Technical Papers
Oct 6, 2021

Stress Path Tests with Local Deformation Profile in Flexible Boundary Plane Strain Device

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 12

Abstract

Stress path tests in plane strain (PS) conditions with varying stress ratios have been carried out using a newly developed flexible boundary (FB) multiaxial testing device. It employs electro-pneumatic control and allows the application of independent principal stresses on each face of a 96-mm cubical soil specimen through a closed-loop feedback control system. Different stages of testing have been automated for both deformation and stress-controlled loading. It also has provisions for local deformation field estimation from the images acquired on the transparent rigid PS boundary. The friction angle for different stress paths in compression and extension mode is found to have minimal variation in PS conditions. The experimentally observed yield points match well with a simplified two-dimensional (2D) yield criterion resembling the shape of a “tear-drop.” Local shear strain profiles under FB-PS conditions imply nearly uniform material behavior, while the emergence of instabilities is found to be minimal and mostly at the specimen corners.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Financial support from IIT Gandhinagar and logistical support from IIT Delhi is gratefully acknowledged. Any opinions, findings, and conclusions related to this research article are those of authors and do not necessarily reflect IIT Gandhinagar’s views.

References

Airey, D. W., and D. M. Wood. 1988. “The Cambridge true triaxial apparatus.” In Advanced triaxial testing of soil and rock, 796–805. Philadelphia, PA: ASTM.
Alikarami, R., E. Andò, M. Gkiousas-Kapnisis, A. Torabi, and G. Viggiani. 2015. “Strain localisation and grain breakage in sand under shearing at high mean stress: Insights from in situ X-ray tomography.” Acta Geotech. 10 (1): 15–30. https://doi.org/10.1007/s11440-014-0364-6.
Alshibli, K. A., S. N. Batiste, and S. Sture. 2003. “Strain localization in sand: Plane strain versus triaxial compression.” J. Geotech. Geoenviron. Eng. 129 (6): 483–494. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(483).
Alshibli, K. A., D. L. Godbold, and K. Hoffman. 2004. “The Louisiana plane strain apparatus for soil testing.” Geotech. Test. J. 27 (4): 337–346. https://doi.org/10.1520/GTJ19103.
Alshibli, K. A., M. F. Jarrar, A. M. Druckrey, and R. I. Al-Raoush. 2017. “Influence of particle morphology on 3D kinematic behavior and strain localization of sheared sand.” J. Geotech. Geoenviron. Eng. 143 (2): 04016097. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001601.
Alshibli, K. A., and S. Sture. 2000. “Shear band formation in plane strain experiments of sand.” J. Geotech. Geoenviron. Eng. 126 (6): 495–503. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(495).
Alshibli, K. A., and H. S. Williams. 2005. “A true triaxial apparatus for soil testing with mixed boundary conditions.” Geotech. Test. J. 28 (6): 534–543. https://doi.org/10.1520/GTJ12679.
Anandarajah, A. 1994. “A granular material model based on associated flow rule applied to monotonic loading behavior.” Soils Found. 34 (3): 81–98. https://doi.org/10.3208/sandf1972.34.3_81.
Anantanasakul, P., J. A. Yamamuro, and P. V. Lade. 2012. “Three-dimensional drained behavior of normally consolidated anisotropic kaolin clay.” Soils Found. 52 (1): 146–159. https://doi.org/10.1016/j.sandf.2012.01.014.
Andò, E., S. Hall, G. Viggiani, J. Desrues, and P. Bésuelle. 2011. “Experimental micromechanics: Grain-scale observation of sand deformation.” Géotech. Lett. 2 (3): 107–112. https://doi.org/10.1680/geolett.12.00027.
Andò, E., S. A. Hall, G. Viggiani, J. Desrues, and P. Bésuelle. 2012. “Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach.” Acta Geotech. 7 (1): 1–13. https://doi.org/10.1007/s11440-011-0151-6.
Arthur, J. R. F. 1988. “State-of-the-art paper: Cubical devices: Versatility and constraints.” In Advanced triaxial testing of soil and rock. Philadelphia, PA: ASTM.
