Abstract

A significant pressing issue in microbially induced calcium carbonate precipitation (MICP) is the characterization of the heterogeneous growth mechanics of calcium carbonate (CaCO3) crystals. This study aimed to visualize the bacteria and CaCO3 distributions at the quiescent state through microfluidic chip tests where the bacterial solution (BS) and cementation solution (CS) were initially injected simultaneously from two separate microchannels and subsequently converged in a reaction microchannel. The experiments revealed that the bacterial diffusion within the CS injection area was hindered for a high concentration of calcium chloride (CaCl2) (e.g., 0.5 M), whereas diffusion appeared homogeneous for a low concentration of CaCl2 (0.05 M). In addition, the CaCO3 distribution along the width of the reaction microchannel was more uniform for 0.05  MCaCl2 than for 0.5  MCaCl2. The microfluidic chip tests in this study provided kinetic observations of the MICP process that improved the understanding of the mechanics of bacterial diffusion and CaCO3 crystal growth and their variation with different concentrations of CaCl2.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would also like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51922024 and 52078085) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014). TME was supported by the US National Science Foundation (Grant No. CMMI-1933355) during this work. In addition, Leon A. van Paassen was supported by the Engineering Research Center Program of the US National Science Foundation under NSF (Grant No. ERC-1449501) during this study. Their support is gratefully acknowledged.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Boulos, L., M. Prevost, B. Barbeau, J. Coallier, and R. Desjardins. 1999. “LIVE/DEAD (R) BacLight (TM): Application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water.” J. Microbiol. Methods 37 (1): 77–86. https://doi.org/10.1016/S0167-7012(99)00048-2.
Cheng, L., and M. A. Shahin. 2016. “Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation.” Can. Geotech. J. 53 (9): 1376–1385. https://doi.org/10.1139/cgj-2015-0635.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chou, C.-W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Cui, M., J. Zheng, R. Zhang, H. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
El Mountassir, G., R. J. Lunn, H. Moir, and E. MacLachlan. 2014. “Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels.” Water Resour. Res. 50 (1): 1–16. https://doi.org/10.1002/2013WR013578.
Fattahi, S. M., A. Soroush, and N. Huang. 2020. “Biocementation control of sand against wind erosion.” J. Geotech. Geoenviron. Eng. 146 (6): 04020045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002268.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Foppen, J. W., G. Lutterodt, W. F. M. Roling, and S. Uhlenbrook. 2010. “Towards understanding inter-strain attachment variations of Escherichia coli during transport in saturated quartz sand.” Water Res. 44 (4): 1202–1212. https://doi.org/10.1016/j.watres.2009.08.034.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and M. Tsesarsky. 2018. “Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths.” J. Geotech. Geoenviron. Eng. 144 (1): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804.
Ham, S.-M., I. Chang, D.-H. Noh, T.-H. Kwon, and B. Muhunthan. 2018. “Improvement of surface erosion resistance of sand by microbial biopolymer formation.” J. Geotech. Geoenviron. Eng. 144 (7): 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
Harkes, M. P., L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Kim, D. H., N. Mahabadi, J. Jang, and L. A. van Paassen. 2020. “Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment.” Water Resour. Res. 56 (2): e2019WR025420. https://doi.org/10.1029/2019WR025420.
Kim, Y. C. 1996. “Diffusivity of bacteria.” Korean J. Chem. Eng. 13 (3): 282–287. https://doi.org/10.1007/BF02705951.
Licata, N. A., B. Mohari, C. Fuqua, and S. Setayeshgar. 2016. “Diffusion of Bacterial cells in porous media.” Biophys. J. 110 (1): 247–257. https://doi.org/10.1016/j.bpj.2015.09.035.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian Jr. 2016b. “Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Mahawish, A., A. Bouazza, and W. P. Gates. 2019a. “Factors affecting the bio-cementing process of coarse sand.” Proc. Inst. Civ. Eng. Ground Improv. 172 (1): 25–36. https://doi.org/10.1680/jgrim.17.00039.
Mahawish, A., A. Bouazza, and W. P. Gates. 2019b. “Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels.” J. Geotech. Geoenviron. Eng. 145 (8): 04019033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066.
