Case Studies
Jul 11, 2020

Multivariate Frequency Analysis of Annual Maxima Suspended Sediment Concentrations and Floods in the Jinsha River, China

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 9

Abstract

Streamflow plays a critical role in sediment transport. Traditional frequency analysis of annual maximal (AM) suspended sediment concentrations (SSCs) is usually based on univariate distribution of SSCs and may provide a limited assessment of SSC state, leading to an underestimate or overestimate of the corresponding probability. To address this issue, a multivariate frequency analysis framework is proposed for extreme sediment events using copula functions that account for the joint behavior of SSC and flood flow (i.e., peak discharge and volume). The uncertainties associated with copula modeling are also discussed. The Jinsha River in China is used as a case study. The results show that the copula-based multivariate method provides a more comprehensive assessment of extreme SSCs and their recurrence intervals than univariate frequency analysis. The uncertainty of copula modeling decreases with longer observation time and increases with larger return periods. The uncertainty ranges of the most likely design quantiles vary with different copulas, and the uncertainty range for the best-fit copula is not the smallest. This study is useful for the risk assessment of extreme SSC events under flood conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, and code generated or used during this study are available from the corresponding author by request.

Acknowledgments

This work was supported by the Project of the National Key Research and Development Program of China (Grant No. 2016YFC0402309) and the National Natural Science Foundation of China (Grant No. 51679088). The authors are very grateful to the editors and anonymous reviewers whose comments and suggestions greatly improved the quality of this paper.

