Abstract

Onsite and Earth observation (EO) data are used for the calibration of the Natural Resources Conservation Service curve number (NRCS-CN) value in a hydrological simulation model. The model was developed for La Muga catchment (eastern Pyrenees) highly vulnerable to flood and drought episodes. It is an integral part of a regional reservoir management tool, which aims at minimizing the flood risk while maximizing the preservation of water storage. The CN values were optimized for five recorded events for the model to match the observed hydrographs at the reservoir when supported with the measured rainfall intensities. This study also investigates the possibilities of using antecedent moisture conditions (AMC) retrieved from satellite data to inform the selection of the NRCS-CN losses parameter. A good correlation was found between the calibrated CN values and the AMC obtained from satellite data. This correlation highlights the interest in using EO data to update NRCS-CN estimates. This advances in hydrologic-hydraulic coupled modeling combined with new remote sensing datasets present valuable opportunities and potential benefits for flood risk management and water resources preservation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used during the study, and provided by a third party are listed below:
Precipitation data (Table 2), generated by Servei Meterològic de Catalunya (https://meteo.cat), were provided by Agència Catalana de l’Aigua (http://aca.gencat.cat/ca/inici) within the PGRI-EPM project.
Dam outlet and water-level data (Table 2) were provided by Agència Catalana de l’Aigua (http://aca.gencat.cat/ca/inici) within the PGRI-EPM project.
Direct requests for these materials may be made to the provider.

Acknowledgments

This work was carried out in the framework of the PGRI-EPM project (Prévision et gestion du risque d’inondation en Eurorégion Pyrénées Méditerranée) funded by the call for projects “Water Resources–Risk Management (Floods, Droughts, Submersion)” of the Pyrenees-Mediterranean Euroregion. The authors also thank to the Agència Catalana de l’Aigua and Servei Meteorològic de Catalunya, who provided the rainfall and water-level data, as well as its advisement during the project.

