Abstract

A thermodynamics-based constitutive model is developed for calcareous sand treated by microbially induced calcite precipitation (MICP) to describe the effects of biocementation and its degradation by cyclic shearing within the framework of nonequilibrium thermodynamics. The elastic potential function implemented within the constitutive model leads to a hyperelastic representation of stress-strain-strength with considerations of true cohesion and stress-density state dependency, yielding a theoretical stress state boundary surface for sands treated with different levels of MICP. In addition, the concepts of configuration entropy and locked energy are defined to describe energy dissipation and corresponding irreversible deformation accumulated during cyclic loading. The effects of MICP treatment on the cyclic behavior of sands can be well predicted through the definition of the MICP-induced increase in soil density and a bonding parameter that varies as a function of the reaction index, representing the concentration and volume of microbial reactant. Predictions of a series of undrained cyclic triaxial tests of sands with and without MICP are made to validate the model. It is shown that a two-stage degradation of the bonding between sand particles should be considered for better predictions of the cyclic behavior. In general, the model sufficiently captures the cyclic stress-strain hysteresis and excess pore pressure generation in MICP-treated sand and gives insights into the underlying mechanisms.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article and the Supplemental Materials online.

Acknowledgments

The authors would like to acknowledge the National Science Foundation of China (Grant Nos. 51922024, 51978104, and 52078085) and the Chongqing Science and Technology Commission (Grant No. cstc2017jcyjAX0061). TME was supported by the US National Science Foundation (CMMI-1933355) during the course of this work. This support is gratefully acknowledged.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Bardet, J. P. 1990. “Lode dependences for isotropic pressure-sensitive elastoplastic materials.” J. Appl. Mech. 57 (9): 498–506. https://doi.org/10.1115/1.2897051.
Barrero, A. R., M. Taiebat, and Y. F. Dafalias. 2020. “Modeling cyclic shearing of sands in the semifluidized state.” Int. J. Numer. Anal. Methods Geomech. 44 (3): 371–388. https://doi.org/10.1002/nag.3007.
Baudet, B., and S. Stallebrass. 2004. “A constitutive model for structured clays.” Géotechnique 54 (4): 269–278. https://doi.org/10.1680/geot.2004.54.4.269.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Collins, I. F. 2005. “The concept of stored plastic work or frozen elastic energy in soil mechanics.” Géotechnique 55 (5): 373–382. https://doi.org/10.1680/geot.2005.55.5.373.
Cui, M., J. Zheng, R. Zhang, H. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Dafalias, Y. F., and E. P. Popov. 1976. “Plastic internal variables formalism of cyclic plasticity.” J. Appl. Mech. 43 (4): 645–651. https://doi.org/10.1115/1.3423948.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Duo, L., T. Kan-Liang, Z. Hui-Li, W. Yu-Yao, N. Kang-Yi, and Z. Shi-Can. 2018. “Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation.” Constr. Build. Mater. 172 (May): 251–262. https://doi.org/10.1016/j.conbuildmat.2018.03.255.
Evans, T. M., and C. B. Brown. 2014. “Microstates and macrostructures for granular assemblies.” In Proc., Geo-Characterization and Modeling for Sustainability, 2858–2866. Reston, VA: ASCE.
Evans, T. M., and J. D. Frost. 2010. “Multiscale investigation of shear bands in sand: Physical and numerical experiments.” Int. J. Numer. Anal. Methods Geomech. 34 (15): 1634–1650. https://doi.org/10.1002/nag.877.
Fattahi, S. M., A. Soroush, and N. Huang. 2020. “Biocementation control of sand against wind erosion.” J. Geotech. Geoenviron. Eng. 146 (6): 04020045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002268.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Gao, Y., L. Hang, J. He, and J. Chu. 2019. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Gomez, M. G., J. T. DeJong, and C. M. Anderson. 2018. “Effect of bio-cementation on geophysical and cone penetration measurements in sands.” Can. Geotech. J. 55 (11): 1632–1646. https://doi.org/10.1139/cgj-2017-0253.
Gomez, M. G., C. E. Hunt, B. C. Martinez, J. T. Dejong, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Gowthaman, S., S. Mitsuyama, K. Nakashima, M. Komatsu, and S. Kawasaki. 2019. “Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan.” Soils Found. 59 (2): 484–499. https://doi.org/10.1016/j.sandf.2018.12.010.
Groot, S. D., and P. Mazur. 1962. Non-equilibrium thermodynamics. Amsterdam, Netherlands: North-Holland Publishing Company.
He, J., Y. Gao, Z. Gu, J. Chu, and L. Wang. 2020. “Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand.” J. Mater. Civ. Eng. 32 (5): 04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
Houlsby, G. T., A. Amorosi, and E. Rojas. 2005. “Elastic moduli of soils dependent on pressure: A hyperelastic formulation.” Géotechnique 55 (5): 383–392. https://doi.org/10.1680/geot.2005.55.5.383.