References

AghaKouchak, A., L. Cheng, O. Mazdiyasni, and A. Farahmand. 2014. “Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought.” Geophys. Res. Lett. 41 (24): 8847–8852. https://doi.org/10.1002/2014GL062308.
AghaKouchak, A., L. S. Huning, F. Chiang, M. Sadegh, F. Vahedifard, O. Mazdiyasni, H. Moftakhari, and I. Mallakpour. 2018. “How do natural hazards cascade to cause disasters?” Nature 561 (7724): 458–460. https://doi.org/10.1038/d41586-018-06783-6.
Akaike, H. 1974. “A new look at the statistical model identification.” IEEE Trans. Autom. Control 19 (6): 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Asselman, N. E. M. 1999. “Suspended sediment dynamics in a large drainage basin: The River Rhine.” Hydrol. Process. 13 (10): 1437–1450. https://doi.org/10.1002/(SICI)1099-1085(199907)13:10%3C1437::AID-HYP821%3E3.0.CO;2-J.
Babiński, Z. 2005. “The relationship between suspended and bed load transport in river channels.” In Proc. Foz do Iguazu Symo. Sediment Budgets 1, edited by D. E. Walling and A. J. Horowitz, 182–188. Wallingford, UK: IAHS Press.
Benkhaled, A., H. Higgins, F. Chebana, and A. Necir. 2014. “Frequency analysis of annual maximum suspended sediment concentrations in Abiod wadi, Biskra (Algeria).” Hydrol. Process. 28 (12): 3841–3854. https://doi.org/10.1002/hyp.9880.
Bezak, N., M. Mikoš, and M. Šraj. 2014. “Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas.” Water Resour. Manage. 28 (8): 2195–2212. https://doi.org/10.1007/s11269-014-0606-2.
Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach. 2nd ed., 63. New York: Springer.
Chalov, R. S., J. Jarsjö, N. S. Kasimov, O. A. Romanchenko, J. Pietroń, J. Thorslund, and E. V. Promakhova. 2015. “Spatio-temporal variation of sediment transport in the Selenga river basin, Mongolia and Russia.” Environ. Earth Sci. 73 (2): 663–680. https://doi.org/10.1007/s12665-014-3106-z.
Chen, L., V. P. Singh, S. Guo, Z. Hao, and T. Li. 2012. “Flood coincidence risk analysis using multivariate copula functions.” J. Hydrol. Eng. 17 (6): 742–755. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000504.
Chen, Y., W. Wang, G. Wang, and S. Wang. 2010. “Characteristics analysis on temperature and precipitation variation in Jinsha River.” [In Chinese.] Plateau Mt. Meteorol. Res. 30 (4): 51–56.
Chow, V. T., D. R. Maidment, and L. R. Mays. 1988. Applied hydrology. New York: McGraw-Hill Inc.
Cigizoglu, H. K. 2004. “Estimating and forecasting of daily suspended sediment data by multi-layer perceptrons.” Adv. Water Resour. 27 (2): 185–195. https://doi.org/10.1016/j.advwatres.2003.10.003.
Conover, W. J. 1998. Practical nonparametric statistics. 3rd ed. New York: John Wiley & Sons, Inc.
Dai, Z., S. Fagherazzi, X. Mei, and J. Gao. 2016. “Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013.” Geomorphology 268 (Sep): 123–132. https://doi.org/10.1016/j.geomorph.2016.06.009.
De Michele, C., D. Salvadori, R. Vezzoli, and S. Pecora. 2013. “Multivariate assessment of droughts: Frequency analysis and dynamic return period.” Water Resour. Res. 49 (10): 6985–6994. https://doi.org/10.1002/wrcr.20551.
Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian. 2007. “Multi-model ensemble hydrologic prediction using Bayesian model averaging.” Adv. Water Resour. 30 (5): 1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014.
Fan, X., C. Shi, Y. Zhou, and W. Shao. 2012. “Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications.” Quat. Int. 282 (Dec): 152–162. https://doi.org/10.1016/j.quaint.2012.04.044.
Fan, Y. R., W. W. Huang, G. H. Huang, K. Huang, Y. P. Li, and X. M. Kong. 2016. “Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the three Gorges Reservoir area, China.” Theor. Appl. Climatol. 125 (1–2): 381–397. https://doi.org/10.1007/s00704-015-1505-z.
Favre, A.-C., S. E. Adlouni, L. Perreault, N. Thiémonge, and B. Bobée. 2004. “Multivariate hydrological frequency analysis using copulas.” Water Resour. Res. 40 (1): W01101. https://doi.org/10.1029/2003WR002456.
Garcia, M. 2006. Sedimentation engineering: Processes, measurements, modeling, and practice. Reston, VA: ASCE.
Genest, C., J.-F. Quessy, and B. Rémillard. 2006. “Goodness-of-fit procedures for copula models based on the integral probability transformation.” Scand. J. Stat. 33 (2): 337–366. https://doi.org/10.1111/j.1467-9469.2006.00470.x.
Genest, C., B. Rémillard, and D. Beaudoin. 2009. “Goodness-of-fit tests for copulas: A review and a power study.” Insurance Math. Econ. 44 (2): 199–213. https://doi.org/10.1016/j.insmatheco.2007.10.005.