References

ACA (Agència Catalana de l’Aigua). 2007. Planificació de l’Espai Fluvial. Estudis d’inundabilitat en l’àmbit del projecte PEFCAT—Memòria específica Conca de La Muga. Barcelona, Spain: ACA.
ACA (Agència Catalana de l’Aigua). 2019. “Descàrrega cartogràfica.” Accessed July 31, 2019. http://aca.gencat.cat/ca/laigua/consulta-de-dades/descarrega-cartografica/.
Anees, M. T., K. Abdullah, M. N. M. Nordin, N. N. N. A. Rahman, M. I. Syakir, and M. O. A. Kadir. 2017. “One- and two-dimensional hydrological modelling and their uncertainties.” In Flood risk management. London: InTech.
Arcement, G. J. J., and V. R. Schneider. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. Washington, DC: USGS.
Arnell, N. W. 1999. “The effect of climate change on hydrological regimes in Europe: A continental perspective.” Global Environ. Change 9 (1): 5–23. https://doi.org/10.1016/S0959-3780(98)00015-6.
Bates, P., and A. P. De Roo. 2000. “A simple raster-based model for flood inundation simulation.” J. Hydrol. 236 (1–2): 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X.
Bech, J. T., N. Rigo, S. Pineda, E. Segalà, R. Vilaclara, R. Sámchez-Diezma, and D. Sempere-Torres. 2005. “Implementation of the EHIMI software package in the weather radar operational chain of the Catalan meteorological service.” In Proc., 11th Conf. on Mesoscale Processes and the 32nd Conf. on Radar Meteorology. Boston: American Meteorological Society.
Bladé, E., L. Cea, and G. Corestein. 2014a. “Numerical modelling of river inundations.” Ingeniería del agua 18 (1): 68. https://doi.org/10.4995/ia.2014.3144.
Bladé, E., L. Cea, G. Corestein, E. Escolano, J. Puertas, E. Vázquez-Cendón, J. Dolzand A. Coll. 2014b. “Iber: herramienta de simulación numérica del flujo en ríos.” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 30 (1): 1–10. https://doi.org/10.1016/j.rimni.2012.07.004.
Bladé, E., M. Sanz-Ramos, A. Amengual, R. Romero, H. Roux, J. Savatier, and M. Cherriere. 2018. “Gestión integrada del riesgo de inundación y de los recursos hídricos empleando modelización integrada meteorológica, hidrológica e hidráulica.” In Proc., XI Jornadas Españolas de Presas. Madrid, Spain: Comité Nacional Español de Grandes Presas.
Brocca, L., W. T. Crow, L. Ciabatta, C. Massari, P. de Rosnay, M. Enenkel, S. Hahn, G. Amarnath, S. Camici, A. Tarpanelli, and W. Wagner. 2017. “A review of the applications of ASCAT soil moisture products.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10 (5): 2285–2306. https://doi.org/10.1109/JSTARS.2017.2651140.
Campón, L., E. Quirós, and P. Durán-Barroso. 2015. “Análisis de la variabilidad en la estimación del umbral de escorrentía en función de las distintas fuentes de kinformación disponibles.” In Proc., IV Jornadas de Ingeniería del Agua, 10. Córdoba, Spain: Universidad de Córdoba.
Caro, C. A. 2016. “Modelación hidrológica distribuida basada en esquemas de volúmenes finitos.” Ph.D. thesis, School of Civil Engineering, Universitat Politècnica de Catalunya.
Cea, L., M. Bermudez, J. Puertas, E. Bladé, G. Corestein, E. Escolano, A. Conde, B. Bockelmann-Evans, and R. Ahmadian. 2016. “IberWQ: New simulation tool for 2D water quality modelling in rivers and shallow estuaries.” J. Hydroinf. 18 (5): 816–830. https://doi.org/10.2166/hydro.2016.235.
Cea, L., and E. Bladé. 2015. “A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications.” Water Resour. Res. 51 (7): 5464–5486. https://doi.org/10.1002/2014WR016547.
Cea, L., I. Fraga, J. Puertas, M. Álvarez, M. Bermúdez, S. Coquerez, S. Salsón, and A. Pettazzi. 2015. “Influencia de la densidad espacial de estaciones pluviométricas y de la disponibilidad de datos radar en los hidrogramas de tormenta calculados con un modelo hidrológico distribuido: Aplicación auna cuenca de 24 km2 en el Noroeste de España.” In Proc., Actas de las IV Jornadas de Ingeniería del Agua. Precipitación y procesos erosivos. Córdoba, Spain: Universidad de Córdoba.
Cea, L., M. Garrido, and J. Puertas. 2010. “Experimental validation of two-dimensional depth-averaged models for forecasting rainfall–runoff from precipitation data in urban areas.” J. Hydrol. 382 (1–4): 88–102. https://doi.org/10.1016/j.jhydrol.2009.12.020.
CEDEX (Centro de Estudios y Experimentación de Obras Públicas). 2003. Análisis de nuevas fuentes de datos para la estimación del parámetro número de curva: Perfiles de suelos y teledetección. Madrid, Spain: CEDEX.
Chung, D., W. Dorigo, R. De Jeu, R. Kidd, and W. Wagner. 2018. Product Specification Document (PSD) – D1.2.1 version 4.2. Paris: European Space Agency.
Corral, C., D. Velasco, D. Forcadell, D. Sempere-Torres, and E. Velasco. 2009. “Advances in radar-based flood warning systems. The EHIMI system and the experience in the Besòs flash-flood pilot basin.” In Vol. 332 of Proc., Flood Risk Management Research and Practice Extended Abstracts, 1295–1303. Leiden, Netherlands: CRC Press.
EEA (European Environmental Agency). 2007. CORINE land cover 2006 technical guidelines. Copenhagen, Denmark: EEA.
EM-DAT (Emergency Events Database). 2019. Database | EM-DAT. Brussels, Belgium: Université catholique de Louvain.
Estévez, J., F. Moreno-Pérez, J. Roldán-Cañas, A. Serrat-Capdevila, J. González, F. Francés, F. Olivera, and J. V. Giráldez. 2014. “Hydrology and its role in water engineering.” Ingeniería del agua 18 (1): 1. https://doi.org/10.4995/ia.2014.3048.
Fonseca, A. R., M. Santos, and J. A. Santos. 2018. “Hydrological and flood hazard assessment using a coupled modelling approach for a mountainous catchment in Portugal.” In Stochastic environmental research and risk assessment, 1. Berlin: Springer.
García-Feal, O., J. González-Cao, M. Gómez-Gesteira, L. Cea, J. M. Domínguez, and A. Formella. 2018. “An accelerated tool for flood modelling based on Iber.” Water 10 (10): 1459. https://doi.org/10.3390/w10101459.
ICE (Institut d’Estudis Catalans). 2016. Tercer informe sobre Canvi Climàtic a Catalunya. Barcelona, Spain: ICE.
ICGC (Institut Cartogràfic i Geològic de Catalunya). 2020. “Descàrregues.” Accessed May 25, 2020. https://www.icgc.cat/Descarregues.
IPCC (Intergovernmental Panel on Climate Change). 2014a. Climate change 2013—The physical science basis. Cambridge, UK: Cambridge University Press.
IPCC (Intergovernmental Panel on Climate Change). 2014b. Climate change 2014: Impacts, adaptation and vulnerability. Volume II: Global and sectoral aspects. Geneva: IPCC.
