Open access
Technical Notes
Aug 27, 2021

Effect of Pore–Fluid Chemistry on the Undrained Shear Strength of Xanthan Gum Biopolymer-Treated Clays

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 11

Abstract

Xanthan gum (XG) biopolymer-based soil treatment is an effective soil improvement method. In this study, we explored the effect of XG on the undrained shear strength of clays (kaolinite and montmorillonite) in chemically distinct pore fluids. Among the pore fluids tested, the undrained shear strength of kaolinite was the highest in kerosene, followed by deionized (DI) water and brine. This study hypothesized that the interparticle forces and interactions dominated the undrained shear strength of the kaolinite clay. In contrast, montmorillonite showed the highest undrained shear strength with DI water, followed by brine and kerosene, likely due to the increase in thickness of the viscous double layer that reduced the undrained strength of the montmorillonite clay. XG also affected the undrained shear strength of the clays, possibly due to the increase in viscosity of the pore fluids and modification of the clay interparticle fabrics. In DI water, XG increased the undrained shear strength of kaolinite (maximum shear strength was observed in the sample with an XG-to-soil mass ratio of 0.5%) via water absorption. Simultaneously, XG decreased the undrained shear strength of montmorillonite, likely due to XG-induced particle aggregation resulting from the changes in the montmorillonite particle surface charges. In 2-M-NaCl brine, the undrained shear strength increased with the increase in XG content, regardless of the mineral types, owing to the salt-induced double-layer compression and increase in concurrent XG-induced pore–fluid viscosity. However, the unaffected and constant undrained shear strength of both clays in nonpolar kerosene suggests that hydrating XG is a prerequisite for its application in soil treatment.

Formats available

You can view the full content in the following formats:

Data Availability Statement

All data, models, and code generated or used during the study are present in the published article.

Acknowledgments

This study was financially supported by the Water Management Research Program funded by the Ministry of Land, Infrastructure, and Transport (MOLIT) of the Korean Government (21AWMP-B114119-06) and the New Faculty Research Fund of Ajou University.