Martinez, A., L. Huang, and M. G. Gomez. 2019. “Thermal conductivity of MICP-treated sands at varying degrees of saturation.” Geotech. Lett. 9 (1): 15–21. https://doi.org/10.1680/jgele.18.00126.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Minto, J. M., R. J. Lunn, and G. El Mountassir. 2019. “Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation.” Water Resour. Res. 55 (8): 7229–7245. https://doi.org/10.1029/2019WR025153.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Montoya, B. M., S. Safavizadeh, and M. A. Gabr. 2019. “Enhancement of coal ash compressibility parameters using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 145 (5): 04019018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002036.
Nayanthara, P. G. N., A. B. N. Dassanayake, K. Nakashima, and S. Kawasaki. 2019. “Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas.” Appl. Sci. 9 (15): 3201. https://doi.org/10.3390/app9153201.
O’Donnell, T. S., B. E. Rittmann, and E. Kavazanjian Jr. 2017. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation.” J. Geotech. Geoenviron. Eng. 143 (12): 04017094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818.
Okumus, B., C. J. Baker, J. Carlos Arias-Castro, G. C. Lai, E. Leoncini, S. Bakshi, S. Luro, D. Landgraf, and J. Paulsson. 2018. “Single-cell microscopy of suspension cultures using a microfluidics-assisted cell screening platform.” Nat. Protoc. 13 (1): 170–194. https://doi.org/10.1038/nprot.2017.127.
Riveros, G. A., and A. Sadrekarimi. 2020. “Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation.” Soil Dyn. Earthquake Eng. 131 (Apr): 106034. https://doi.org/10.1016/j.soildyn.2020.106034.
Robertson, J., C. McGoverin, F. Vanholsbeeck, and S. Swift. 2019. “Optimisation of the protocol for the LIVE/DEAD (R) BacLight (TM) bacterial viability kit for rapid determination of bacterial load.” Front Microbiol 10: 801. https://doi.org/10.3389/fmicb.2019.00801.
Rossy, T., C. D. Nadell, and A. Persat. 2019. “Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity.” Nat. Commun. 10 (1): 2471. https://doi.org/10.1038/s41467-019-10469-6.
Singh, R., M. Sivaguru, G. A. Fried, B. W. Fouke, R. A. Sanford, M. Carrera, and C. J. Werth. 2017. “Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.” J. Contam. Hydrol. 204 (Sep): 28–39. https://doi.org/10.1016/j.jconhyd.2017.08.001.
Song, W., F. Ogunbanwo, M. Steinsbo, M. A. Ferno, and A. R. Kovscek. 2018. “Mechanisms of multiphase reactive flow using biogenically calcite-functionalized micromodels.” Lab Chip 18 (24): 3881–3891. https://doi.org/10.1039/C8LC00793D.
Tobler, D. J., J. M. Minto, G. El Mountassir, R. J. Lunn, and V. R. Phoenix. 2018. “Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: Influence on hydraulic and mechanical performance.” Water Resour. Res. 54 (10): 8295–8308. https://doi.org/10.1029/2018WR023032.
Torkzaban, S., S. S. Tazehkand, S. L. Walker, and S. A. Bradford. 2008. “Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry.” Water Resour. Res. 44 (4): W04403. https://doi.org/10.1029/2007WR006541.
van Paassen, L. A. 2009. “Biogrout, ground improvement by microbial induced carbonate precipitation.” Ph.D. thesis, Dept. of Biotechnology, Delft Univ. of Technology.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Venda Oliveira, P. J., M. S. da Costa, J. N. P. Costa, and M. Fernanda Nobre. 2015. “Comparison of the ability of two bacteria to improve the behavior of sandy soil.” J. Mater. Civ. Eng. 27 (1): 06014025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001138.
Venuleo, S., L. Laloui, D. Terzis, T. Hueckel, and M. Hassan. 2016. “Microbially induced calcite precipitation effect on soil thermal conductivity.” Geotech. Lett. 6 (1): 39–44. https://doi.org/10.1680/jgele.15.00125.
