Case Studies
Aug 10, 2021

Stability Analysis and Control Measures of a Sanitary Landfill with High Leachate Level

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 10

Abstract

A sanitary landfill with significant sliding indications was studied through field investigations and numerical analyses. A translational deformation mode was discovered, and the leachate level of the landfill reached approximately 0.8 times the height of the waste body, which was extremely adverse for stability. Subsequent analyses revealed that the sliding surface started from the top of the landfill slope, developed along the liner system, and ended at the toe of the slope. To improve the stability of the landfill slope, a vertical drainage system was constructed. The leachate of the drainage wells was extruded into the header pipe by high-pressure air so that the possible clogging of pumps could be prevented. The effect of the new drainage system was verified by the subsequent decrease in leachate level and horizontal displacement rate. This case reveals that the vertical drainage system is an effective control measure for unstable running landfills.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Much of the work described in this paper was supported by the National Natural Science Foundation of China under Grant Nos. 41725012 and 41931289. The authors would like to greatly acknowledge all these financial supports and express their most sincere gratitude.

References

Bareither, C. A., C. H. Benson, and T. B. Edil. 2012. “Effects of waste composition and decomposition on the shear strength of municipal solid waste.” J. Geotech. Geoenviron. Eng. 138 (10): 1161–1174. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000702.
Beaven, R. P., S. E. Cox, and W. Powrie. 2007. “Operation and performance of horizontal wells for leachate control in a waste landfill.” J. Geotech. Geoenviron. Eng. 133 (8): 1040–1047. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(1040).
Bergado, D. T., G. V. Ramana, and H. I. Sia. 2006. “Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand.” Geotext. Geomembr. 24 (6): 371–393. https://doi.org/10.1016/j.geotexmem.2006.04.001.
Breitmeyer, R. J., C. H. Benson, and T. B. Edil. 2019. “Effects of compression and decomposition on saturated hydraulic conductivity of municipal solid waste in bioreactor landfills.” J. Geotech. Geoenviron. Eng. 145 (4): 04019011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002026.
Breitmeyer, R. J., C. H. Benson, and T. B. Edil. 2020. “Effect of changing unit weight and decomposition on unsaturated hydraulics of municipal solid waste in bioreactor landfills.” J. Geotech. Geoenviron. Eng. 146 (5): 04020021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002244.
Brinkgreve, R. B. J. 2002. Plaxis: Finite element code for soil and rock analyses: 2D-version 8. Rotterdam, Netherlands: A.A. Balkema.
Byun, B., I. Kim, G. Kim, J. Eun, and J. Lee. 2019. “Stability of bioreactor landfills with leachate injection configuration and landfill material condition.” Comput. Geotech. 108 (Jan): 234–243. https://doi.org/10.1016/j.compgeo.2019.01.006.
Chen, Y. M., W. A. Lin, and L. T. Zhan. 2010. “Investigation of mechanisms of bentonite extrusion from GCL and related effects on the shear strength of GCL/GM interfaces.” Geotext. Geomembr. 28 (1): 63–71. https://doi.org/10.1016/j.geotexmem.2009.09.006.
Chugh, A. K., T. D. Stark, and K. A. DeJong. 2007. “Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA.” Can. Geotech. J. 44 (1): 33–53. https://doi.org/10.1139/t06-089.
Cox, S. E., R. P. Beaven, W. Powrie, and D. J. Cole. 2006. “Installation of horizontal wells in landfilled waste using directional drilling.” J. Geotech. Geoenviron. Eng. 132 (7): 869–878. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(869).
Dixon, N., U. Langer, and P. Gotteland. 2008. “Classification and mechanical behavior relationships for municipal solid waste: Study using synthetic wastes.” J. Geotech. Geoenviron. Eng. 134 (1): 79–90. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(79).
Eid, H. T., T. D. Stark, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. I: Waste and foundation soil properties.” J. Geotech. Geoenviron. Eng. 126 (5): 397–407. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(397).
Feng, S. J., J. Y. Chang, H. Chen, and D. M. Zhang. 2019a. “Numerical analysis of earthquake-induced deformation of liner system of typical canyon landfill.” Soil Dyn. Earthquake Eng. 116 (Jan): 96–106. https://doi.org/10.1016/j.soildyn.2018.10.006.
Feng, S. J., J. Y. Chang, H. Shi, Q. T. Zheng, X. Y. Guo, and X. L. Zhang. 2019b. “Failure of an unfilled landfill cell due to an adjacent steep slope and a high groundwater level: A case study.” Eng. Geol. 262 (Nov): 105320. https://doi.org/10.1016/j.enggeo.2019.105320.
Feng, S. J., Z. W. Chen, and Q. T. Zheng. 2020. “Effect of LCRS clogging on leachate recirculation and landfill slope stability.” Environ. Sci. Pollut. R. 27 (6): 6649–6658. https://doi.org/10.1007/s11356-019-07383-1.
Fowmes, G. J., N. Dixon, and D. R. V. Jones. 2008. “Validation of a numerical modelling technique for multilayered geosynthetic landfill lining systems.” Geotext. Geomembr. 26 (2): 109–121. https://doi.org/10.1016/j.geotexmem.2007.09.003.
Hanson, J. L., J. T. Cox, and N. Yesiller. 2021. “Evolution of municipal solid waste structure over time: Compaction and settlement effects.” Environ. Geotech. 40 (Mar): 1–8. https://doi.org/10.1680/jenge.19.00229.
Hu, J., X. W. Wu, H. Ke, X. B. Xu, J. W. Lan, and L. T. Zhan. 2019. “Application of electrical resistivity tomography to monitor the dewatering of vertical and horizontal wells in municipal solid waste landfills.” Eng. Geol. 254 (May): 1–12. https://doi.org/10.1016/j.enggeo.2019.03.021.
