Open access
Technical Papers
Apr 13, 2022

Extended TTS Model for Thermal and Mechanical Creep of Clay and Sand

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 6

Abstract

In geothermal engineering, the long-term thermomechanical responses of sand and clay are difficult to predict due to the lack of an essential understanding of thermally induced volume change. Recent experimental studies have measured thermal creep of dry sand, glass beads, and clays. However, this universal phenomena of thermal creep has not been properly included in constitutive models of soils. In this paper, the Tsinghua ThermoSoil (TTS) model, previously developed for clay, is extended to describe thermal and mechanical creep of sand. The elemental thermal creep and thermal cyclic behavior of Todi clay and Bangkok sand, reported under hydrostatic stress or oedometric conditions, are reproduced by the proposed formulation. These comparisons show the following key features of behavior described by the extended model (e-TTS): (1) thermal creep of clay can produce either compressive or s1welling behavior depending on the consolidation stress history, (2) the heating rate and temperature range have significant influences on thermal creep, but only small effects on swelling behavior, (3) thermal cycling induces compression of sand, which is dependent on effective stress level and relative density, and (4) the e-TTS model predicts stabilization of thermal creep strains for sands over within 50–100 thermal cycles due to equalization of elastic and locked-in hysteretic strains.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Fund Nos. 51778338 and 41907231), to which we hereby express our sincere gratitude.