References

Anirudhan, T. S., and M. Ramachandran. 2007. “Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters.” Appl. Clay Sci. 35 (3): 276–281. https://doi.org/10.1016/j.clay.2006.09.009.
ASTM. 2016. Standard test methods for laboratory miniature vane shear test for saturated fine-grained clayey soil. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. West Conshohocken, PA: ASTM.
Au, P.-I., and Y.-K. Leong. 2016. “Surface chemistry and rheology of slurries of kaolinite and montmorillonite from different sources.” KONA Powder Part. J. 33 (6): 17–32. https://doi.org/10.14356/kona.2016007.
Bouazza, A., W. Gates, and P. Ranjith. 2009. “Hydraulic conductivity of biopolymer-treated silty sand.” Géotechnique 59 (1): 71–72. https://doi.org/10.1680/geot.2007.00137.
British Standards Institution. 2017. BS EN ISO 17892: Geotechnical investigation and testing—Laboratory testing of soil. Part 6: Fall cone test. London: British Standards Institution.
Cabalar, A. F., M. Wiszniewski, and Z. Skutnik. 2017. “Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand.” Soil Mech. Found. Eng. 54 (5): 356–361. https://doi.org/10.1007/s11204-017-9481-1.
Cao, S. C., J. Jang, J. Jung, W. F. Waite, T. S. Collett, and P. Kumar. 2019. “2D micromodel study of clogging behavior of fine-grained particles associated with gas hydrate production in NGHP-02 gas hydrate reservoir sediments.” Mar. Pet. Geol. 108 (Oct): 714–730. https://doi.org/10.1016/j.marpetgeo.2018.09.010.
Carrier, B., L. Wang, M. Vandamme, R. J. M. Pellenq, M. Bornert, A. Tanguy, and H. Van Damme. 2013. “ESEM study of the humidity-induced swelling of clay film.” Langmuir 29 (41): 12823–12833. https://doi.org/10.1021/la402781p.
Chang, I., and G.-C. Cho. 2019. “Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay.” Acta Geotech. 14 (2): 361–375. https://doi.org/10.1007/s11440-018-0641-x.
Chang, I., J. Im, and G.-C. Cho. 2016a. “Geotechnical engineering behaviors of gellan gum biopolymer treated sand.” Can. Geotech. J. 53 (10): 1658–1670. https://doi.org/10.1139/cgj-2015-0475.
Chang, I., J. Im, and G. C. Cho. 2016b. “Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering.” Sustainability 8 (3): 251. https://doi.org/10.3390/su8030251.
Chang, I., J. Im, A. K. Prasidhi, and G.-C. Cho. 2015. “Effects of xanthan gum biopolymer on soil strengthening.” Constr. Build. Mater. 74 (Jan): 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
Chang, I., Y.-M. Kwon, J. Im, and G.-C. Cho. 2019. “Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation.” Can. Geotech. J. 56 (8): 1206–1213. https://doi.org/10.1139/cgj-2018-0254.
Chang, I., M. Lee, A. T. P. Tran, S. Lee, Y.-M. Kwon, J. Im, and G.-C. Cho. 2020. “Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices.” Transp. Geotech. 24 (Sep): 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
Chen, C., L. Wu, and M. Harbottle. 2019a. “Exploring the effect of biopolymers in near-surface soils using xanthan gum–modified sand under shear.” Can. Geotech. J. 57 (8): 1–10. https://doi.org/10.1139/cgj-2019-0284.
Chen, C., L. Wu, M. Perdjon, X. Huang, and Y. Peng. 2019b. “The drying effect on xanthan gum biopolymer treated sandy soil shear strength.” Constr. Build. Mater. 197 (Feb): 271–279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
Chen, X., and Y. Peng. 2018. “Managing clay minerals in froth flotation—A critical review.” Miner. Process. Extr. Metall. Rev. 39 (5): 289–307. https://doi.org/10.1080/08827508.2018.1433175.
Chenu, C., and J. Guérif. 1991. “Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide.” Soil Sci. Soc. Am. J. 55 (4): 1076–1080. https://doi.org/10.2136/sssaj1991.03615995005500040030x.
Chow, S., F. Alonso-Marroquin, and D. Airey. 2012. “Viscous rate effects in shear strength of clay.” In Proc., 11th Australia–New Zealand Conf. on Geomechanics, 15–-18. Saint Ives, NSW, Australia: Australian Geomechanics Society.
Dehghan, H., A. Tabarsa, N. Latifi, and Y. Bagheri. 2019. “Use of xanthan and guar gums in soil strengthening.” Clean Technol. Environ. Policy 21 (1): 155–165. https://doi.org/10.1007/s10098-018-1625-0.
Doi, A., M. Ejtemaei, and A. V. Nguyen. 2019. “Effects of ion specificity on the surface electrical properties of kaolinite and montmorillonite.” Miner. Eng. 143 (Nov): 105929. https://doi.org/10.1016/j.mineng.2019.105929.