ISDR (International Strategy for Disaster Reduction) 2009. Global assessment report on disaster risk reduction. Geneva: United Nations.
Juárez, D., J. Arganis, R. Dominguez, G. Esquivel, E. Bladé, J. Dolz, H. Sánchez-Tueros, and G. Corestein. 2014. “Comparación del hidrograma de salida de una cuenca con un modelo hidráulico y un modelo distribuido.” In Proc., XXIII Congreso Nacional de Hidráulica, Resúmenes extendidos. Puero Vallarta, Jalisco, México: Congreso Nacional de Hidráulica.
Kim, J., A. Warnock, V. Y. Ivanov, and N. D. Katopodes. 2012. “Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow.” Adv. Water Resour. 37 (Mar): 104–126. https://doi.org/10.1016/j.advwatres.2011.11.009.
Kron, W. 2005. “Flood risk = Hazard + values + vulnerability.” Water Int. 30 (1): 58–68. https://doi.org/10.1080/02508060508691837.
Lehner, B., P. Döll, J. Alcamo, T. Henrichs, and F. Kaspar. 2006. “Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis.” Clim. Change 75 (3): 273–299. https://doi.org/10.1007/s10584-006-6338-4.
Li, H., D. Mao, X. Li, Z. Wang, and C. Wang. 2019. “Monitoring 40-year lake area changes of the Qaidam Basin, Tibetan Plateau, using Landsat time series.” Remote Sensing 11 (3): 343. https://doi.org/10.3390/rs11030343.
Liu, Y. Y., W. A. Dorigo, R. M. Parinussa, R. A. M. de Jeu, W. Wagner, M. F. McCabe, J. P. Evans, and A. I. J. M. van Dijk. 2012. “Trend-preserving blending of passive and active microwave soil moisture retrievals.” Remote Sens. Environ. 123 (Aug): 280–297. https://doi.org/10.1016/j.rse.2012.03.014.
Liu, Y. Y., R. M. Parinussa, W. A. Dorigo, R. A. M. De Jeu, W. Wagner, A. I. J. M. van Dijk, M. F. McCabe, and J. P. Evans. 2011. “Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals.” Hydrol. Earth Syst. Sci. 15 (2): 425–436. https://doi.org/10.5194/hess-15-425-2011.
Llasat, M. C., and R. Rodriguez. 1992. “Extreme rainfall events in Catalonia. The case of 12 November 1988.” Nat. Hazards 5 (2): 133–151. https://doi.org/10.1007/BF00127002.
Marti-Cardona, B., J. Dolz-Ripolles, and C. Lopez-Martinez. 2013. “Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancilliary spatial data.” Remote Sens. Environ. 139 (Dec): 171–184. https://doi.org/10.1016/j.rse.2013.07.028.
Martí-Cardona, B., C. Lopez-Martinez, J. Dolz-Ripolles, and E. Bladé. 2010. “ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring.” Remote Sens. Environ. 114 (11): 2802–2815. https://doi.org/10.1016/j.rse.2010.06.015.
Martín-Vide, J. 1994. “Geographical factors in the pluviometry of Mediterranean Spain: Drought and torrential rainfall.” In Proc., Spain Workshop on Natural Hazards, 9–25. Iowa City, IA: Univ. of Iowa.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
NRCS (Natural Resources Conservation Service) 2004. “Part 630 hydrology—Chapter 10.” In National engineering handbook, 79. Washington, DC: USDA.
Ponce, V. M., and R. H. Hawkins. 1996. “Runoff curve number: Has it reached maturity?” J. Hydrol. Eng. 1 (1): 11–19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11).
Rajib, M. A., V. Merwade, and Z. Yu. 2016. “Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture.” J. Hydrol. 536 (May): 192–207. https://doi.org/10.1016/j.jhydrol.2016.02.037.
Ramos-Fuertes, A., B. Marti-Cardona, E. Bladé, and J. Dolz. 2013. “Envisat/ASAR images for the calibration of wind drag action in the Doñana wetlands 2D hydrodynamic model.” Remote Sens. 6 (1): 379–406. https://doi.org/10.3390/rs6010379.
Roux, H., A. Amengual, R. Romero, E. Bladé, and M. Sanz-Ramos. 2020. “Evaluation of two hydrometeorological ensemble strategies for flash-flood forecasting over a catchment of the eastern Pyrenees.” Nat. Hazards Earth Syst. Sci. 20 (2): 425–450. https://doi.org/10.5194/nhess-20-425-2020.
Roux, H., D. Labat, P.-A. Garambois, M.-M. Maubourguet, J. Chorda, and D. Dartus. 2011. “A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments.” Nat. Hazards Earth Syst. Sci. 11 (9): 2567–2582. https://doi.org/10.5194/nhess-11-2567-2011.
Sanz-Ramos, M., A. Amengual, E. Bladé, R. Romero, and H. Roux. 2018. “Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and high resolution meteorological model.” In Proc., E3S Web of Conf. Les Ulis, France: EDP Sciences. https://doi.org/10.1051/e3sconf/20184006028.
Silvestro, F., S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, and G. Boni. 2015. “Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data.” Hydrol. Earth Syst. Sci. 19 (4): 1727–1751. https://doi.org/10.5194/hess-19-1727-2015.
Tirkey, A. S., A. C. Pandey, and M. S. Nathawat. 2014. “Use of high-resolution satellite data, GIS and NRCS-CN technique for the estimation of rainfall-induced run-off in small catchment of Jharkhand India.” Geocarto Int. 29 (7): 778–791. https://doi.org/10.1080/10106049.2013.841773.
Toro, E. F. 2009. Riemann solvers and numerical methods for fluid dynamics. Berlin: Springer.
Torres-Batlló, J., B. Martí-Cardona, and R. Pillco-Zolá. 2019. “Mapping evapotranspiration, vegetation and precipitation trends in the catchment of the shrinking Lake Poopó.” Remote Sens. 12 (1): 73. https://doi.org/10.3390/rs12010073.
USDA. 1986. Urban hydrology for small watersheds. Washington, DC: Natural Resources Conservation Service, Conservation Engineering Division.
Viero, D. P., P. Peruzzo, L. Carniello, and A. Defina. 2014. “Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments.” Water Resour. Res. 50 (7): 5941–5957. https://doi.org/10.1002/2013WR014293.
Wagner, W., W. Dorigo, R. A. M. de Jeu, D. Fernandez, J. Benveniste, E. Haas, and M. Ertl. 2012. “Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture.” In Proc., ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 315–321. Sydney, Australia: The Univ. of NSW. https://doi.org/10.5194/isprsannals-I-7-315-2012.
Wang, L., and H. Liu. 2006. “An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling.” Int. J. Geog. Inf. Sci. 20 (2): 193–213. https://doi.org/10.1080/13658810500433453.
Wu, Z., Z. Xu, F. Wang, H. He, J. Zhou, X. Wu, and Z. Liu. 2018. “Hydrologic evaluation of multi-source satellite precipitation products for the Upper Huaihe River Basin, China.” Remote Sens. 10 (6): 840. https://doi.org/10.3390/rs10060840.
Yu, C., and J. Duan. 2017. “Simulation of surface runoff using hydrodynamic model.” J. Hydrol. Eng. 22 (6): 04017006. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001497.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 9September 2020