Arthur, J. R. F., S. Bekenstein, J. T. Germaine, and C. C. Ladd. 1981. “Stress path tests with controlled rotation of principal stress directions.” In Laboratory shear strength of soil. Philadelphia, PA: ASTM.
Arthur, J. R. F., K. S. Chua, and T. Dunstan. 1977a. “Induced anisotropy in a sand.” Ge¢otechnique 27 (1): 13–30. https://doi.org/10.1680/geot.1977.27.1.13.
Arthur, J. R. F., T. Dunstan, Q. A. J. L. Al-Ani, and A. Assadi. 1977b. “Plastic deformation and failure in granular media.” Ge¢otechnique 27 (1): 53–74. https://doi.org/10.1680/geot.1977.27.1.53.
Arthur, J. R. F., T. Dunstan, and G. G. Enstad. 1985. “Determination of the flow function by means of a cubic plane strain tester.” Int. J. Bulk Storage Silos 1 (2): 7–10.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard guide for measuring matric potential in vadose zone using tensiometers. West Conshohocken, PA: ASTM.
ASTM. 2016a Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM.
ASTM. 2016b Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohocken, PA: ASTM.
Bardet, J. P. 1991. “Analytical solutions for the plane-strain bifurcation of compressible solids.” J. Appl. Mech. 58 (3): 651–657. https://doi.org/10.1115/1.2897245.
Bathurst, R. J., and D. J. Benjamin. 1988. “Preliminary assessment of sidewall friction on large-scale wall models in the RMC test facility.” In The application of polymeric reinforcement in soil retaining structures, 181–192. Berlin: Springer.
Bhattacharya, D., and A. Prashant. 2020. “Effect of loading boundary conditions in Plane Strain mechanical response and local deformations in sand specimens.” J. Geotech. Geoenviron. Eng. 146 (9): 04020086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002341.
Bigoni, D. 2012. Nonlinear solid mechanics: Bifurcation theory and material instability. Cambridge, UK: Cambridge University Press.
Bolton, M. D. 1986. “Strength and dilatancy of sands.” Ge¢otechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Budhu, M. 1984. “Nonuniformities imposed by simple shear apparatus.” Can. Geotech. J. 21 (1): 125–137. https://doi.org/10.1139/t84-010.
Budhu, M. 1988a. “Failure state of a sand in simple shear.” Can. Geotech. J. 25 (2): 395–400. https://doi.org/10.1139/t88-041.
Budhu, M. 1988b. “A new simple shear apparatus.” Geotech. Test. J. 11 (4): 281–287. https://doi.org/10.1520/GTJ10660J.
Callisto, L., and G. Calabresi. 1998. “Mechanical behaviour of a natural soft clay.” Ge¢otechnique 48 (4): 495–513. https://doi.org/10.1680/geot.1998.48.4.495.
Chu, J., S. C. Lo, and I. K. Lee. 1996. “Strain softening and shear band formation of sand in multiaxial testing.” Ge¢otechnique 46 (1): 63–82. https://doi.org/10.1680/geot.1996.46.1.63.
Desrues, J. 1998. “Localization patterns in ductile and brittle geomaterials.” In Material instabilities in solids, 137–158. New York: Wiley.
Desrues, J., J. Lanier, and P. Stutz. 1985. “Localization of the deformation in tests on sand sample.” Eng. Fract. Mech. 21 (4): 909–921. https://doi.org/10.1016/0013-7944(85)90097-9.
Desrues, J., and G. Viggiani. 2004. “Strain localization in sand: An overview of the experimental results obtained in Grenoble using stereophotogrammetry.” Int. J. Numer. Anal. Methods Geomech. 28 (4): 279–321. https://doi.org/10.1002/nag.338.
Drescher, A., and I. Vardoulakis. 1982. “Geometric softening in triaxial tests on granular material.” Géotechnique 32 (4): 291–303. https://doi.org/10.1680/geot.1982.32.4.291.