Jefferies, M. 1997. “Plastic work and isotropic softening in unloading.” Géotechnique 47 (5): 1037–1042. https://doi.org/10.1680/geot.1997.47.5.1037.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Jiang, N.-J., C.-S. Tang, L.-Y. Yin, Y.-H. Xie, and B. Shi. 2019. “Applicability of microbial calcification method for sandy-slope surface erosion control.” J. Mater. Civ. Eng. 31 (11): 04019250. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.
Jiang, Y., and M. Liu. 2003. “Granular elasticity without the Coulomb condition.” Phys. Rev. Lett. 91 (14): 144301. https://doi.org/10.1103/PhysRevLett.91.144301.
Jiang, Y., and M. Liu. 2004. “Energetic instability unjams sand and suspension.” Phys. Rev. Lett. 93 (14): 148001. https://doi.org/10.1103/PhysRevLett.93.148001.
Kasama, K., H. Ochiai, and N. Yasufuku. 2000. “On the stress-strain behaviour of lightly cemented clay based on an extended critical state concept.” Soils Found. 40 (5): 37–47. https://doi.org/10.3208/sandf.40.5_37.
Lee, K., D. Chan, and K. Lam. 2004. “Constitutive model for cement treated clay in a critical state framework.” Soils Found. 44 (3): 69–77. https://doi.org/10.3208/sandf.44.3_69.
Li, M., L. Li, U. Ogbonnaya, K. Wen, A. Tian, and F. Amini. 2016. “Influence of fiber addition on mechanical properties of MICP-treated sand.” J. Mater. Civ. Eng. 28 (4): 04015166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442.
Li, S., C. Li, D. Yao, and S. Wang. 2020. “Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration.” Ecol. Eng. 152 (Jun): 105883. https://doi.org/10.1016/j.ecoleng.2020.105883.
Li, X. S., and Y. F. Dafalias. 2012. “Anisotropic critical state theory: Role of fabric.” J. Eng. Mech. 138 (3): 263–275. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324.
Lin, H., M. T. Suleiman, and D. G. Brown. 2020. “Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP).” Soils Found. 60 (4): 944–961. https://doi.org/10.1016/j.sandf.2020.07.003.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Liu, L. 2018. “Experimental study on mechanical properties of MICP-treated calcareous sand.” Ph.D. thesis, Dept. of Civil and Transportation Engineering, Hohai Univ.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Liu, S., R. Wang, J. Yu, X. Peng, Y. Cai, and B. Tu. 2020. “Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles.” Constr. Build. Mater. 243 (May): 118202. https://doi.org/10.1016/j.conbuildmat.2020.118202.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Mahawish, A., A. Bouazza, and W. P. Gates. 2019. “Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels.” J. Geotech. Geoenviron. Eng. 145 (8): 04019033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Géotechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Mroz, Z. 1967. “On the description of anisotropic workhardening.” J. Mech. Phys. Solids 15 (3): 163–175. https://doi.org/10.1016/0022-5096(67)90030-0.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Naeimi, M., and J. Chu. 2017. “Comparison of conventional and bio-treated methods as dust suppressants.” Environ. Sci. Pollut. Res. Int. 24 (29): 23341–23350. https://doi.org/10.1007/s11356-017-9889-1.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Nafisi, A., S. Safavizadeh, and B. M. Montoya. 2019. “Influence of microbe and enzyme-induced treatments on cemented sand shear response.” J. Geotech. Geoenviron. Eng. 145 (9): 06019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.
O’Donnell, T. S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
O’Donnell, T. S., B. E. Rittmann, and E. Kavazanjian Jr. 2017a. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation.” J. Geotech. Geoenviron. Eng. 143 (12): 04017094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818.
O’Donnell, T. S., B. E. Rittmann, and E. Kavazanjian, Jr. 2017b. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP.” J. Geotech. Geoenviron. Eng. 143 (12): 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806.
Palmer, A. C. 1967. “Stress-strain relations for clays: An energy theory.” Géotechnique 17 (4): 348–358. https://doi.org/10.1680/geot.1967.17.4.348.
Pastor, M., O. C. Zienkiewicz, and A. H. C. Chan. 1990. “Generalized plasticity and the modelling of soil behaviour.” Int. J. Numer. Anal. Methods Geomech. 14 (3): 151–190. https://doi.org/10.1002/nag.1610140302.
Pham, V. P., L. A. van Paassen, W. R. L. van der Star, and T. J. Heimovaara. 2018. “Evaluating strategies to improve process efficiency of denitrification-based MICP.” J. Geotech. Geoenviron. Eng. 144 (8): 04018049. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001909.