Huvaj-Sarihan N., and T. D. Stark. 2008. “Back analyses of landfill slope failures.” In Proc., 6th Int. Case Histories Conf., 11–16. Rolla, MO: Missouri Univ. of Science and Technology.
Jiang, J., Y. Yang, S. Yang, B. Ye, and C. Zhang. 2010. “Effects of leachate accumulation on landfill stability in humid regions of China.” Waste Manage. 30 (5): 848–855. https://doi.org/10.1016/j.wasman.2009.12.005.
Jones, D. R. V., and N. Dixon. 2005. “Landfill lining stability and integrity: The role of waste settlement.” Geotext. Geomembr. 23 (1): 27–53. https://doi.org/10.1016/j.geotexmem.2004.08.001.
Kocasoy, G., and K. Curi. 1995. “The Ümraniye-Hekimbaşi open dump accident.” Waste Manage. Res. 13 (4): 305–314. https://doi.org/10.1016/S0734-242X(95)90080-2.
Koelsch, F., K. Fricke, C. Mahler, and E. Damanhuri. 2005. “Stability of landfills—The Bandung dumpsite disaster.” In Proc., Sardinia 2005, 10th Int. Waste Management and Landfill Symp. Padua, Italy: Univ. of Padua.
Koerner, R. M., and T. Y. Soong. 2000. “Leachate in landfills: The stability issues.” Geotext. Geomembranes 18 (5): 293–309. https://doi.org/10.1016/S0266-1144(99)00034-5.
Ma, P. C., H. Ke, J. Lan, Y. M. Chen, and H. J. He. 2019. “Field measurement of pore pressures and liquid-gas distribution using drilling and ERT in a high food waste content MSW landfill in Guangzhou, China.” Eng. Geol. 250 (Feb): 21–33. https://doi.org/10.1016/j.enggeo.2019.01.004.
Machado, S. L., M. Karimpourfard, N. Shariatmadari, M. D. Carvalho, and J. C. Nascimento. 2010. “Evaluation of the geotechnical properties of MSW in two Brazilian landfills.” Waste Manage. 30 (12): 2579–2591. https://doi.org/10.1016/j.wasman.2010.07.019.
Merry, S. M., E. Kavazanjian, and W. U. Fritz. 2005. “Reconnaissance of the July 10, 2000, Payatas landfill failure.” J. Perform. Constr. Facil. 19 (2): 100–107. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:2(100).
Mitchell, J. K., R. B. Seed, and H. B. Seed. 1990. “Kettleman Hills waste landfill slope failure. I: Liner-system properties.” J. Geotech. Eng. 116 (4): 647–668. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647).
Peng, R., Y. Hou, L. Zhan, and Y. Yao. 2016. “Back-analyses of landfill instability induced by high water level: Case study of Shenzhen landfill.” Int. J. Environ. Res. 13 (1): 126. https://doi.org/10.3390/ijerph13010126.
Qian, X., and R. M. Koerner. 2009. “Stability analysis when using an engineered berm to increase landfill space.” J. Geotech. Geoenviron. Eng. 135 (8): 1082–1091. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000065.
Ramaiah, B. J., G. Ramana, and M. Datta. 2017. “Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India.” Waste Manage. 68 (Oct): 275–291. https://doi.org/10.1016/j.wasman.2017.05.055.
Reddy, K. R., J. Gangathulasi, N. S. Parakalla, H. Hettiarachchi, J. Bogner, and T. Lagier. 2009. “Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations.” Waste Manage. Res. 27 (6): 578–587. https://doi.org/10.1177/0734242X09103825.
Ross, J. D., and P. J. Fox. 2015. “Dynamic shear strength of GMX/GCL composite liner for monotonic loading.” J. Geotech. Geoenviron. Eng. 141 (7): 04015026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001198.
Shen, Y., J. Y. Chang, S. J. Feng, and Q. T. Zheng. 2018. “Experimental study of static shear strength of geomembrane/geotextile interface under high shear rate.” In Proc., GeoShanghai Int. Conf., 318–326. Berlin: Springer.
Shi, J. Y., J. G. Zhu, R. Liu, and Y. P. Li. 2010. “Tests on shear strength behavior and envelop of double lines of municipal solid waste.” [In Chinese.] Chin. J. Geotech. Eng. 32 (10): 1499–1504.
Sia, A., and N. Dixon. 2012. “Numerical modelling of landfill lining system waste interaction: implications of parameter variability.” Geosynth. Int. 19 (5): 393–408. https://doi.org/10.1680/gein.12.00025.
Stark, T. D., D. Arellano, W. D. Evans, V. L. Wilson, and J. M. Gonda. 1998. “Unreinforced geosynthetic clay liner case history.” Geosynth. Int. 5 (5): 521. https://doi.org/10.1680/gein.5.0135.
Stark, T. D., H. T. Eid, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. II: Stability analyses.” J. Geotech. Geoenviron. Eng. 126 (5): 408–419. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(408).
Tano, B. F., D. Dias, G. J. Fowmes, F. Olivier, G. Stoltz, and N. Touzefoltz. 2016. “Numerical modeling of the nonlinear mechanical behavior of multilayer geosynthetic system for piggyback landfill expansions.” Geotext. Geomembr. 44 (6): 782–798. https://doi.org/10.1016/j.geotexmem.2016.07.004.
Yu, Y., and R. K. Rowe. 2020. “Geosynthetic liner integrity and stability analysis for a waste containment facility with a preferential slip plane within the liner system.” Geotext. Geomembr. 48 (5): 634–646. https://doi.org/10.1016/j.geotexmem.2020.03.008.
Zamara, K. A., N. Dixon, G. J. Fowmes, D. R. Jones, and B. Zhang. 2014. “Landfill side slope lining system performance: A comparison of field measurements and numerical modelling analyses.” Geotext. Geomembr. 42 (3): 224–235. https://doi.org/10.1016/j.geotexmem.2014.03.003.
Zekkos, D., G. A. Athanasopoulos, J. D. Bray, A. Grizi, and A. Theodoratos. 2010a. “Large-scale direct shear testing of municipal solid waste.” Waste Manage. 30 (8–9): 1544–1555. https://doi.org/10.1016/j.wasman.2010.01.024.
Zekkos, D., E. Kavazanjian, J. D. Bray, N. Matasovic, and M. F. Riemer. 2010b. “Physical characterization of municipal solid waste for geotechnical purposes.” J. Geotech. Geoenviron. Eng. 136 (9): 1231–1241. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000326.
Zhan, T. L., Y. M. Chen, and W. A. Ling. 2008. “Shear strength characterization of municipal solid waste at the Suzhou landfill, China.” Eng. Geol. 97 (3–4): 97–111. https://doi.org/10.1016/j.enggeo.2007.11.006.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 10October 2021