Dolinar, B., and L. Trauner. 2007. “The impact of structure on the undrained shear strength of cohesive soils.” Eng. Geol. 92 (1): 88–96. https://doi.org/10.1016/j.enggeo.2007.04.003.
Dontsova, K. M., and J. M. Bigham. 2005. “Anionic polysaccharide sorption by clay minerals.” Soil Sci. Soc. Am. J. 69 (4): 1026–1035. https://doi.org/10.2136/sssaj2004.0203.
Du, J., R. A. Pushkarova, and R. S. C. Smart. 2009. “A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes.” Int. J. Miner. Process. 93 (1): 66–72. https://doi.org/10.1016/j.minpro.2009.06.004.
Dukhin, A. S., and P. J. Goetz. 2010. Characterization of liquids, nano-and microparticulates, and porous bodies using ultrasound. Oxford, UK: Elsevier.
Espinoza, D. N., and J. C. Santamarina. 2012. “Clay interaction with liquid and supercritical CO2: The relevance of electrical and capillary forces.” Int. J. Greenhouse Gas Control 10 (Sep): 351–362. https://doi.org/10.1016/j.ijggc.2012.06.020.
García-Ochoa, F., V. E. Santos, J. A. Casas, and E. Gómez. 2000. “Xanthan gum: Production, recovery, and properties.” Biotechnol. Adv. 18 (7): 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1.
Giese, R. F. 2003. “Kaolin group minerals.” In Encyclopedia of sediments and sedimentary rocks, edited by G. V. Middleton, M. J. Church, M. Coniglio, L. A. Hardie, and F. J. Longstaffe, 398–400. Berlin: Springer.
Guo, J., and X. Wen. 2020. “Performances and mechanisms of sludge dewatering by a biopolymer from piggery wastewater and application of the dewatered sludge in remediation of Cr(VI)-contaminated soil.” J. Environ. Manage. 259 (Apr): 109678. https://doi.org/10.1016/j.jenvman.2019.109678.
Gutierrez, M., R. Nygård, K. Høeg, and T. Berre. 2008. “Normalized undrained shear strength of clay shales.” Eng. Geol. 99 (1): 31–39. https://doi.org/10.1016/j.enggeo.2008.02.002.
Ham, S.-M., I. Chang, D.-H. Noh, T.-H. Kwon, and B. Muhunthan. 2018. “Improvement of surface erosion resistance of sand by microbial biopolymer formation.” J. Geotech. Geoenviron. Eng. 144 (7): 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
Hassler, R. A., and D. H. Doherty. 1990. “Genetic engineering of polysaccharide structure: Production of variants of xanthan gum in Xanthomonas campestris.” Biotechnol. Progr. 6 (3): 182–187. https://doi.org/10.1021/bp00003a003.
Hemar, Y., M. Tamehana, P. A. Munro, and H. Singh. 2001. “Influence of xanthan gum on the formation and stability of sodium caseinate oil-in-water emulsions.” Food Hydrocolloids 15 (4): 513–519. https://doi.org/10.1016/S0268-005X(01)00075-3.
Hong, Z.-S., X. Bian, Y.-J. Cui, Y.-F. Gao, and L.-L. Zeng. 2013. “Effect of initial water content on undrained shear behaviour of reconstituted clays.” Géotechnique 63 (6): 441–450. https://doi.org/10.1680/geot.11.P.114.
Hyde, A. F. L., and S. J. Ward. 1986. “The effect of cyclic loading on the undrained shear strength of a silty clay.” Mar. Geotechnol. 6 (3): 299–314. https://doi.org/10.1080/10641198609388192.
Inglethorpe, S. D. J., D. J. Morgan, D. E. Highley, and A. J. Bloodworth. 1993. Industrial minerals laboratory manual: Bentonite. Nottingham, UK: British Geological Survey.
Jang, J., and J. C. Santamarina. 2016. “Fines classification based on sensitivity to pore-fluid chemistry.” J. Geotech. Geoenviron. Eng. 142 (4): 06015018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001420.
Kang, J., and R. A. McLaughlin. 2020. “Polyacrylamide and chitosan biopolymer for flocculation and turbidity reduction in soil suspensions.” J. Polym. Environ. 28 (4): 1335–1343. https://doi.org/10.1007/s10924-020-01682-2.
Katzbauer, B. 1998. “Properties and applications of xanthan gum.” Polym. Degrad. Stab. 59 (1): 81–84. https://doi.org/10.1016/S0141-3910(97)00180-8.
Kaya, A., and H.-Y. Fang. 2000. “The effects of organic fluids on physicochemical parameters of fine-grained soils.” Can. Geotech. J. 37 (5): 943–950. https://doi.org/10.1139/t00-023.
Kayabali, K., and O. O. Tufenkci. 2010. “Shear strength of remolded soils at consistency limits.” Can. Geotech. J. 47 (3): 259–266. https://doi.org/10.1139/T09-095.
Khachatoorian, R., I. G. Petrisor, C.-C. Kwan, and T. F. Yen. 2003. “Biopolymer plugging effect: Laboratory-pressurized pumping flow studies.” J. Petrol. Sci. Eng. 38 (1): 13–21. https://doi.org/10.1016/S0920-4105(03)00019-6.