Genest, C., and L.-P. Rivest. 1993. “Statistical inference procedures for bivariate Archimedean copulas.” J. Am. Stat. Assoc. 88 (423): 1034–1043. https://doi.org/10.1080/01621459.1993.10476372.
González-Hidalgo, J. C., R. J. Batalla, and A. Cerdà. 2013. “Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale.” Catena 102 (Mar): 40–45. https://doi.org/10.1016/j.catena.2010.10.011.
González-Hidalgo, J. C., R. J. Batalla, A. Cerdà, and M. De Luis. 2010. “Contribution of the largest events to suspended sediment transport across the USA.” Land Degrad. Dev. 21 (2): 83–91. https://doi.org/10.1002/ldr.897.
Gräler, B., M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest. 2013. “Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation.” Hydrol. Earth Syst. Sci. 17 (4): 1281–1296. https://doi.org/10.5194/hess-17-1281-2013.
Gringorten, I. I. 1963. “A plotting rule for extreme probability paper.” J. Geophys. Res. 68 (3): 813–814. https://doi.org/10.1029/JZ068i003p00813.
Guo, A., J. Chang, Y. Wang, and Q. Huang. 2016. “Variations in the runoff-sediment relationship of the Weihe River basin based on the copula function.” Water 8 (6): 223. https://doi.org/10.3390/w8060223.
James, S. C., C. A. Jones, M. D. Grace, and J. D. Roberts. 2010. “Advances in sediment transport modeling.” J. Hydraul. Res. 48 (6): 754–763. https://doi.org/10.1080/00221686.2010.515653.
Jansson, M. B. 2002. “Determining sediment source areas in a tropical river basin, Costa Rica.” Catena 47 (1): 63–84. https://doi.org/10.1016/S0341-8162(01)00173-4.
Kamal, E. K. A., D. A. Moran, P. Tassi, R. Ata, and J.-M. Hervouet. 2016. “Modelling river bank erosion using a 2D depth-averaged numerical model of flow and non-cohesive, non-uniform sediment transport.” Adv. Water Resour. 93 (Jul): 75–88. https://doi.org/10.1016/j.advwatres.2015.11.004.
Kao, S.-C., and R. S. Govindaraju. 2008. “Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas.” Water Resour. Res. 44 (2): W02415. https://doi.org/10.1029/2007WR006261.
Klein, B., M. Pahlow, Y. Hundecha, and A. Schumann. 2010. “Probability analysis of hydrological loads for the design of flood control systems using copulas.” J. Hydrol. Eng. 15 (5): 360–369. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000204.
Li, T., S. Guo, L. Chen, and J. Guo. 2013. “Bivariate flood frequency analysis with historical information based on copula.” J. Hydrol. Eng. 18 (8): 1018–1030. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000684.
Liu, A., F. Kong, and D. Wang. 2006. “Water quality risk assessment for sediment dredging operations, Wulihu in Taihu Lake.” [In Chinese.] Environ. Sci. 27 (10): 1946–1952.
Madadgar, S., and H. Moradkhani. 2011. “Drought analysis under climate change using copula.” J. Hydrol. Eng. 18 (7): 746–759. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000532.
Madadgar, S., and H. Moradkhani. 2013. “A Bayesian framework for probabilistic seasonal drought forecasting.” J. Hydrometeorol. 14 (6): 1685–1705. https://doi.org/10.1175/JHM-D-13-010.1.
Massey, F. J. 1951. “The Kolmogorov-Smirnov test for goodness of fit.” J. Am. Stat. Assoc. 46 (253): 68–78. https://doi.org/10.1080/01621459.1951.10500769.
Mesut, C. 2008. “Estimation of daily suspended sediments using support vector machines.” Hydrol. Sci. J. 53 (3): 656–666. https://doi.org/10.1623/hysj.53.3.656.
Michael, Z., and U. Stan. 2013. Statistical decision problems. New York: Springer.
Milly, P. C., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer. 2008. “Stationarity is dead: Whither water management?” Science 319 (5863): 573–574. https://doi.org/10.1126/science.1151915.
Mirabbasi, R., A. Fakheri-Fard, and Y. Dinpashoh. 2012. “Bivariate drought frequency analysis using the copula method.” Theor. Appl. Climatol. 108 (1–2): 191–206. https://doi.org/10.1007/s00704-011-0524-7.
Nelsen, R. B. 2006. An introduction to copulas. 2nd ed. New York: Springer-Verlag.
Newcombe, C. P., and J. O. T. Jensen. 1996. “Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact.” North Am. J. Fish. Manage. 16 (4): 693–727. https://doi.org/10.1577/1548-8675(1996)016%3C0693:CSSAFA%3E2.3.CO;2.
Newcombe, C. P., and D. D. MacDonald. 1991. “Effects of suspended sediments on aquatic ecosystems.” North Am. J. Fish. Manage. 11 (1): 72–82. https://doi.org/10.1577/1548-8675(1991)011%3C0072:EOSSOA%3E2.3.CO;2.
Nistor, C. J., and M. Church. 2005. “Suspended sediment transport regime in a debris-flow gully on Vancouver Island, British Columbia.” Hydrol. Process. 19 (4): 861–885. https://doi.org/10.1002/hyp.5549.