Porcino, D. D., and V. Marcianò. 2017. “Bonding degradation and stress–dilatancy response of weakly cemented sands.” Geomech. Geoeng. 12 (4): 221–233. https://doi.org/10.1080/17486025.2017.1347287.
Preisler, Z., and M. Dijkstra. 2016. “Configurational entropy and effective temperature in systems of active Brownian particles.” Soft Matter 12 (28): 6043–6048. https://doi.org/10.1039/C6SM00889E.
Rahimi, M., D. Chan, and A. Nouri. 2016. “Bounding surface constitutive model for cemented sand under monotonic loading.” Int. J. Geomech. 16 (2): 04015049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000534.
Riveros, G. A., and A. Sadrekarimi. 2020a. “Effect of microbially induced cementation on the instability and critical state behaviours of Fraser River sand.” Can. Geotech. J. 57 (2): 1870–1880. https://doi.org/10.1139/cgj-2019-0514.
Riveros, G. A., and A. Sadrekarimi. 2020b. “Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation.” Soil Dyn. Earthquake Eng. 131 (Apr): 106034. https://doi.org/10.1016/j.soildyn.2020.106034.
Rouainia, M., and D. Muir Wood. 2000. “A kinematic hardening constitutive model for natural clays with loss of structure.” Géotechnique 50 (2): 153–164. https://doi.org/10.1680/geot.2000.50.2.153.
Salifu, E., E. Maclachlan, K. R. Iyer, C. W. Knapp, and A. Tarantino. 2016. “Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation.” Eng. Geol. 201 (Feb): 96–105. https://doi.org/10.1016/j.enggeo.2015.12.027.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Seed, H., I. Idriss, and I. Arango. 1983. “Evaluation of liquefaction potential using field performance data.” J. Geotech. Eng. 109 (3): 458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
Simatupang, M., M. Okamura, K. Hayashi, and H. Yasuhara. 2018. “Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation.” Soil Dyn. Earthquake Eng. 115 (Dec): 710–718. https://doi.org/10.1016/j.soildyn.2018.09.027.
Song, C. P., D. Elsworth, S. Zhi, and C. Y. Wang. 2021. “The influence of particle morphology on microbially induced CaCO3 clogging in granular media.” Mar. Georesour. Geotechnol. 39 (1): 74–81. https://doi.org/10.1080/1064119X.2019.1677828.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2014. “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 140 (5): 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
Suebsuk, J., S. Horpibulsuk, and M. D. Liu. 2010. “Modified structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays.” Comput. Geotech. 37 (7): 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002.
Suebsuk, J., S. Horpibulsuk, and M. D. Liu. 2011. “A critical state model for overconsolidated structured clays.” Comput. Geotech. 38 (5): 648–658. https://doi.org/10.1016/j.compgeo.2011.03.010.
Terzis, D., and L. Laloui. 2019. “Cell-free soil bio-cementation with strength, dilatancy and fabric characterization.” Acta Geotech. 14 (3): 639–656. https://doi.org/10.1007/s11440-019-00764-3.
Tian, K., Y. Wu, H. Zhang, D. Li, K. Nie, and S. Zhang. 2018. “Increasing wind erosion resistance of aeolian sandy soil by microbially induced calcium carbonate precipitation.” Land Degrad. Dev. 29 (12): 4271–4281. https://doi.org/10.1002/ldr.3176.
Truong, M. H., B. Indraratna, T. T. Nguyen, J. Carter, and C. Rujikiatkamjorn. 2021. “Analysis of undrained cyclic response of saturated soils.” Comput. Geotech. 134 (Jun): 104095. https://doi.org/10.1016/j.compgeo.2021.104095.
Uzuoka, R., A. Yashima, T. Kawakami, and J. M. Konrad. 1998. “Fluid dynamics based prediction of liquefaction induced lateral spreading.” Comput. Geotech. 22 (3): 243–282. https://doi.org/10.1016/S0266-352X(98)00006-8.
Valanis, K. C., J. F. Peters, and J. Gill. 1993. “Configurational entropy, non-associativity and uniqueness in granular media.” Acta Mech. 100 (1–2): 79–93. https://doi.org/10.1007/BF01176863.
van Paassen, L. A. 2009. “Biogrout, ground improvement by microbial induced carbonate precipitation.” Ph.D. thesis, Dept. of Geotechnology, Delft Univ. of Technology.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wang, X. R., J. L. Tao, R. T. Bao, T. Tran, and S. Tucker-Kulesza. 2018. “Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation.” J. Mater. Civ. Eng. 30 (10): 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490.
Wang, Z., and F. Ma. 2019. “Bounding surface plasticity model for liquefaction of sand with various densities and initial stress conditions.” Soil Dyn. Earthquake Eng. 127 (Dec): 105843. https://doi.org/10.1016/j.soildyn.2019.105843.