Khatami, H. R., and B. C. O’Kelly. 2012. “Improving mechanical properties of sand using biopolymers.” J. Geotech. Geoenviron. Eng. 139 (8): 1402–1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
Koumoto, T., and G. T. Houlsby. 2001. “Theory and practice of the fall cone test.” Géotechnique 51 (8): 701–712. https://doi.org/10.1680/geot.2001.51.8.701.
Kulhawy, F. H., and P. W. Mayne. 1990. Manual on estimating soil properties for foundation design. New York: Electric Power Research Institute.
Kwon, Y.-M., I. Chang, M. Lee, and G.-C. Cho. 2019. “Geotechnical engineering behaviors of biopolymer-treated soft marine soil.” Geomech. Eng. 17 (5): 453–464. https://doi.org/10.12989/gae.2019.17.5.453.
Kwon, Y.-M., S.-M. Ham, T.-H. Kwon, G.-C. Cho, and I. Chang. 2020. “Surface-erosion behaviour of biopolymer-treated soils assessed by EFA.” Géotech. Lett. 10 (2): 1–7. https://doi.org/10.1680/jgele.19.00106.
Kwon, Y.-M., J. Im, I. Chang, and G.-C. Cho. 2017. “ε-polylysine biopolymer for coagulation of clay suspensions.” Geomech. Eng. 12 (5): 753–770. https://doi.org/10.12989/gae.2017.12.5.753.
Laird, D. A. 1997. “Bonding between polyacrylamide and clay mineral surfaces.” Soil Sci. 162 (11): 826–832. https://doi.org/10.1097/00010694-199711000-00006.
Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. A. Majid, M. M. Tahir, and E. T. Mohamad. 2017. “Improvement of problematic soils with biopolymer—An environmentally friendly soil stabilizer.” J. Mater. Civ. Eng. 29 (2): 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
Lee, S., I. Chang, M.-K. Chung, Y. Kim, and J. Kee. 2017. “Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing.” Geomech. Eng. 12 (5): 831–847. https://doi.org/10.12989/gae.2017.12.5.831.
Lee, S., M. Chung, H. M. Park, K.-I. Song, and I. Chang. 2019. “Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka.” J. Mater. Civ. Eng. 31 (11): 06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909.
Liu, X., X. Lu, R. Wang, E. J. Meijer, H. Zhou, and H. He. 2012. “Atomic scale structures of interfaces between kaolinite edges and water.” Geochim. Cosmochim. Acta 92 (2): 233–242. https://doi.org/10.1016/j.gca.2012.06.008.
Malik, M., and J. Letey. 1991. “Adsorption of polyacrylamide and polysaccharide polymers on soil materials.” Soil Sci. Soc. Am. J. 55 (2): 380–383. https://doi.org/10.2136/sssaj1991.03615995005500020014x.
Mayne, P. W. 1985. “Stress anisotropy effects on clay strength.” J. Geotech. Eng. 111 (3): 356–366. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(356).
Milas, M., M. Rinaudo, and B. Tinland. 1985. “The viscosity dependence on concentration, molecular weight and shear rate of xanthan solutions.” Polym. Bull. 14 (2): 157–164. https://doi.org/10.1007/BF00708475.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley.
Nugent, R. A., G. Zhang, and R. P. Gambrell. 2009. “Effect of exopolymers on the liquid limit of clays and its engineering implications.” Transp. Res. Rec. 2101 (1): 34–43. https://doi.org/10.3141/2101-05.
O’Kelly, B. C., P. J. Vardanega, and S. K. Haigh. 2018. “Use of fall cones to determine Atterberg limits: A review.” Géotechnique 68 (10): 843–856. https://doi.org/10.1680/jgeot.17.R.039.
Penner, D., and G. Lagaly. 2001. “Influence of anions on the rheological properties of clay mineral dispersions.” Appl. Clay Sci. 19 (1): 131–142. https://doi.org/10.1016/S0169-1317(01)00052-7.
Petri, D. F. S. 2015. “Xanthan gum: A versatile biopolymer for biomedical and technological applications.” J. Appl. Polym. Sci. 132 (23): 15. https://doi.org/10.1002/app.42035.
Rao, S. M., A. Sridharan, and M. R. Shenoy. 1993. “Influence of starch polysaccharide on the remoulded properties of two Indian clay samples.” Can. Geotech. J. 30 (3): 550–553. https://doi.org/10.1139/t93-047.
Sachan, A., and D. Penumadu. 2007. “Effect of microfabric on shear behavior of kaolin clay.” J. Geotech. Geoenviron. Eng. 133 (3): 306–318. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:3(306).
Santamarina, J. C., K. A. Klein, and M. A. Fam. 2001. Soils and waves. Hoboken, NJ: Wiley.
Santamarina, J. C., K. A. Klein, Y. H. Wang, and E. Prencke. 2002. “Specific surface: Determination and relevance.” Can. Geotech. J. 39 (1): 233–241. https://doi.org/10.1139/t01-077.
Schlue, B. F., T. Moerz, and S. Kreiter. 2010. “Influence of shear rate on undrained vane shear strength of organic harbor mud.” J. Geotech. Geoenviron. Eng. 136 (10): 1437–1447. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000356.
