Technical Papers
Sep 28, 2021

Simplified Procedure to Identify the Critical State Line of Crushable Rockfills

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 12

Abstract

Particle breakage plays a relevant role on the stress-strain behavior of rockfills. As is widely recognized, the amount of particle breakage of coarse-grained soils depends on a combination of several factors, namely grain size, mineralogy, the shape of the particles, stress level, and degree of saturation and its variation. The results of monotonic triaxial tests carried out on a large apparatus on specimens of two types of rockfills and three different gradings highlighted the role of the coefficient of uniformity, grain tensile strength, and loading path on particle breakage and overall soil behavior. Starting from experimental evidence, a simplified conceptual model to predict the level of breakage during a generic stress path was developed. Experimental data supported the hypothesis of the influence of particle breakage on the position of the critical state lines (CSLs) in the compression plane. This implies that CSL parameters are state dependent, changing with current grading modifications, and are not intrinsic. A simplified procedure for predicting the position of the CSLs as a function of current particle breakage was, therefore, developed and calibrated against laboratory test results.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The authors confirm that all data used during the study appear in the published article.

References

ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253-16e1. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254-16. West Conshohocken, PA: ASTM.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Been, K., M. G. Jefferies, and J. Hachey. 1991. “The critical state of sands.” Géotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Bishop, A. W., and D. J. Henkel. 1962. The measurement of soil properties in the triaxial test. London: Edward Arnold.
Carrera, A., M. Coop, and R. Lancellotta. 2011. “Influence of grading on the mechanical behaviour of Stava tailings.” Géotechnique 61 (11): 935–946. https://doi.org/10.1680/geot.9.P.009.
Casini, F., and G. M. B. Viggiani. 2013. “Breakage of an artificial crushable material under loading.” Granular Matter 15 (5): 661–673. https://doi.org/10.1007/s10035-013-0432-x.
Chang, C. S., and Y. Deng. 2020. “Modeling for critical state line of granular soil with evolution of grain size distribution due to particle breakage.” Geosci. Front. 11 (2): 473–486. https://doi.org/10.1016/j.gsf.2019.06.008.
Cheng, Y. P., M. D. Bolton, and Y. Nakata. 2005. “Grain crushing and critical states observed in DEM simulations.” In Vol. 2 of Proc., 5th Int. Conf. on Powers and Grains 2005, 1393–1397. Boca Raton, FL: CRC Press.
Ciantia, M. O., M. Arroyo, C. O’Sullivan, A. Gens, and T. Liu. 2019. “Grading evolution and critical state in a discrete numerical model of Fontainebleau sand.” Géotechnique 69 (1): 1–15. https://doi.org/10.1680/jgeot.17.P.023.
Ciantia, M. O., and C. O’Sullivan. 2020. “Calculating the state parameter in crushable sands.” Int. J. Geomech. 20 (7): 04020095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001707.
Coop, M. R., and I. K. Lee. 1993. “The behaviour of granular soils at elevated stresses.” In Predictive soil mechanics, 186–198. London: Thomas Telford.
Coop, M. R., K. K. Sorensen, T. Bodas-Freitas, and G. Georgoutos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cubrinovski, M., and K. Ishihara. 2002. “Maximum and minimum void ratio characteristics of sands.” Soils Found. 42 (6): 65–78. https://doi.org/10.3208/sandf.42.6_65.
Daouadji, A., P. Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
de Bono, J. P., and G. R. McDowell. 2014. “DEM of triaxial tests on crushable sand.” Granular Matter 16 (4): 551–562. https://doi.org/10.1007/s10035-014-0500-x.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Flora, A. 1995. “Caratterizzazione geotecnica e modellazione dei materiali a grana grossa.” Ph.D. thesis, Dept. of Geotechnical Engineering, Rome La Sapienza Univ.