Pelletier, J. D. 2012. “A spatially distributed model for the long-term suspended sediment discharge and delivery ratio of drainage basins.” J. Geophys. Res. Earth Surf. 117 (F2): F02028. https://doi.org/10.1029/2011JF002129.
Peng, Y., Y. Shi, H. Yan, K. Chen, and J. Zhang. 2019. “Coincidence risk analysis of floods using multivariate copulas: Case study of Jinsha River and Min River, China.” J. Hydrol. Eng. 24 (2): 05018030. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001744.
Quilbé, R., A. N. Rousseau, M. Duchemin, A. Poulin, G. Gangbazo, and J.-P. Villeneuve. 2006. “Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Québec, Canada).” J. Hydrol. 326 (1–4): 295–310. https://doi.org/10.1016/j.jhydrol.2005.11.008.
Rabeni, C. 1995. “Sediment in streams: Sources, biological effects, and control.” Trans. Am. Fish. Soc. 126 (6): 1048–1051. https://doi.org/10.1577/1548-8659-126.6.1048.
Rao, A. R., and K. H. Hamed. 2001. Flood frequency analysis. New York: CRC Press.
Reddy, M. J., and P. Ganguli. 2012. “Bivariate flood frequency analysis of upper Godavari River flows using Archimedean copulas.” Water Resour. Manage. 26 (14): 3995–4018. https://doi.org/10.1007/s11269-012-0124-z.
Rodríguez-Blanco, M. L., M. M. Taboada-Castro, and M. T. Taboada-Castro. 2010. “Factors controlling hydro-sedimentary response during runoff events in a rural catchment in the humid Spanish zone.” Catena 82 (3): 206–217. https://doi.org/10.1016/j.catena.2010.06.007.
Rosenblatt, M. 1952. “Remarks on a multivariate transformation.” Ann. Math. Stat. 23 (3): 470–472. https://doi.org/10.1214/aoms/1177729394.
Ryan, P. A., and A. Paddy. 1991. “Environmental effects of sediment on New Zealand streams: A review.” N.Z. J. Mar. Freshwater Res. 25 (2): 207–221. https://doi.org/10.1080/00288330.1991.9516472.
Sadegh, M., H. Moftakhari, H. V. Gupta, E. Ragno, O. Mazdiyasni, B. Sanders, R. Matthew, and A. AghaKouchak. 2018. “Multihazard scenarios for analysis of compound extreme events.” Geophys. Res. Lett. 45 (11): 5470–5480. https://doi.org/10.1029/2018GL077317.
Sadegh, M., E. Ragno, and A. AghaKouchak. 2017. “Multivariate copula analysis toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework.” Water Resour. Res. 53 (6): 5166–5183. https://doi.org/10.1002/2016WR020242.
Salvadori, G. 2004. “Bivariate return periods via 2-copulas.” Stat. Methodol. 1 (1–2): 129–144. https://doi.org/10.1016/j.stamet.2004.07.002.
Salvadori, G., and C. De Michele. 2004. “Frequency analysis via copulas: Theoretical aspects and applications to hydrological events.” Water Resour. Res. 40 (12): W12511. https://doi.org/10.1029/2004WR003133.
Salvadori, G., and C. De Michele. 2013. “Multivariate extreme value methods.” In Extremes in a changing climate, 115–162. Dordrecht, Netherlands: Springer.
Salvadori, G., C. De Michele, and F. Durante. 2011. “On the return period and design in a multivariate framework.” Hydrol. Earth Syst. Sci. 15 (11): 3293–3305. https://doi.org/10.5194/hess-15-3293-2011.
Salvadori, G., C. De Michele, N. T. Kottegoda, and R. Rosso. 2007. Extremes in nature: An approach using copula. Berlin: Springer.
Salvadori, G., G. R. Tomasicchio, and F. D’Alessandro. 2014. “Practical guidelines for multivariate analysis and design in coastal and offshore engineering.” Coastal Eng. 88 (Jun): 1–14. https://doi.org/10.1016/j.coastaleng.2014.01.011.
Shiau, J. T. 2006. “Fitting drought duration and severity with two-dimensional copulas.” Water Resour. Manage. 20 (5): 795–815. https://doi.org/10.1007/s11269-005-9008-9.
Shojaeezadeh, S. A., M. R. Nikoo, J. P. McNamara, A. AghaKouchak, and M. Sadegh. 2018. “Stochastic modeling of suspended sediment load in alluvial rivers.” Adv. Water Resour. 119 (Sep): 188–196. https://doi.org/10.1016/j.advwatres.2018.06.006.
Sklar, A. 1959. “Fonctions de répartition à n dimensions et leurs marges.” Publ. Inst. Stat. Univ. Paris 8: 229–231.
Song, S., and V. P. Singh. 2010. “Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm.” Stochastic Environ. Res. Risk Assess. 24 (5): 783–805. https://doi.org/10.1007/s00477-010-0364-5.
Sraj, M., N. Bezak, and M. Brilly. 2014. “Bivariate flood frequency analysis using the copula function: A case study of the Litija station on the Sava River.” Hydrol. Process. 29 (2): 225–238. https://doi.org/10.1002/hyp.10145.
Tayfur, G. 2003. “Modelling sediment transport.” In Proc., Watershed Hydrology: Int. Conf. on Water and Environment, edited by V. P. Singh and R. N. Yadava, 353–375. New Delhi, India: Allied Publishers PVT Limited.