Wang, Z., J. Ma, H. Gao, A. W. Stuedlein, J. He, and B. Wang. 2020. “Unified thixotropic fluid model for soil liquefaction.” Géotechnique 70 (10): 849–862. https://doi.org/10.1680/jgeot.17.P.300.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences and Biotechnology, Morduch Univ.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and bio-cementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech. 140 (11): 04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802.
Xiao, Y., A. W. Stuedlein, Z. Pan, H. Liu, T. M. Evans, X. He, H. Lin, J. Chu, and L. A. van Paassen. 2020b. “Toe bearing capacity of precast concrete piles through biogrouting improvement.” J. Geotech. Geoenviron. Eng. 146 (12): 06020026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002404.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019b. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019c. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Xiao, Y., Z. Zhang, and J. Wang. 2020c. “Granular hyperelasticity with inherent and stress-induced anisotropy.” Acta Geotech. 15 (3): 671–680. https://doi.org/10.1007/s11440-019-00768-z.
Yan, W. M., and X. S. Li. 2011. “A model for natural soil with bonds.” Géotechnique 61 (2): 95–106. https://doi.org/10.1680/geot.8.P.061.
Yang, Z., and A. Elgamal. 2008. “Multi-surface cyclic plasticity sand model with Lode angle effect.” Geotech. Geol. Eng. 26 (3): 335–348. https://doi.org/10.1007/s10706-007-9170-3.
Yu, H. S., S. M. Tan, and F. Schnaid. 2007. “A critical state framework for modelling bonded geomaterials.” Geomech. Geoeng. 2 (1): 61–74. https://doi.org/10.1080/17486020601164275.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120 (May): 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zhang, J., and G. Wang. 2012. “Large post-liquefaction deformation of sand, Part I: Physical mechanism, constitutive description and numerical algorithm.” Acta Geotech. 7 (2): 69–113. https://doi.org/10.1007/s11440-011-0150-7.
Zhang, Z. 2017. “A thermodynamics-based theory for thethermo-poro-mechanical modeling of saturated clay.” Int. J. Plast. 92 (May): 164–185. https://doi.org/10.1016/j.ijplas.2017.03.007.
Zhang, Z., and X. Cheng. 2015. “A thermodynamic constitutive model for undrained monotonic and cyclic shear behavior of saturated soils.” Acta Geotech. 10 (6): 781–796. https://doi.org/10.1007/s11440-015-0389-5.
Zhang, Z., L. Li, and Z. Xu. 2021. “A thermodynamics-based hyperelastic-plastic coupled model unified for unbonded and bonded soils.” Int. J. Plast. 137 (Feb): 102902. https://doi.org/10.1016/j.ijplas.2020.102902.
Zheng, W. 2015. “A cyclic UH model for sand.” Earthquake Eng. Eng. Vibr. 14 (2): 229–238. https://doi.org/10.1007/s11803-015-0019-0.
Ziotopoulou, A. K. 2014. “A sand plasticity model for earthquake engineering applications.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of California Davis.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 12December 2021

History

Received: Oct 7, 2020
Accepted: Jul 7, 2021
Published online: Sep 25, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 25, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Zhichao Zhang [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-6265-9906. Email: [email protected]
T. Matthew Evans, M.ASCE [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Mechanical Properties of Piles Formed by Microbially Induced Carbonate Precipitation: Experimental Investigation and Numerical Simulation, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17164, 36, 9, (2024).
  • Effect of Particle Morphology on Strength of Glass Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8661, 23, 8, (2023).
  • Closure to “Rainfall-Induced Erosion of Biocemented Graded Slopes”, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8403, 23, 4, (2023).
  • Fracture of Interparticle MICP Bonds under Compression, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8282, 23, 3, (2023).
  • Stress–Dilatancy Behavior of Biocementation-Enhanced Geogrid-Reinforced Sand, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8252, 23, 5, (2023).
  • A Novel Elastoplastic Damage Model for Hard Rocks under True Triaxial Compression: Analytical Solutions and Numerical Implementation, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002649, 23, 2, (2023).
  • Bearing capacity and deformation behavior of rigid strip footings on coral sand slopes, Ocean Engineering, 10.1016/j.oceaneng.2022.113317, 267, (113317), (2023).
  • Multiscale, multiphysics modeling of saturated granular materials in large deformation, Computer Methods in Applied Mechanics and Engineering, 10.1016/j.cma.2022.115871, 405, (115871), (2023).
  • Capturing the Turning Hook of Stress-Dilatancy Curve of Crushable Calcareous Sand, Journal of Marine Science and Engineering, 10.3390/jmse10091269, 10, 9, (1269), (2022).
  • Mechanical Properties and Engineering Applications of Special Soils—Dynamic Shear Modulus and Damping of MICP-Treated Calcareous Sand at Low Strains, Applied Sciences, 10.3390/app122312175, 12, 23, (12175), (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share