Drescher, A., I. Vardoulakis, and C. Han. 1990. “A biaxial apparatus for testing soils.” Geotech. Test. J. 13 (3): 226–234. https://doi.org/10.1520/GTJ10161J.
Finno, R. J., J. T. Blackburn, and J. F. Roboski. 2007. “Three-dimensional effects for supported excavations in clay.” J. Geotech. Geoenviron. Eng. 133 (1): 30–36. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30).
Finno, R. J., W. W. Harris, M. A. Mooney, and G. Viggiani. 1996. “Strain localization and undrained steady state of sand.” J. Geotech. Eng. 122 (6): 462–473. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(462).
Finno, R. J., W. W. Harris, M. A. Mooney, and G. Viggiani. 1997. “Shear bands in plane strain compression of loose sand.” Ge¢otechnique 47 (1): 149–165. https://doi.org/10.1680/geot.1997.47.1.149.
Gajo, A., D. Bigoni, and D. M. Wood. 2001. “Stress induced elastic anisotropy and strain localisation in sand.” In Proc., 5th Int. Workshop on Bifurcation and Localisation Theory in Geomechanics, 37–44. Perth, Australia: A.A. Balkema.
Gajo, A., and D. Muir Wood. 1999. “A kinematic hardening constitutive model for sands: The multiaxial formulation.” Int. J. Numer. Anal. Methods Geomech. 23 (9): 925–965. https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9%3C925::AID-NAG19%3E3.0.CO;2-M.
Gao, Z., J. Zhao, X. S. Li, and Y. F. Dafalias. 2014. “A critical state sand plasticity model accounting for fabric evolution.” Int. J. Numer. Anal. Methods Geomech. 38 (4): 370–390. https://doi.org/10.1002/nag.2211.
Ghorbani, J., and D. W. Airey. 2021. “Modelling stress-induced anisotropy in multi-phase granular soils.” Comput. Mech. 67 (2): 1–25. https://doi.org/10.1007/s00466-020-01945-8.
Graham, J., M. L. Noonan, and K. V. Lew. 1983. “Yield states and stress–strain relationships in a natural plastic clay.” Can. Geotech. J. 20 (3): 502–516. https://doi.org/10.1139/t83-058.
Griffiths, D. V., and J. Huang. 2009. “Observations on the extended Matsuoka-Nakai failure criterion.” Int. J. Numer. Anal. Methods Geomech. 33 (17): 1889–1905. https://doi.org/10.1002/nag.810.
Guo, N., and J. Zhao. 2013. “The signature of shear-induced anisotropy in granular media.” Comput. Geotech. 47 (Jan): 1–15. https://doi.org/10.1016/j.compgeo.2012.07.002.
Hall, S. A. 2013. “Characterization of fluid flow in a shear band in porous rock using neutron radiography.” Geophys. Res. Lett. 40 (11): 2613–2618. https://doi.org/10.1002/grl.50528.
Hall, S. A., J. Desrues, G. Viggiani, P. Bésuelle, and E. Andò. 2012. “Experimental characterisation of (localised) deformation phenomena in granular geomaterials from sample down to inter-and intra-grain scales.” Procedia IUTAM 4 (132): 54–65. https://doi.org/10.1016/j.piutam.2012.05.007.
Hall, S. A., D. M. Wood, E. Ibraim, and G. Viggiani. 2010. “Localised deformation patterning in 2D granular materials revealed by digital image correlation.” Granular Matter 12 (1): 1–14. https://doi.org/10.1007/s10035-009-0155-1.
Han, C., and A. Drescher. 1993. “Shear bands in biaxial tests on dry coarse sand.” Soils Found. 33 (1): 118–132. https://doi.org/10.3208/sandf1972.33.118.
Han, C., and I. G. Vardoulakis. 1991. “Plane-strain compression experiments on water-saturated fine-grained sand.” Ge¢otechnique 41 (1): 49–78. https://doi.org/10.1007/s11204-017-9415-y.
Hashiguchi, K. 1980. “Constitutive equations of elastoplastic materials with elastic-plastic transition.” J. Appl. Mech. 47 (2): 266–272. https://doi.org/10.1115/1.3153653.