Tramblay, Y., T. B. M. J. Ouarda, A. St-Hilaire, and J. Poulin. 2010a. “Regional estimation of extreme suspended sediment concentrations using watershed characteristics.” J. Hydrol. 380 (3–4): 305–317. https://doi.org/10.1016/j.jhydrol.2009.11.006.
Tramblay, Y., A. Saint-Hilaire, T. B. M. J. Ouarda, F. Moatar, and B. Hecht. 2010b. “Estimation of local extreme suspended sediment concentrations in California Rivers.” Sci. Total Environ. 408 (19): 4221–4229. https://doi.org/10.1016/j.scitotenv.2010.05.001.
Tramblay, Y., A. St-Hilaire, and T. B. M. J. Ouarda. 2008. “Frequency analysis of maximum annual suspended sediment concentrations in North America.” Hydrol. Sci. J. 53 (1): 236–252. https://doi.org/10.1623/hysj.53.1.236.
Valero-Garcés, B. L., A. Navas, J. Machín, and D. Walling. 1999. “Sediment sources and siltation in mountain reservoirs: A case study from the Central Spanish Pyrenees.” Geomorphology 28 (1–2): 23–41. https://doi.org/10.1016/S0169-555X(98)00096-8.
Verstraeten, G., and J. Poesen. 2002. “Regional scale variability in sediment and nutrient delivery from small agricultural catchments.” J. Environ. Qual. 31 (3): 870–879. https://doi.org/10.2134/jeq2002.8700.
Walling, D. E., and D. Fang. 2003. “Recent trends in the suspended sediment loads of the world’s rivers.” Global Planet. Change 39 (1–2): 111–126. https://doi.org/10.1016/S0921-8181(03)00020-1.
Wang, C., N. B. Chang, and G. T. Yeh. 2009. “Copula-based flood frequency (COFF) analysis at the confluences of river systems.” Hydrol. Process. 23 (10): 1471–1486. https://doi.org/10.1002/hyp.7273.
Weibull, W. 1939. A statistical theory of the strength of materials. Stockholm, Sweden: Generalstabens Litografiska Anstalts Förlag.
Williams, G. P. 1989. “Sediment concentration versus water discharge during single hydrologic events in rivers.” J. Hydrol. 111 (1–4): 89–106. https://doi.org/10.1016/0022-1694(89)90254-0.
Xu, Q., and H. Tong. 2012. “Characteristics of flow and sediment change in Yangtze River in recent 50 years.” [In Chinese.] J. China Hydrol. 32 (5): 38–47.
Yan, H., H. Moradkhani, and M. Zarekarizi. 2017. “A probabilistic drought forecasting framework: A combined dynamical and statistical approach.” J. Hydrol. 548 (May): 291–304. https://doi.org/10.1016/j.jhydrol.2017.03.004.
Yang, C. T. 1996. Sediment transport theory and practice. New York: McGraw-Hill.
Yue, S. 2001. “A bivariate gamma distribution for use in multivariate flood frequency analysis.” Hydrol. Process. 15 (6): 1033–1045. https://doi.org/10.1002/hyp.259.
Zhang, J., Z. Ding, and J. You. 2014. “The joint probability distribution of runoff and sediment and its change characteristics with multi-time scales.” J. Hydrol. Hydromech. 62 (3): 218–225. https://doi.org/10.2478/johh-2014-0024.
Zhang, L., and V. P. Singh. 2006. “Bivariate flood frequency analysis using the copula method.” J. Hydrol. Eng. 11 (2): 150–164. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150).
Zhang, L., and V. P. Singh. 2007. “Trivariate flood frequency analysis using the Gumbel-Hougaard copula.” J. Hydrol. Eng. 12 (4): 431–439. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(431).
Zhang, L., and V. P. Singh. 2012. “Bivariate rainfall and runoff analysis using entropy and copula theories.” Entropy 14 (9): 1784–1812. https://doi.org/10.3390/e14091784.
Zhang, Q., Z. Zhang, J. Yue, and M. Dar. 1983. “A mathematical model for the prediction of the sedimentation process in rivers.” In Proc., 2nd Int. Symp. on River Sedimentation. Beijing: International Research and Training Center on Erosion and Sedimentation, Chinese Hydraulic Engineering Society.
Zscheischler, J., et al. 2018. “Future climate risk from compound events.” Nat. Clim. Change 8 (6): 469–477. https://doi.org/10.1038/s41558-018-0156-3.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 9September 2020

History

Received: Jul 8, 2019
Accepted: Apr 17, 2020
Published online: Jul 11, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 11, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Renewable Energy, North China Electric Power Univ., Beijing 102206, China (corresponding author). ORCID: https://orcid.org/0000-0002-6231-8204. Email: [email protected]
Postgraduate Student, School of Renewable Energy, North China Electric Power Univ., Beijing 102206, China. Email: [email protected]
Scientist, Hydrology Technical Group, Pacific Northwest National Laboratory, Richland, WA 99354. ORCID: https://orcid.org/0000-0002-2387-403X. Email: [email protected]
Jipeng Zhang [email protected]
Postgraduate Student, School of Renewable Energy, North China Electric Power Univ., Beijing 102206, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share