 2006. “Real-time data assimilation for operational ensemble streamflow forecasting.” J. Hydrometeorol. 7 (3): 548–565. https://doi.org/10.1175/JHM504.1.
Wagener, T., M. Sivapalan, P. A. Troch, B. L. McGlynn, C. J. Harman, H. V. Gupta, P. Kumar, P. S. C. Rao, N. B. Basu, and J. S. Wilson. 2010. “The future of hydrology: An evolving science for a changing world.” Water Resour. Res. 46 (5): 1–10. https://doi.org/10.1029/2009WR008906.
Walker, J. P., and P. R. Houser. 2005. “Hydrologic data assimilation.” Chap. 2 in Advances in water science methodologies, 45–68. Boca Raton, FL: CRC Press.
Weerts, A., and Y. Liu. 2011. “Advances in data assimilation for operational hydrologic forecasting.” Eos Trans. Am. Geophys. Union 92 (7): 55. https://doi.org/10.1029/2011EO070005.
Whitaker, J. S., and T. M. Hamill. 2002. “Ensemble data assimilation without perturbed observations.” Mon. Weather Rev. 130 (7): 1913–1924. https://doi.org/10.1175/1520-0493(2002)130%3C1913:EDAWPO%3E2.0.CO;2.
Wongchuig-Correa, S., R. Paiva, S. Biancamaria, and W. Collischonn. 2020. “Assimilation of future SWOT-based river elevations, surface extent and discharge observations into uncertain global hydrological models.” J. Hydrol. 590 (Nov): 125473. https://doi.org/10.1016/j.jhydrol.2020.125473.
Wongchuig, S. C., R. C. D. de Paiva, V. Siqueira, and W. Collischonn. 2019. “Hydrological reanalysis across the 20th century: A case study of the Amazon basin.” J. Hydrol. 570 (Mar): 755–773. https://doi.org/10.1016/j.jhydrol.2019.01.025.
Yamazaki, D., G. A. M. de Almeida, and P. D. Bates. 2013. “Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map.” Water Resour. Res. 49 (11): 7221–7235. https://doi.org/10.1002/wrcr.20552.
Young, P. C. 2002. “Advances in real-time flood forecasting.” Philos. Trans. R. Soc. London, Ser. A 360 (1796): 1433–1450. https://doi.org/10.1098/rsta.2002.1008.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 2February 2021

History

Received: Mar 27, 2020
Accepted: Aug 20, 2020
Published online: Nov 24, 2020
Published in print: Feb 1, 2021
Discussion open until: Apr 24, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, 91501970 Porto Alegre, Brazil; Postdoctoral Researcher, Univ. Grenoble Alpes, Institut de recherche pour le développement, Centre national de la recherche scientifique, Grenoble Institut polytechnique de Grenoble, Institut des Géosciences de l’Environnement (UMR 5001), 38000 Grenoble, France (corresponding author). ORCID: https://orcid.org/0000-0002-1116-0742. Email: [email protected]
Ayan Fleischmann [email protected]
Ph.D. Student, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, 91501970 Porto Alegre, Brazil. Email: [email protected]
Rodrigo Paiva [email protected]
Professor, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, 91501970 Porto Alegre, Brazil. Email: [email protected]
Amanda Fadel [email protected]
M.Sc. Student, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, 91501970 Porto Alegre, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share