Hashiguchi, K. 1993a. “Fundamental requirements and formulation of elastoplastic constitutive equations with tangential plasticity.” Int. J. Plast. 9 (5): 525–549. https://doi.org/10.1016/0749-6419(93)90018-L.
Hashiguchi, K. 1993b. “Mechanical requirements and structures of cyclic plasticity models.” Int. J. Plast. 9 (6): 721–748. https://doi.org/10.1016/0749-6419(93)90035-O.
Hashiguchi, K., and Z. P. Chen. 1998. “Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening.” Int. J. Numer. Anal. Methods Geomech. 22 (3): 197–227. https://doi.org/10.1002/(SICI)1096-9853(199803)22:3%3C197::AID-NAG914%3E3.0.CO;2-T.
Hettler, A., and I. Vardoulakis. 1984. “Behaviour of dry sand tested in a large triaxial apparatus.” Géotechnique 34 (2): 183–197. https://doi.org/10.1680/geot.1984.34.2.183.
Houlsby, G. T. 1991. “How the dilatancy of soils affects their behaviour.” In Proc., 10th European Conf. on Soil Mechanics and Foundation Engineering. Italy: Florence.
Hurley, R., E. Marteau, G. Ravichandran, and J. E. Andrade. 2014. “Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity.” J. Mech. Phys. Solids 63 (12): 154–166. https://doi.org/10.1016/j.jmps.2013.09.013.
Hurley, R. C., S. A. Hall, J. E. Andrade, and J. Wright. 2016. “Quantifying interparticle forces and heterogeneity in 3D granular materials.” Phys. Rev. Lett. 117 (9): 098005. https://doi.org/10.1103/PhysRevLett.117.098005.
Imseeh, W. H., A. M. Druckrey, and K. A. Alshibli. 2018. “3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography.” Granular Matter 20 (2): 24. https://doi.org/10.1007/s10035-018-0798-x.
Khalili, N., F. Geiser, and G. E. Blight. 2004. “Effective stress in unsaturated soils: Review with new evidence.” Int. J. Geomech. 4 (2): 115–126. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(115).
Kim, M. K., and P. V. Lade. 1988. “Single hardening constitutive model for frictional materials: I. Plastic potential function.” Comput. Geotech. 5 (4): 307–324. https://doi.org/10.1016/0266-352X(88)90009-2.
Kjellman, W. 1936. “Report on an apparatus for consummate investigation of the mechanical properties of soils.” In Proc., 1st Int. Conf. on Soil Mechanics and Foundation Engineering, 16–20. Cambridge, UK: Graduate School of Engineering, Harvard Univ.
Ko, H. Y., and R. F. Scott. 1967. “A new soil testing apparatus.” Ge¢otechnique 17 (1): 40–57. https://doi.org/10.1680/geot.1967.17.1.40.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V. 1977. “Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces.” Int. J. Solids Struct. 13 (11): 1019–1035. https://doi.org/10.1016/0020-7683(77)90073-7.
Lade, P. V. 1978. “Cubical triaxial apparatus for soil testing.” Geotech. Test. J. 1 (2): 93–101. https://doi.org/10.1520/GTJ10376J.
Lade, P. V. 1990. “Single-hardening model with application to NC clay.” J. Geotech. Eng. 116 (3): 394–414. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(394).
Lade, P. V., and H. M. Musante. 1978. “Three-dimensional behavior of remolded clay.” J. Geotech. Eng. Div. 104 (2): 193–209. https://doi.org/10.1061/AJGEB6.0000581.
Lade, P. V., R. B. Nelson, and Y. M. Ito. 1987. “Nonassociated flow and stability of granular materials.” J. Eng. Mech. 113 (9): 1302–1318. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1302).
Lade, P. V., and M. Prabucki. 1995. “Softening and preshearing effects in sand.” Soils Found. 35 (4): 93–104. https://doi.org/10.3208/sandf.35.4_93.
Lade, P. V., and D. Pradel. 1990. “Instability and plastic flow of soils. I: Experimental observations.” J. Eng. Mech. 116 (11): 2532–2550. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2532).
