Technical Papers
May 30, 2022

Influence of Sample Reconstitution on Advanced Model Calibration

Publication: International Journal of Geomechanics
Volume 22, Issue 8

Abstract

The simulation of granular soil using advanced soil models relies on the precise determination of model parameters from laboratory or field experiments, or both. Although it is well known that sample reconstitution influences the stress–strain response of granular soil, the effect of different reconstitution methods on the calibration of advanced soil models has not been previously comprehensively addressed. In the present study, a hypoplastic model was calibrated from geotechnical laboratory tests on Cuxhaven sand samples. Triaxial tests were performed on samples having been reconstituted by three different methods: moist tamping, vacuum pluviation, and horizontal vibration. The influence of different reconstitution methods on the simulation performance of the hypoplastic model was quantified through three scenarios of increasing complexity: (1) stress–strain behavior in representative element volume (REV), that is, triaxial tests; (2) in situ plate load test (PLT); and (3) laboratory cone penetration test (CPT). The latter two are typical examples of boundary value problems with different strains and stiffnesses. The adopted reconstitution methods significantly affected the REV simulation at high relative density of both peak friction angles and peak dilation angles. The reconstitution methods have a limited effect on boundary value problem simulations, being moderate for PLTs and small for CPTs. The influence of stiffness (intergranular strain) parameters on simulation results increased from REVs (no influence detected), over boundary value problems with low strain and stiffness (PLTs) to boundary value problems with high strain and stiffness (CPTs).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was funded by the DFG Research Center MARUM of the University of Bremen, Germany, through INTERCOAST (Reference number: 112807311). The present study was part of “Restrike-XL” (FKZ 0324231A) and partly funded by MBIE Endeavour Fund (UOWX1903) and Marsden Fund (UOW1902). We acknowledge Marc Huhndorf, Joann Schmid, and Wolfgang Schunn for technical support. Assad Ayub is acknowledged for performing BVP trial simulations. Vicki G. Moon is acknowledged for contributing to discussions on an early version of this paper. We are grateful for the comments of two annonymous reviewers.

Notation

The following symbols are used in this paper:
a
dimensionless factor in the basic hypoplastic model;
Cu
coefficient of uniformity;
d
diameter;
d50
mean grain size;
E50
stiffness at 50% of maximal deviator stress (i.e., E50-stiffness);
E50,error
model error of stiffness at 50% of maximal deviator stress (i.e., E50-stiffness);
e
void ratio;
e0
initial void ratio;
e0c
consolidated void ratio;
ec
void ratio at critical state;
ec0
void ratio at critical state with zero pressure;
ed
void ratio at densest state;
ed0
void ratio at densest state with zero pressure;
ei
void ratio at loosest state;
ei0
void ratio at loosest state with zero pressure;
emax
maximum void ratio;
emin
minimum void ratio;
F
dimensionless factor in the basic hypoplastic model;
f
frequency;
fb
factor in the basic hypoplastic model;
fd
factor in the basic hypoplastic model;
fe
factor in the basic hypoplastic model;
h
height;
hs
granular hardness;
Id0
initial relative density;
Idc
consolidated relative density;
K0
earth pressure coefficient;
L
linear tensor function in the basic hypoplastic model;
ME
model error;
md
dry mass;
mR
intergranular strain parameter;
mT
intergranular strain parameter;
N
nonlinear tensor function in the basic hypoplastic model;
n
compression exponent;
P
average load;
p
mean stress;
pcav
cavity pressure;
plim
limit cavity pressure;
pv
pressure of vacuum pump;
qc
cone resistance;
R2
coefficient of determination;
Rmax
intergranular strain parameter;
r
radius of cavity;
r0
initial radius of cavity;
SD
standard deviation;
s
settlement;
s˙
monotonic displacement rate;
u˙
pore pressure rate;
V0
initial volume of the sample;
W
energy;
α
parameter of the basic hypoplastic model;
β
parameter of the basic hypoplastic model;
βr
intergranular strain parameter;
Δu
back pressure;
ΔVc
change in volume due to consolidation;
ɛ1
axial strain;
ɛ2
radial strain;
ɛ3
radial strain;
ε˙
strain rate tensor;
ε˙1
axial strain rate;
ɛv
volumetric strain;
θ
cone angle;
ρs
particle density;
σ
isotropic stress;
σ
Cauchy stress tensor;
σ˙
Jaumann stress rate tensor;
σ1
axial stress;
σ1
effective axial stress;
σ2
radial stress;
σ3
radial stress;
σc
isotropic consolidation stress;
σ˙1
axial stress rate;
φc
critical friction angle;
φp
peak friction angle;
φp,error
model error of peak friction angle;
φr
residual friction angle;
φr,error
model error of residual friction angle;
χ
intergranular strain parameter;
ψ
peak dilation angle; and
ψerror
model error of peak dilation angle.