History

Received: Dec 19, 2019
Accepted: Apr 17, 2020
Published online: Jun 17, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 17, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Institut Flumen, Universitat Politècnica de Catalunya—International Center for Numerical Methods in Engineering, Barcelona 08034, Spain (corresponding author). ORCID: https://orcid.org/0000-0003-2534-0039. Email: marcos.sanz-ramos@upc-edu
Belén Martí-Cardona, Ph.D. [email protected]
Dept. of Civil and Environmental Engineering, Univ. of Surrey, Guildford GU2 9PL, UK. Email: [email protected]
Ernest Bladé, Ph.D. [email protected]
Institut Flumen, Universitat Politècnica de Catalunya—International Center for Numerical Methods in Engineering, Barcelona 08034, Spain. Email: [email protected]
Institut Flumen, Universitat Politècnica de Catalunya—International Center for Numerical Methods in Engineering, Barcelona 08034, Spain. ORCID: https://orcid.org/0000-0003-0541-2605. Email: [email protected]
Arnau Amengual, Ph.D. [email protected]
Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears, Palma, Mallorca 07122, Spain. Email: [email protected]
Hélène Roux, Ph.D. [email protected]
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, Toulouse 31400, France. Email: [email protected]
Romu Romero, Ph.D. [email protected]
Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears, Palma, Mallorca 07122, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share