Lade, P. V., and Q. Wang. 2001. “Analysis of shear banding in true triaxial tests on sand.” J. Eng. Mech. 127 (8): 762–768. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(762).
Lade, P. V., and J. A. Yamamuro. 2011. “Evaluation of static liquefaction potential of silty sand slopes.” Can. Geotech. J. 48 (2): 247–264. https://doi.org/10.1139/T10-063.
Li, H., and K. Senetakis. 2020. “Effects of particle grading and stress state on strain-nonlinearity of shear modulus and damping ratio of sand evaluated by resonant-column testing.” J. Earthquake Eng. 24 (12): 1886–1912. https://doi.org/10.1080/13632469.2018.1487349.
Lin, W., W. Mao, A. Liu, and J. Koseki. 2020. “Application of an acoustic emission source-tracing method to visualise shear banding in granular materials.” Géotechnique 2020 (Dec): 1–12. https://doi.org/10.1680/jgeot.19.P.260.
Liu, H. 2013. “Unified sand modeling using associated or non-associated flow rule.” Mech. Res. Commun. 50 (5): 63–70. https://doi.org/10.1016/j.mechrescom.2013.04.003.
Ma, G., R. A. Regueiro, W. Zhou, and J. Liu. 2018. “Spatiotemporal analysis of strain localization in dense granular materials.” Acta Geotech. 14 (4): 1–18. https://doi.org/10.1007/s11440-018-0685-y.
Mandeville, D., and D. Penumadu. 2004. “True triaxial testing system for clay with proportional-integral-differential (PID) control.” Geotech. Test. J. 27 (2): 134–144. https://doi.org/10.1520/GTJ11756.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Ge¢otechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Marachi, N. D., J. Duncan, C. Chan, and H. Seed. 1981. “Plane-strain testing of sand.” In Laboratory shear strength of soil. West Conshohocken, PA: ASTM.
Marteau, E., and J. E. Andrade. 2017. “A novel experimental device for investigating the multiscale behavior of granular materials under shear.” Granular Matter 19 (4): 77. https://doi.org/10.1007/s10035-017-0766-x.
Masuda, T., F. Tatsuoka, S. Yamada, and T. Sato. 1999. “Stress-strain behavior of sand in plane strain compression, extension and cyclic loading tests.” Soils Found. 39 (5): 31–45. https://doi.org/10.3208/sandf.39.5_31.
Misra, A., and H. Jiang. 1997. “Measured kinematic fields in the biaxial shear of granular materials.” Comput. Geotech. 20 (3–4): 267–285. https://doi.org/10.1016/S0266-352X(97)00006-2.
Mokni, M., and J. Desrues. 1999. “Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand.” Mech. Cohesive-Frict. Mater. 4 (4): 419–441. https://doi.org/10.1002/(SICI)1099-1484(199907)4:4%3C419::AID-CFM70%3E3.0.CO;2-1(199907)4:4%3C419::AID-CFM70%3E3.0.CO;2-1.
Mróz, Z., and C. Szymański. 1978. “Non-associated flow rules in description of plastic flow of granular materials.” In Limit analysis and rheological approach in soil mechanics. Berlin: Springer.
Muir Wood, D. 2004. “Experimental inspiration for kinematic hardening soil models.” J. Eng. Mech. 130 (6): 656–664. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(656).
Muir Wood, D. 2012. “Heterogeneity and soil element testing.” Géotechn. Lett. 2 (3): 101–106. https://doi.org/10.1680/geolett.12.00019.
Muir Wood, D. 2019. “Desiderata Geotechnica: Halting steps.” In Desiderata geotechnical, 119–124. Berlin: Springer.
Mukherjee, M., A. Gupta, and A. Prashant. 2016. “Drained instability analysis of sand under biaxial loading using a 3D material model.” Comput. Geotech. 79 (Sep): 130–145. https://doi.org/10.1016/j.compgeo.2016.05.023.