Wang, K., J. Chu, S. Wu, and J. He. 2020. “Stress-strain behaviour of bio-desaturated sand under undrained monotonic and cyclic loading.” Géotechnique 71 (6): 521–533. https://doi.org/10.1680/jgeot.19.P.080.
Wang, Y., K. Soga, J. T. DeJong, and A. J. Kabla. 2019a. “A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP).” Géotechnique 69 (12): 1086–1094. https://doi.org/10.1680/jgeot.18.P.031.
Wang, Y., K. Soga, J. T. DeJong, and A. J. Kabla. 2019b. “Microscale visualization of microbial-induced calcium carbonate precipitation processes.” J. Geotech. Geoenviron. Eng. 145 (9): 04019045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002079.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., A. W. Stuedlein, Z. Pan, H. Liu, T. M. Evans, X. He, H. Lin, J. Chu, and L. A. van Paassen. 2020b. “Toe bearing capacity of precast concrete piles through biogrouting improvement.” J. Geotech. Geoenviron. Eng. 146 (12): 06020026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002404.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019b. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Z. Zhang, A. W. Stuedlein, and T. M. Evans. 2021. “Liquefaction modeling for biocemented calcareous sand.” J. Geotech. Geoenviron. Eng. 147 (12): 04021149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002666.
Yoon, H., K. N. Chojnicki, and M. J. Martinez. 2019. “Pore-scale analysis of calcium carbonate precipitation and dissolution kinetics in a microfluidic device.” Environ. Sci. Technol. 53 (24): 14233–14242. https://doi.org/10.1021/acs.est.9b01634.
Zhang, C., K. Dehoff, N. Hess, M. Oostrom, T. W. Wietsma, A. J. Valocchi, B. W. Fouke, and C. J. Werth. 2010. “Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system.” Environ. Sci. Technol. 44 (20): 7833–7838. https://doi.org/10.1021/es1019788.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 5May 2022

History

Received: Aug 29, 2020
Accepted: Nov 22, 2021
Published online: Feb 16, 2022
Published in print: May 1, 2022
Discussion open until: Jul 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Xiang He, S.M.ASCE [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Armin W. Stuedlein, Ph.D., M.ASCE [email protected]
P.E.
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]
Jian Chu, Ph.D., M.ASCE [email protected]
Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., Singapore 639798. Email: [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-8457-7602. Email: [email protected]
Leon A. van Paassen, M.ASCE [email protected]
Associate Professor, Center for Biomediated and Bioinspired Geotechnics, Arizona State Univ., Tempe, AZ 85287-3005. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Mechanical Properties of Piles Formed by Microbially Induced Carbonate Precipitation: Experimental Investigation and Numerical Simulation, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17164, 36, 9, (2024).
  • Enzyme-Induced Carbonate Precipitation Using Yellow Soybean for Eco-Friendly Treatment of Expansive Soils, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9009, 24, 3, (2024).
  • Closure to “Rainfall-Induced Erosion of Biocemented Graded Slopes”, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8403, 23, 4, (2023).
  • Fracture of Interparticle MICP Bonds under Compression, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8282, 23, 3, (2023).
  • Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand, Journal of Rock Mechanics and Geotechnical Engineering, 10.1016/j.jrmge.2022.12.032, (2023).
  • Experimental study on the calcium carbonate production rates and crystal size of EICP under multi-factor coupling, Case Studies in Construction Materials, 10.1016/j.cscm.2022.e01802, 18, (e01802), (2023).
  • Impact of palm oil mill effluent as an economic medium for soil fixation via microbially induced carbonate precipitation, Biomass Conversion and Biorefinery, 10.1007/s13399-023-03889-4, (2023).
  • Preliminary Study on Application and Limitation of Microbially Induced Carbonate Precipitation to Improve Unpaved Road in Lateritic Region, Materials, 10.3390/ma15207219, 15, 20, (7219), (2022).
  • Research status and development of microbial induced calcium carbonate mineralization technology, PLOS ONE, 10.1371/journal.pone.0271761, 17, 7, (e0271761), (2022).
  • Review of Strength Improvements of Biocemented Soils, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002565, 22, 11, (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share