References

Abuel-Naga, H. M., D. T. Bergado, and A. Bouazza. 2007. “Volume change behavior of saturated clays under drained heating conditions: Experimental results and constitutive modeling.” Can. Geotech. J. 44 (8): 942–956. https://doi.org/10.1139/t07-031.
Abuel-Naga, H. M., D. T. Bergado, and A. Bouazza. 2009. “Thermomechanical model for saturated clays.” Géotechnique 59 (3): 273–278. https://doi.org/10.1680/geot.2009.59.3.273.
Agar, J. G., N. R. Morgenstern, and J. D. Scott. 1986. “Thermal-expansion and pore pressure generation in oil sands.” Can. Geotech. J. 23 (3): 327–333. https://doi.org/10.1139/t86-046.
Baldi, G., T. Hueckel, and R. Pellegrini. 1988. “Thermal volume changes of the mineral-water system in low-porosity clay soils.” Can. Geotech. J. 25 (4): 807–825. https://doi.org/10.1139/t88-089.
Brandl, H. 2006. “Energy foundations and other thermo-active ground structures.” Géotechnique 56 (2): 81–122. https://doi.org/10.1680/geot.2006.56.2.81.
Burghignoli, A., A. Desideri, and S. Miliziano. 2000. “A laboratory study on the thermomechnical behavior of clayey soils.” Can. Geotech. J. 37 (4): 764–780. https://doi.org/10.1139/t00-010.
Cekerevac, C., and L. Laloui. 2004. “Experimental study of the thermal effects on the mechanical behaviour of a clay.” Int. J. Numer. Anal. Methods Geomech. 28 (3): 209–228. https://doi.org/10.1002/nag.332.
Chen, K., K. Cole, C. Conger, J. Draskovic, M. Lohr, K. Klein, T. Scheidemantel, and P. Schiffer. 2006. “Granular materials: Packing grains by thermal cycling.” Nature 442 (7100): 257. https://doi.org/10.1038/442257a.
Collins, I. F. 2005. “The concept of stored plastic work of frozen elastic energy in soil mechanics.” Géotechnique 55 (5): 373–382. https://doi.org/10.1680/geot.2005.55.5.373.
Coussy, O. 1995. Mechanics of porous continua. Chichester, UK: Wiley.
Cui, Y. J., T. T. Le, and A. M. Tang. 2009. “Investigating the time-dependent behaviour of Boom clay under thermo-mechanical loading.” Géotechnique 59 (4): 319–329. https://doi.org/10.1680/geot.2009.59.4.319.
Cui, Y. J., N. Sultan, and P. Delage. 2000. “A thermomechanical model for saturated clays.” Can. Geotech. J. 37 (3): 607–620. https://doi.org/10.1139/t99-111.
Demars, K. R., and R. D. Charles. 1982. “Soil volume changes induced by temperature cycling.” Can. Geotech. J. 19 (2): 188–194. https://doi.org/10.1139/t82-021.
Di Donna, A., and L. Laloui. 2015. “Response of soil subjected to thermal cyclic loading: Experimental and constitutive study.” Eng. Geol. 190 (14): 65–76. https://doi.org/10.1016/j.enggeo.2015.03.003.
Divoux, T., H. Gayvallet, and J. C. Géminard. 2008. “Creep motion of a granular pile induced by thermal cycling.” Phys. Rev. Lett. 101 (14): 148303. https://doi.org/10.1103/PhysRevLett.101.148303.
Haff, P. K. 1983. “Grain flow as a fluid-mechanical phenomenon.” J. Fluid Mech. 134 (Sep): 401–430. https://doi.org/10.1017/S0022112083003419.
Houston, S. L., W. N. Houston, and N. D. Williams. 1985. “Thermo-mechanical behavior of seafloor sediments.” J. Geotech. Geoenviron. Eng. 111 (11): 1249–1263. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1249).
Hueckel, T., and G. Baldi. 1990. “Thermoplasticity of saturated clays: Experimental constitutive study.” J. Geotech. Geoenviron. Eng. 116 (12): 1778–1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778).
Hueckel, T., and M. Borsetto. 1990. “Thermoplasticity of saturated soils and shales: Constitutive equations.” J. Geotech. Geoenviron. Eng. 116 (12): 1765–1777. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1765).
Jiang, Y. M., and M. Liu. 2003. “Granular elasticity without the coulomb condition.” Phys. Rev. Lett. 91 (14): 144301–144304. https://doi.org/10.1103/PhysRevLett.91.144301.
Jiang, Y. M., and M. Liu. 2007. “From elasticity to hypoplasticity: Dynamics of granular solids.” Phys. Rev. Lett. 99 (10):105501. https://doi.org/10.1103/PhysRevLett.99.105501.
Jiang, Y. M., and M. Liu. 2009. “Granular solid hydrodynamics.” Granular Matter 11 (3): 139–156. https://doi.org/10.1007/s10035-009-0137-3.
Kurz, D., J. Sharma, M. Alfaro, and J. Graham. 2016. “Semi-empirical elastic–thermoviscoplastic model for clay.” Can. Geotech. J. 53 (10): 1583–1599. https://doi.org/10.1139/cgj-2015-0598.
Laloui, L., and C. Cekerevac. 2003. “Thermo-plasticity of clays: An isotropic yield mechanism.” Comput. Geotech. 30 (8): 649–660. https://doi.org/10.1016/j.compgeo.2003.09.001.
Laloui, L., and A. Di Donna. 2011. “Understanding the behaviour of energy geo-structures.” Proc. Inst. Civ. Eng. Civ. Eng. 164 (4):184–191. https://doi.org/10.1680/cien.2011.164.4.184.
Leroueil, S., and M. E. S. Marques. 1996. “Importance of strain rate and temperature effects in geotechnical engineering.” In Measurement and modeling time dependent soil behaviour. Reston, VA: ASCE.
Liu, H. L., Y. Xiao, J. S. McCartney, and H. Liu. 2018. “Influence of temperature on the volume change behavior of saturated sand.” Geotech. Test. J. 41 (4): 747–758. https://doi.org/10.1520/GTJ20160308.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley.