Nadimi, S., S. Divall, J. Fonseca, R. Goodey, and R. N. Taylor. 2016. “An addendum for particle image velocimetry in centrifuge modelling.” In Proc., 3rd European Conf. on Physical Modelling in Geotechnics. Nantes, France: Institut Francais des Sciences et Technologies des Transports, de l'Amenagement et des Reseaux.
Nakai, T. 2007. “Modeling of soil behavior based on tij concept.” In Proc., 13th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering, 69–89. New Delhi, India: Allied Publishers.
Ni, P., G. Mei, Y. Zhao, and H. Chen. 2018. “Plane strain evaluation of stress paths for supported excavations under lateral loading and unloading.” Soils Found. 58 (1): 146–159. https://doi.org/10.1016/j.sandf.2017.12.003.
Nova, R., and D. M. Wood. 1978. “An experimental programme to define the yield function for sand.” Soils Found. 18 (4): 77–86. https://doi.org/10.3208/sandf1972.18.4_77.
Nuth, M., and L. Laloui. 2008. “Effective stress concept in unsaturated soils: Clarification and validation of a unified framework.” Int. J. Numer. Anal. Methods Geomech. 32 (7): 771–801. https://doi.org/10.1002/nag.645.
Pan, Y. W. 1991. “Generalized nonassociative multisurface approach for granular materials.” J. Geotech. Eng. 117 (1): 51–66. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(51).
Pastor, M., O. C. Zienkiewicz, and K. H. Leung. 1985. “Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands.” Int. J. Numer. Anal. Methods Geomech. 9 (5): 477–498. https://doi.org/10.1002/nag.1610090506.
Peters, J. F., P. V. Lade, and A. Bro. 1988. “Shear band formation in triaxial and plane strain tests.” In Advanced triaxial testing of soil and rock, 604–627. West Conshohocken, PA: ASTM.
Prashant, A., D. Bhattacharya, and S. Gundlapalli. 2019. “Stress-state dependency of small-strain shear modulus in silty sand and sandy silt of Ganga.” Ge¢otechnique 69 (1): 42–56. https://doi.org/10.1680/jgeot.17.P.100.
Prashant, A., and D. Penumadu. 2004. “Effect of intermediate principal stress on overconsolidated kaolin clay.” J. Geotech. Geoenviron. Eng. 130 (3): 284–292. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(284).
Prashant, A., and D. Penumadu. 2005a. “Effect of overconsolidation and anisotropy of kaolin clay using true triaxial testing.” Soils Found. 45 (3): 71–82. https://doi.org/10.3208/sandf.45.3_71.
Prashant, A., and D. Penumadu. 2005b. “A laboratory study of normally consolidated kaolin clay.” Can. Geotech. J. 42 (1): 27–37. https://doi.org/10.1139/t04-076.
Prashant, A., and D. Penumadu. 2015. “Uncoupled dual hardening model for clays considering the effect of overconsolidation and intermediate principal stress.” Acta Geotech. 10 (5): 607–622. https://doi.org/10.1007/s11440-015-0377-9.
Rechenmacher, A. L. 2006. “Grain-scale processes governing shear band initiation and evolution in sands.” J. Mech. Phys. Solids 54 (1): 22–45. https://doi.org/10.1016/j.jmps.2005.08.009.
Rechenmacher, A. L., S. Abedi, O. Chupin, and A. D. Orlando. 2011. “Characterization of mesoscale instabilities in localized granular shear using digital image correlation.” Acta Geotech. 6 (4): 205–217. https://doi.org/10.1007/s11440-011-0147-2.
Reddy, K. R., S. K. Saxena, and J. S. Budiman. 1992. “Development of a true triaxial testing apparatus.” Geotech. Test. J. 15 (2): 89–105. https://doi.org/10.1520/GTJ10231J.
Rowe, P. W., and L. Barden. 1964. “Importance of free ends in triaxial testing.” J. Soil Mech. Found. Div. 90 (1): 3753. https://doi.org/10.1061/JSFEAQ.0000586.
Sachan, A., and D. Penumadu. 2007. “Strain localization in solid cylindrical clay specimens using digital image analysis (DIA) technique.” Soils Found. 47 (1): 67–78. https://doi.org/10.3208/sandf.47.67.