References

Abo-Elnor, M., R. Hamilton, and J. T. Boyle. 2004. “Simulation of soil–blade interaction for sandy soil using advanced 3D finite element analysis.” Soil Tillage Res 75 (1): 61–73. https://doi.org/10.1016/S0167-1987(03)00156-9.
Achmus, M., K. A. Schmoor, V. Herwig, and B. Matlock. 2020. “Lateral bearing behaviour of vibro- and impact-driven large-diameter piles in dense sand.” Geotechnik 43 (3): 147–159, https://doi.org/10.1002/gete.202000006.
Alonso-Marroquín, F., and H. Herrmann. 2004. “Ratcheting of granular materials.” Phys. Rev. Lett. 92 (5): 054301. https://doi.org/10.1103/PhysRevLett.92.054301.
Anaraki, K. E. 2008. “Hypoplasticity investigated: parameter determination and numerical simulation.” Ph.D. thesis, Dept. of Geotechnology, Delft Univ. of Technology.
Augustin, S., G. Gudehus, G. Huber, and A. Schünemann. 2003. “Numerical model and laboratory tests on settlement of ballast track.” In Vol. 6 of System dynamics and long-term behaviour of railway vehicles, track and subgrade, edited by K. Popp and W. Schiehlen, 317–336. Berlin, Heidelberg: Springer.
Baldi, G., R. Bellotti, V. Ghionna, M. Jamiolkowski, and E. Pasqualini. 1986. “Interpretation of CPTs and CPTUs. 2nd Part: Drained penetration of sands.” In Proc., 4th Int. Geotechnical Seminar, 143–156. Singapore: Nanyang Technological Institute.
Bauer, E. 1996. “Calibration of a comprehensive hypoplastic model for granular materials.” Soils Found. 36 (1): 13–26. https://doi.org/10.3208/sandf.36.13.
Bauer, E., W. X. Huang, and W. Wu. 2004. “Investigations of shear banding in an anisotropic hypoplastic material.” Int. J. Solids Struct. 41 (21): 5903–5919. https://doi.org/10.1016/j.ijsolstr.2004.05.052.
Ceccato, F., L. Beuth, and P. Simonini. 2016. “Analysis of piezocone penetration under different drainage conditions with the two-phase material point method.” J. Geotech. Geoenviron. Eng. 142 (12): 04016066. https://doi.org/10.1061/(Asce)Gt.1943-5606.0001550.
Cornforth, D. 1973. “Prediction of drained strength of sands from relative density measurements.” In Evaluation of relative density and its role in geotechnical projects involving cohesionless soils, edited by R. S. Ladd, 281–303. West Conshohocken, PA: ASTM.
Cudmani, R., and V. A. Osinov. 2001. “The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests.” Can Geotech J 38 (3): 622–638. https://doi.org/10.1139/cgj-38-3-622.
Cuomo, S., P. Ghasemi, M. Martinelli, and M. Calvello. 2019. “Simulation of liquefaction and retrogressive slope failure in loose coarse-grained material.” Int. J. Geomech. 19 (10): 04019116. https://doi.org/10.1061/(Asce)Gm.1943-5622.0001500.
da Fonseca, A. V., and J. Pineda. 2017. “Getting high-quality samples in ‘sensitive’ soils for advanced laboratory tests.” Innovative Infrastruct. Solutions 2 (1): 1–42. https://doi.org/10.1007/s41062-017-0086-3.
Degregorio, V. B. 1990. “Loading systems, sample preparation, and liquefaction.” Journal of Geotechnical Engineering 116 (5): 805–821. https://doi.org/10.1061/(Asce)0733-9410(1990)116:5(805).
Della, N., M. Belkhatir, A. Arab, J. Canou, and J.-C. Dupla. 2014. “Effect of fabric method on instability behavior of granular material.” Acta Mech. 225 (7): 2043–2057. https://doi.org/10.1007/s00707-013-1083-z.
Dijkstra, J., W. Broere, and O. M. Heeres. 2011. “Numerical simulation of pile installation.” Comput. Geotech. 38 (5): 612–622. https://doi.org/10.1016/j.compgeo.2011.04.004.
DIN (Deutsches Institut für Normen). 1983. Surface active agents; powers and granules; measurement of the angle of response. DIN ISO 4324. Berlin: DIN.
DIN (Deutsches Institut für Normen). 1996. Soil, investigation and testing - determination of density of non-cohesive soils for maximum and minimum compactness. DIN 18126. Berlin: DIN.
DIN (Deutsches Institut für Normen). 2012. Soil, investigation and testing - proctor-test. DIN 18127. Berlin: DIN.
DIN (Deutsches Institut für Normen). 2017. Geotechnical investigation and testing - Laboratory testing of soil - Part 5: Incremental loading oedometer test. [In German.] ISO 17892-5:2017, EN ISO 17892-5:2017. Berlin: DIN.