Ng, C. W. W., S. H. Wang, and C. Zhou. 2016. “Volume change behaviour of saturated sand under thermal cycles.” Géotech. Lett. 6 (2): 124–131. https://doi.org/10.1680/jgele.15.00148.
Pan, Y. Z., J. B. Coulibaly, and A. F. Rotta Loria. 2020. “Thermally induced deformation of coarse-grained soils under nearly zero vertical stress.” Géotech. Lett. 10 (4): 486–491. https://doi.org/10.1680/jgele.20.00013.
Qiao, Y. F., and W. Q. Ding. 2017. “ACMEG-TVP: A thermoviscoplastic constitutive model for geomaterials.” Comput. Geotech. 81 (1): 98–111. https://doi.org/10.1016/j.compgeo.2016.08.003.
Rotta Loria, A. F., and J. B. Coulibaly. 2021. “Thermally induced deformation of soils: A critical overview of phenomena, challenges and opportunities.” Geomech. Energy Environ. 25 (2): 100193. https://doi.org/10.1016/j.gete.2020.100193.
Sittidumrong J., A. Jotisankasa, and K. Chantawarangul. 2019. “Effect of thermal cycles on volumetric behaviour of Bangkok sand.” Geomech. Energy Environ. 20 (Dec): 100127. https://doi.org/10.1016/j.gete.
Šuklje, L. 1957. “The analysis of the consolidation process by the isotaches method.” In Proc., 4th Int. Conf. Soil Mechanics. Foundation Engineering, 200–206. London: Butterworths.
Sultan, N., P. Delage, and Y. J. Cui. 2002. “Temperature effects on the volume change behaviour of Boom clay.” Eng. Geol. 64 (2–3): 135–145. https://doi.org/10.1016/S0013-7952(01)00143-0.
Towhata, I., P. Kuntiwattanakul, I. Seko, and K. Ohishi. 1993. “Volume change of clays induced by heating as observed in consolidation tests.” Soils Found. 33 (4): 170–183. https://doi.org/10.3208/sandf1972.33.4_170.
Xiong, Y. L., S. Zhang, G. L. Ye, and F. Zhang. 2014. “Modification of thermo-elasto-viscoplastic model for soft rock and its application to THM analysis of heating tests.” Soils Found. 54 (2): 176–196. https://doi.org/10.1016/j.sandf.2014.02.009.
Yan, W. M., and X. S. Li. 2011. “A model for natural soil with bonds.” Géotechnique 61 (2): 95–106. https://doi.org/10.1680/geot.8.P.061.
Yao, Y. P., and Y. F. Fang. 2020. “Negative creep of soils.” Can. Geotech. J. 57 (1): 1–16. https://doi.org/10.1139/cgj-2018-0624.
Yashima, A., S. Leroueil, F. Oka, and I. Guntoto. 1998. “Modelling temperature and strain rate dependent behaviour of clays: One dimensional consolidation.” Soils Found. 38 (2): 63–73. https://doi.org/10.3208/sandf.38.2_63.
Yuan, Y. X., and A. J. Whittle. 2018. “A novel elasto-viscoplastic formulation for compression behaviour of clays.” Géotechnique 68 (12): 1044–1055. https://doi.org/10.1680/jgeot.16.P.276.
Yuan, Y. X., and A. J. Whittle. 2021. “Formulation of a new elastoviscoplastic model for time-dependent behavior of clay.” Int. J. Numer. Anal. Methods Geomech. 45 (6): 843–864. https://doi.org/10.1002/nag.3174.
Zhang, S., W. M. Leng, F. Zhang, and Y. L. Xiong. 2012. “A simple thermo-elastoplastic model for geomaterials.” Int. J. Plast. 34 (Jul): 93–113. https://doi.org/10.1016/j.ijplas.2012.01.011.
Zhang, Z. C., and X. H. Cheng. 2016. “A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics.” Comput. Geotech. 80 (Dec): 373–382. https://doi.org/10.1016/j.compgeo.2016.05.010.
Zhang, Z. C., and X. H. Cheng. 2017. “A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application.” Int. J. Numer. Anal. Methods Geomech. 41 (4): 527–554. https://doi.org/10.1002/nag.2569.
Zhou, C., K. Y. Fong, and C. W. W. Ng. 2017. “A new bounding surface model for thermal cyclic behavior.” Int. J. Numer. Anal. Methods Geomech. 41 (16): 1656–1666. https://doi.org/10.1002/nag.2688.
Zymnis, D. M., and A. J. Whittle. 2020. “Geotechnical considerations in the design of borehole heat exchangers in clay.” Can. Geotech. J. 58 (9): 1247–1262. https://doi.org/10.1139/cgj-2020-0118.
Zymnis, D. M., A. J. Whittle, and X. H. Cheng. 2018. “Simulation of long-term thermo-mechanical response of clay using an advanced constitutive model.” Acta Geotech. 14 (2): 295–311. https://doi.org/10.1007/s11440-018-0726-6.
Zymnis, D. M., A. J. Whittle, and J. T. Germaine. 2019. “Measurements of temperature-dependent bound water in clays.” Geotech. Test. J. 42 (1): 232–244. https://doi.org/10.1520/GTJ20170012.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 6June 2022

History

Received: Mar 19, 2021
Accepted: Jan 25, 2022
Published online: Apr 13, 2022
Published in print: Jun 1, 2022
Discussion open until: Sep 13, 2022

Authors

Affiliations

Postdoctoral, Dept. of Civil Engineering, Tsinghua Univ., Beijing 100084, China. ORCID: https://orcid.org/0000-0003-2057-2607
Xiaohui Cheng, M.ASCE [email protected]
Associate Professor, Dept. of Civil Engineering, Tsinghua Univ., Beijing 100084, China (corresponding author). Email: [email protected]
Andrew J. Whittle, M.ASCE https://orcid.org/0000-0001-5358-4140
Edmund K. Turner Professor, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. ORCID: https://orcid.org/0000-0001-5358-4140

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Investigation of Bound Water in Clay Based on Isothermal Adsorption Experiments and Metadynamics Studies from the Perspective of Water Potential, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12143, 150, 11, (2024).

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share