Flora, A., S. Lirer, and F. Silvestri. 2012. “Undrained cyclic resistance of undisturbed gravelly soils.” Soil Dyn. Earthquake Eng. 43 (Dec): 366–379. https://doi.org/10.1016/j.soildyn.2012.08.003.
Flora, A., S. Lirer, and C. Viggiani. 2007. “Studio sperimentale dei fattori influenti sulla compressibilità di un rockfill.” In Proc., XXIII Convegno nazionale di Geotecnica, edited by B. Pàtron. Rome: Associazione geotecnica italiana.
Fumagalli, E. 1969. “Tests on cohesionless materials for rockfill dams.” J. Soil Mech. Found. 95 (1): 313–332. https://doi.org/10.1061/JSFEAQ.0001223.
Ghafghazi, M., D. A. Shuttle, and J. T. deJong. 2014. “Particle breakage and the critical state of sand.” Soils Found. 54 (3): 451–461. https://doi.org/10.1016/j.sandf.2014.04.016.
Hagerty, M. M., D. R. Hite, C. R. Ulrich, and D. J. Hagerty. 1993. “One-dimensional-high pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hu, W., Z. Y. Yin, C. Dano, and P.-Y. Hicher. 2011. “A constitutive model for granular materials considering grain breakage.” Sci. China Tech. Sci. 54 (8): 2188−2196. https://doi.org/10.1007/s11431-011-4491-0.
Huang, X., C. O’Sullivan, K. J. Hanley, and C. Y. Kwok. 2014. “Discrete-element method analysis of the state parameter.” Géotechnique 64 (12): 954–965. https://doi.org/10.1680/geot.14.P.013.
Indraratna, B., Q. Sun, and S. Nimbalkar. 2015. “Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage.” Can. Geotech. J. 52 (1): 73–86. https://doi.org/10.1139/cgj-2013-0361.
Kayadelen, C., O. Sivrikaya, T. Taşkıran, and H. Güneyli. 2007. “Critical-state parameters of an unsaturated residual clayey soil from Turkey.” Eng. Geol. 94 (1–2): 1–9. https://doi.org/10.1016/j.enggeo.2007.05.008.
Khonji, A., A. Bagherzadeh-Khalhali, and A. Agheei-Araei. 2020. “Experimental investigation of rockfill particle breakage under large-scale triaxial tests using five different breakage factors.” Powder Technol. 363 (Mar): 473–487. https://doi.org/10.1016/j.powtec.2020.01.032.
Kikumoto, M., D. M. Wood, and A. Russel. 2010. “Particle crushing and deformation behavior.” Soils Found. 50 (4): 547–563. https://doi.org/10.3208/sandf.50.547.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lee, D. M. 1992. “The angles of friction of granular fills.” Ph.D. dissertation, Dept. of Engineering, Univ. of Cambridge.
Lee, K. L., and I. Farhoomand. 1967. “Compressibility and crushing of granular soil in anisotropic triaxial compression.” Can. Geotech. J. 4 (1): 68–86. https://doi.org/10.1139/t67-012.
Li, G., Y. J. Liu, C. Dano, and P. Y. Hicher. 2015. “Grading-dependent behavior of granular materials: from discrete to continuous modeling.” J. Eng. Mech. 141 (6): 04014172. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000866.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Lirer, S., A. Flora, and M. V. Nicotera. 2011. “Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel.” Acta Geotech. 6 (Sep): 1–12. https://doi.org/10.1007/s11440-010-0131-2.
Liu, M. C., Y. F. Gao, and H. L. Liu. 2014. “An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage.” Int. J. Numer. Anal. Methods Geomech. 38 (9): 935–960. https://doi.org/10.1002/nag.2243.
Lowe, J. 1964. “Shear strength of coarse embankment dam materials.” In Proc., 8th Int. Congress on Large Dams, 745–761. Edinburgh, UK: Editions science et industrie.
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Marachi, N. D., C. K. Chan, and H. B. Seed. 1972. “Evaluation of properties of rockfill materials.” J. Soil Mech. Found. 98 (1): 95–114. https://doi.org/10.1061/JSFEAQ.0001735.
Marachi, N. D., C. K. Chan, H. B. Seed, and J. M. Duncan. 1969. Strength and deformation characteristics of rockfill materials. Los Angeles: Univ. of California.
Marsal, R. J. 1963. “Large scale testing of rockfill materials.” J. Soil Mech. Found. 93 (2): 27–43. https://doi.org/10.1061/JSFEAQ.0000958.
Marsal, R. J. 1967. “Large scale testing of rockfill materials.” J. Soil Mech. Found. 93 (2): 27–43. https://doi.org/10.1061/JSFEAQ.0000958.
Marsal, R. J. 1973. Mechanical properties of rockfill, 109–200. New York: Wiley.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