Sivakugan, N., J. L. Chameau, R. D. Holtz, and A. G. Altschaeffl. 1988. “Servo-controlled cuboidal shear device.” Geotech. Test. J. 11 (2): 119–124. https://doi.org/10.1520/GTJ10957J.
Stanier, S., J. A. Blaber, A. W. Take, and D. J. White. 2016a. “Improved image-based deformation measurement for geotechnical applications.” Can. Geotech. J. 53 (5): 727–739. https://doi.org/10.1139/cgj-2015-0253.
Stanier, S., J. Dijkstra, D. Leśniewska, J. Hambleton, D. White, and D. M. Wood. 2016b. “Vermiculate artefacts in image analysis of granular materials.” Comput. Geotech. 72 (Feb): 100–113. https://doi.org/10.1016/j.compgeo.2015.11.013.
Sterpi, D. 2000. “Influence of the kinematic testing conditions on the mechanical response of a sand.” Comput. Geotech. 26 (1): 23–41. https://doi.org/10.1016/S0266-352X(99)00033-6.
Sture, S., and C. S. Desai. 1979. “Fluid cushion truly triaxial or multiaxial testing device.” Geotech. Test. J. 2 (1): 20–33. https://doi.org/10.1520/GTJ10585J.
Sultan, N., Y. J. Cui, and P. Delage. 2010. “Yielding and plastic behaviour of Boom clay.” Géotechnique 60 (9): 657–666. https://doi.org/10.1680/geot.7.00142.
Sun, K., L. Tang, A. Zhou, and X. Ling. 2020. “An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces.” Comput. Geotech. 128 (5) 103842. https://doi.org/10.1016/j.compgeo.2020.103842.
Tatsuoka, F., M. Sakamoto, T. Kawamura, and S. Fukushima. 1986. “Strength and deformation characteristics of sand in plane strain compression at extremely low pressures.” Soils Found. 26 (1): 65–84. https://doi.org/10.3208/sandf1972.26.65.
Tavenas, F., J. P. Des Rosiers, S. Leroueil, P. La Rochelle, and M. Roy. 1979. “The use of strain energy as a yield and creep criterion for lightly overconsolidated clays.” Ge¢otechnique 29 (3): 285–303. https://doi.org/10.1680/geot.1979.29.3.285.
Vardoulakis, I. 1980. “Shear band inclination and shear modulus of sand in biaxial tests.” Int. J. Numer. Anal. Methods Geomech. 4 (2): 103–119. https://doi.org/10.1002/nag.1610040202.
Vardoulakis, I. 1981. “Bifurcation analysis of the plane rectilinear deformation on dry sand samples.” Int. J. Solids Struct. 17 (11): 1085–1101. https://doi.org/10.1016/0020-7683(81)90015-9.
Vardoulakis, I. 1988. “Stability and bifurcation in geomechanics.” In Numerical methods in geomechanics, 155–167. England, UK: Routledge.
Vardoulakis, I., M. Goldscheider, and G. Gudehus. 1978. “Formation of shear bands in sand bodies as a bifurcation problem.” Int. J. Numer. Anal. Methods Geomech. 2 (2): 99–128. https://doi.org/10.1002/nag.1610020203.
Viggiani, G., E. Andò, D. Takano, and J. C. Santamarina. 2014. “Laboratory X-ray tomography: A valuable experimental tool for revealing processes in soils.” Geotech. Test. J. 38 (1): 20140060. https://doi.org/10.1520/GTJ20140060.
Wanatowski, D., and J. Chu. 2005. “Stress-strain behavior of a granular fill measured by a new plane-strain apparatus.” Geotech. Testing J. 29 (2): 149–157. https://doi.org/10.1520/GTJ12621.
Wanatowski, D., and J. Chu. 2007. “K0 of sand measured by a plane-strain apparatus.” Can. Geotech. J. 44 (8): 1006–1012. https://doi.org/10.1139/t07-038.