Secor, R. B., and C. J. Radke. 1985. “Spillover of the diffuse double layer on montmorillonite particles.” J. Colloid Interface Sci. 103 (1): 237–244. https://doi.org/10.1016/0021-9797(85)90096-7.
Sharma, B., and K. Bora Padma. 2003. “Plastic limit, liquid limit and undrained shear strength of soil—Reappraisal.” J. Geotech. Geoenviron. Eng. 129 (8): 774–777. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774).
Singh, S. P., and R. Das. 2020. “Geo-engineering properties of expansive soil treated with xanthan gum biopolymer.” Geomech. Geoeng. 15 (2): 107–122. https://doi.org/10.1080/17486025.2019.1632495.
Soldo, A., M. Miletić, and M. L. Auad. 2020. “Biopolymers as a sustainable solution for the enhancement of soil mechanical properties.” Sci. Rep. 10 (1): 267. https://doi.org/10.1038/s41598-019-57135-x.
Spagnoli, G., T. Fernández-Steeger, M. Feinendegen, H. Stanjek, and R. Azzam. 2010. “The influence of the dielectric constant and electrolyte concentration of the pore fluids on the undrained shear strength of smectite.” Soils Found. 50 (5): 757–763. https://doi.org/10.3208/sandf.50.757.
Sridharan, A., and K. Prakash. 1999. “Mechanisms controlling the undrained shear strength behaviour of clays.” Can. Geotech. J. 36 (6): 1030–1038. https://doi.org/10.1139/t99-071.
Sridharan, A., and G. V. Rao. 1979. “Shear strength behaviour of saturated clays and the role of the effective stress concept.” Géotechnique 29 (2): 177–193. https://doi.org/10.1680/geot.1979.29.2.177.
Stone, K. J. L., and K. D. Phan. 1995. “Cone penetration tests near the plastic limit.” Géotechnique 45 (1): 155–158. https://doi.org/10.1680/geot.1995.45.1.155.
Sujatha, E. R., S. Atchaya, A. Sivasaran, and R. S. Keerdthe. 2020. “Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers.” Bull. Eng. Geol. Environ. 80 (2): 1157–1167. https://doi.org/10.1007/s10064-020-02010-7.
Tombácz, E., and M. Szekeres. 2006. “Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite.” Appl. Clay Sci. 34 (1): 105–124. https://doi.org/10.1016/j.clay.2006.05.009.
Trauner, L., B. Dolinar, and M. Mišič. 2005. “Relationship between the undrained shear strength, water content, and mineralogical properties of fine-grained soils.” Int. J. Geomech. 5 (4): 350–355. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:4(350).
Turkoz, E., A. Perazzo, C. B. Arnold, and H. A. Stone. 2018. “Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions.” Appl. Phys. Lett. 112 (20): 203701. https://doi.org/10.1063/1.5026573.
Vardanega, P. J., and S. K. Haigh. 2014. “The undrained strength–liquidity index relationship.” Can. Geotech. J. 51 (9): 1073–1086. https://doi.org/10.1139/cgj-2013-0169.
Villanueva, M. P., L. Cabedo, J. M. Lagarón, and E. Giménez. 2010. “Comparative study of nanocomposites of polyolefin compatibilizers containing kaolinite and montmorillonite organoclays.” J. Appl. Polym. Sci. 115 (3): 1325–1335. https://doi.org/10.1002/app.30278.
Wan, J., and T. K. Tokunaga. 2002. “Partitioning of clay colloids at air–water interfaces.” J. Colloid Interface Sci. 247 (1): 54–61. https://doi.org/10.1006/jcis.2001.8132.
Wang, Y. H., and W. K. Siu. 2006. “Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations.” Can. Geotech. J. 43 (6): 587–600. https://doi.org/10.1139/t06-026.
Warkentin, B. P., and R. N. Yong. 1962. “Shear strength of montmorillonite and kaolinite related to interparticle forces.” In Clays and clay minerals, edited by E. Ingerson, 210–218. İzmir, Turkey: Pergamon.
Wood, D. M. 1990. Soil behaviour and critical state soil mechanics. Cambridge, MA: Cambridge University Press.
Wroth, C. P., and D. M. Wood. 1978. “The correlation of index properties with some basic engineering properties of soils.” Can. Geotech. J. 15 (2): 137–145. https://doi.org/10.1139/t78-014.
Żbik, M. S., N. A. Raftery, R. S. C. Smart, and R. L. Frost. 2010. “Kaolinite platelet orientation for XRD and AFM applications.” Appl. Clay Sci. 50 (3): 299–304. https://doi.org/10.1016/j.clay.2010.08.010.
Zhou, C., P. S. So, and X. W. Chen. 2020. “A water retention model considering biopolymer–soil interactions.” J. Hydrol. 586 (Jul): 124874. https://doi.org/10.1016/j.jhydrol.2020.124874.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 11November 2021