History

Received: Sep 3, 2020
Accepted: Jun 10, 2021
Published online: Aug 10, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 10, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Shi-Jin Feng [email protected]
Professor, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China (corresponding author). Email: [email protected]
Ji-Yun Chang [email protected]
Ph.D. Candidate, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Xiao-Lei Zhang, Ph.D. [email protected]
Engineer, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Formerly, Postgraduate Student, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Postgraduate Student, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. ORCID: https://orcid.org/0000-0001-6343-7179. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Critical Appraisal of Leachate Recirculation Systems in Bioreactor Landfills, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/JHTRBP.HZENG-1186, 27, 3, (2023).
  • Laboratory Model Tests of Leachate Drawdown Using Vertical Drainage Wells with Vacuum Pumping in Municipal Solid Waste Landfills with High Leachate Levels, Sustainability, 10.3390/su14138101, 14, 13, (8101), (2022).
  • Experiment on monitoring leakage of landfill leachate by parallel potentiometric monitoring method, Scientific Reports, 10.1038/s41598-022-24352-w, 12, 1, (2022).
  • Slope stability analysis of a landfill subjected to leachate recirculation and aeration considering bio-hydro coupled processes, Geoenvironmental Disasters, 10.1186/s40677-021-00201-2, 8, 1, (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share