Wanatowski, D., and J. Chu. 2008. “Effect of specimen preparation method on the stress-strain behavior of sand in plane-strain compression tests.” Geotech. Test. J. 31 (4): 308–320. https://doi.org/10.1520/GTJ101307.
Wang, P., Y. Sang, L. Shao, and X. Guo. 2018. “Measurement of the deformation of sand in a plane strain compression experiment using incremental digital image correlation.” Acta Geotechnica 14 (2): 1–11. https://doi.org/10.1007/s11440-018-0676-z78.
Wang, Q., and P. V. Lade. 2001. “Shear banding in true triaxial tests and its effect on failure in sand.” J. Eng. Mech. 127 (8): 754–761. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(754).
White, D. J., A. W. Take, and M. D. Bolton. 2003. “Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry.” Ge¢otechnique 53 (7): 619–631. https://doi.org/10.1680/geot.2003.53.7.619.
White, D. J., A. W. Take, M. D. Bolton, and S. E. Munachen. 2001. “A deformation measurement system for geotechnical testing based on digital imaging, close-range photogrammetry, and PIV image analysis.” In Proc., Int. Conf. on Soil Mechanics and Geotechnical Engineering, 539–542. Avereest, Netherlands: A.A Balkema.
Whittle, A. J., D. J. DeGroot, C. C. Ladd, and T. H. Seah. 1994. “Model prediction of anisotropic behavior of Boston blue clay.” J. Geotech. Eng. 120 (1): 199–224. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(199).
Whittle, A. J., and M. J. Kavvadas. 1994. “Formulation of MIT-E3 constitutive model for overconsolidated clays.” J. Geotech. Eng. 120 (1): 173–198. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(173).
Wiebicke, M., E. Andò, G. Viggiani, and I. Herle. 2020. “Measuring the evolution of contact fabric in shear bands with X-ray tomography.” Acta Geotech. 15 (1): 79–93. https://doi.org/10.1007/s11440-019-00869-9.
Wood, D. M. 1975. “Explorations of principal stress space with kaolin in a true triaxial apparatus.” Ge¢otechnique 25 (4): 783–797. https://doi.org/10.1680/geot.1975.25.4.783.
Yamamuro, J. A., and P. V. Lade. 1997. “Static liquefaction of very loose sands.” Can. Geotech. J. 34 (6): 905–917. https://doi.org/10.1139/t97-057.
Yao, Y. P., D. A. Sun, and H. Matsuoka. 2008. “A unified constitutive model for both clay and sand with hardening parameter independent on stress path.” Comput. Geotech. 35 (2): 210–222. https://doi.org/10.1016/j.compgeo.2007.04.003.
Yasin, S. J. M., and F. Tatsuoka. 2000. “Stress history-dependent deformation characteristics of dense sand in plane strain.” Soils Found. 40 (2): 77–98. https://doi.org/10.3208/sandf.40.2_77.
Yasin, S. J. M., K. Umetsu, F. Tatsuoka, J. R. F. Arthur, and T. Dunstan. 1999. “Plane strain strength and deformation of sands affected by batch variations and different apparatus types.” Geotech. Test. J. 22 (1): 80–100. https://doi.org/10.1520/GTJ11318J.
Yasufuku, N., H. Murata, M. Hyodo, and A. F. Hyde. 1991. “A stress-strain relationship for anisotropically consolidated sand over a wide stress region.” Soils Found. 31 (4): 75–92. https://doi.org/10.3208/sandf1972.31.4_75.
Zhang, X., L. Li, G. Chen, and R. Lytton. 2015. “A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing.” Acta Geotech. 10 (1): 55–82. https://doi.org/10.1007/s11440-014-0346-8.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 12December 2021

History

Received: Sep 2, 2020
Accepted: Aug 31, 2021
Published online: Oct 6, 2021
Published in print: Dec 1, 2021
Discussion open until: Mar 6, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Debayan Bhattacharya, S.M.ASCE [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; formerly, Senior Research Fellow, Dept. of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India (corresponding author). ORCID: https://orcid.org/0000-0002-0841-5951. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share