History

Received: Mar 10, 2020
Accepted: Jun 25, 2021
Published online: Aug 27, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 27, 2022

Authors

Affiliations

Associate Professor, Dept. of Civil Systems Engineering, Ajou Univ., Suwon-si 16499, Republic of Korea. ORCID: https://orcid.org/0000-0001-8369-0606. Email: [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. ORCID: https://orcid.org/0000-0002-4719-1241. Email: [email protected]
Gye-Chun Cho, Ph.D. [email protected]
Professor, Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Bioinspired Biopolymer Hydrogel Application to Improve Installation Efficiency and Load Carrying Capacity of Piles, Geo-Congress 2024, 10.1061/9780784485330.028, (268-277), (2024).
  • Advanced Biopolymer–Based Soil Strengthening Binder with Trivalent Chromium–Xanthan Gum Crosslinking for Wet Strength and Durability Enhancement, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16123, 35, 10, (2023).
  • Consolidation and swelling behavior of kaolinite clay containing xanthan gum biopolymer, Acta Geotechnica, 10.1007/s11440-023-01794-8, (2023).
  • Assessment of membrane and diffusion behavior of soil-bentonite slurry trench wall backfill consisted of sand and Xanthan gum amended bentonite, Journal of Cleaner Production, 10.1016/j.jclepro.2022.132779, 365, (132779), (2022).

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share