Oldecop, L. A., and E. E. Alonso. 2001. “A model for rockfill compressibility.” Géotechnique 51 (7): 127–139. https://doi.org/10.1680/geot.2001.51.2.127.
Penman, A. D. M. 1971. Rockfill. Lahore, Pakistan: Building Research Station.
Roscoe, K. H., M. A. Schofield, and C. P. Wroth. 1958. “On the yielding of soils.” Géotechnique 8 (1): 22–53. https://doi.org/10.1680/geot.1958.8.1.22.
Russell, A. R., and N. Khalili. 2004. “A bounding surface plasticity model for sands exhibiting particle crushing.” Can. Geotech. J. 41 (6): 1179–1192. https://doi.org/10.1139/t04-065.
Russell, A. R., and D. M. Wood. 2009. “Point load tests and strength measurements for brittle spheres.” Int. J. Rock Mech. Min. Sci. 46 (2): 272–280. https://doi.org/10.1016/j.ijrmms.2008.04.004.
Tarantino, A., and A. F. L. Hyde. 2005. “An experimental investigation of work dissipation in crushable materials.” Géotechnique 55 (8): 575–584. https://doi.org/10.1680/geot.2005.55.8.575.
Tengattini, A., A. Das, and I. Einav. 2016. “A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation.” Géotechnique 66 (9): 695–710. https://doi.org/10.1680/jgeot.14.P.164.
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Ventini, R. 2020. “Mechanical behaviour of rockfill with different degrees of saturation.” Ph.D. thesis, Dept. of Structures for Engineering and Architecture, Univ. of Naples Federico II.
Ventini, R., A. Flora, S. Lirer, and C. Mancuso. 2019. “On the effect of grading and degree of saturation on rockfill volumetric deformation.” In Vol. 40 of Proc., CNRIG 2019: Geotechnical Research for Land Protection and Development, edited by F. Calvetti, F. Cotecchia, A. Galli, and C. Jommi, 462–471. Berlin: Springer. https://doi.org/10.1007/978-3-030-21359-6_49.
Ventini, R., A. Flora, S. Lirer, C. Mancuso, and A. Cammarota. 2020. “An experimental study of the behaviour of two rockfills accounting for the effects of degree of saturation.” In Proc., E3S Web of Conf., 03033. Les Ulis, France: EDP Sciences.
Verdugo, R., and K. Ishihara. 1996. “The steady state of sandy soils.” Soils Found. 36 (2): 81–91. https://doi.org/10.3208/sandf.36.2_81.
Wang, Q., D. E. Pufahl, and D. G. Fredlund. 2002. “A study of critical state on an unsaturated silty soil.” Can. Geotech. J. 39 (1): 213–218. https://doi.org/10.1139/t01-086.
Wood, D. M. 2007. “The magic of sands—The 20th Bjerrum Lecture presented in Oslo—25 November 2005.” Can. Geotech. J. 44 (11): 1329–1350. https://doi.org/10.1139/T07-060.
Wood, D. M., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Xiao, Y., S. M. Asce, H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., Y. Sun, and K. F. Hanif. 2015. “A particle-breakage critical state model for rockfill material.” Sci. China Technol. Sci. 58 (7): 1125–1136. https://doi.org/10.1007/s11431-015-5831-2.
Yan, W. M., and J. Dong. 2011. “Effect of particle grading on the response of an idealized granular assemblage.” Int. J. Geomech. 11 (4): 276–285. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000085.
Yu, F. W. 2017. “Particle breakage and the critical state of sands.” Géotechnique 67 (8): 713–719. https://doi.org/10.1680/jgeot.15.P.250.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 12December 2021

History

Received: Feb 23, 2021
Accepted: Jul 12, 2021
Published online: Sep 28, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Roberta Ventini, Ph.D. [email protected]
Dept. of Civil, Building, and Environmental Engineering, Univ. of Napoli Federico II, Napoli 80125, Italy (corresponding author). Email: [email protected]
Stefania Lirer [email protected]
Professor, Dept. of Engineering Sciences, Univ. of Roma Guglielmo Marconi, Rome 00193, Italy. Email: [email protected]
Claudio Mancuso [email protected]
Full Professor, Dept. of Civil, Building, and Environmental Engineering, Univ. of Napoli Federico II, Napoli 80125, Italy. Email: [email protected]
Alessandro Flora [email protected]
Full Professor, Dept. of Civil, Building, and Environmental Engineering, Univ. of Napoli Federico II, Napoli 80125, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share