DIN (Deutsches Institut für Normen). 2018. Geotechnical investigation and testing - Identification and classification of soil - Part 1: Identification and description. [In German.] ISO 14688-1:2017, EN ISO 14688-1:2018. Berlin: DIN.
DIN (Deutsches Institut für Normen). 2018. Geotechnical investigation and testing - Laboratory testing of soil - Part 8: Unconsolidated undrained triaxial test. [In German.] ISO 17892-8:2018, EN ISO 17892-8:2018. Berlin: DIN.
DIN (Deutsches Institut für Normen). 2019. Soil, investigation and testing - Determination of density of solid particles - Wide mouth pycnometer. DIN 18124. Berlin: DIN.
Ehlers, J., A. Grube, H.-J. Stephan, and S. Wansa. 2011. “Pleistocene glaciations of North Germany—new results.” Develops. Quat. Sci. 15: 149–162. https://doi.org/10.1016/B978-0-444-53447-7.00013-1.
Ezaoui, A., and H. Di Benedetto. 2009. “Experimental measurements of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation.” Geotechnique 59 (7): 621–635. https://doi.org/10.1680/geot.7.00042.
Frost, J. D., and J.-Y. Park. 2003. “A critical assessment of the moist tamping technique.” Geotech. Test. J. 26 (1): 57–70. https://doi.org/10.1520/GTJ11108J.
Fugro. 2015. Geotechnical report laboratory test data wind farm site I&II borssele wind farm zone Dutch sector, North Sea. Nootdorp, The Netherlands: Fugro Engineers B.V.
Galavi, V. 2021. “Deltasand: A state dependent double hardening elasto-plastic model for sand: Formulation and validation.” Comput. Geotech. 129: 103844. https://doi.org/10.1016/j.compgeo.2020.103844.
Galavi, V., M. Martinelli, A. Elkadi, P. Ghasemi, and P. Thijssen. 2019. “Numerical simulation of impact driven offshore monopiles using the material point method.” In Proc., XVII ECSMGE-2019, edited by H. Sigursteinsson, S. Erlingsson and B. Bessason. Reykjavík: Icelandic Geotechnical Society.
Galavi, V., and H. F. Schweiger. 2010. “Nonlocal multilaminate model for strain softening analysis.” Int. J. Geomech. 10 (1): 30–44. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:1(30).
Gattermann, J., V. Herwig, and C. Moormann. 2015. “VIBRO Project-Vergleich des lateralen Tragverhaltens von vibrierten und geschlagenen Stahlrohrpfählen in sandigen Böden.” In HTG-Kongress 2015, 173–184. Bremen, Germany: Hafentechnische Gesellschaft e.V.
Ghasemi, P., M. Calvello, M. Martinelli, V. Galavi, and S. Cuomo. 2018. “MPM simulation of CPT and model calibration by inverse analysis.” In Proc., 4th Int. Symp. on Cone Penetration Testing, 295–301. Delft, Netherlands: CRC Press.
Ghasemi, P., V. Galavi, M. Martinelli, M. Calvello, and S. Cuomo. 2019. “Parameter determination for hypoplastic model using an inverse analysis algorithm. A case study; Northsea Sand.” In The XVII European Conf. on Soil Mechanics and Geotechnical Engineering, edited by H. Sigursteinsson, S. Erlingsson, and B. Bessason, 1–8. Reykjavík: Icelandic Geotechnical Society.
Gibson, R., and W. Anderson. 1961. “In-situ measurement of soil properties with pressuremeter.” Civ. Eng. Public Works Rev. 56 (658): 615–618.
Goodarzi, M., and M. Rouainia. 2017. “Modeling slope failure using a quasi-static MPM with a non-local strain softening approach.” Procedia Eng. 175: 220–225. https://doi.org/10.1016/j.proeng.2017.01.015.
Goodarzi, M., F. T. Stähler, S. Kreiter, M. Rouainia, M. O. Kluger, and T. Mörz. 2018. “Numerical simulation of cone penetration test in a small-volume calibration chamber: The effect of boundary conditions.” In Proc., 4th Int. Symp. on Cone Penetration Testing, 309–315. Boca Raton, FL: CRC Press.
Gudehus, G. 1996. “A comprehensive constitutive equation for granular materials.” Soils Found 36 (1): 1–12. https://doi.org/10.3208/sandf.36.1.
Gudehus, G., and D. Mašín. 2009. “Graphical representation of constitutive equations.” Geotechnique 59 (2): 147–151. https://doi.org/10.1680/geot.2007.00155.
Hamad, F. 2016. “Formulation of the axisymmetric CPDI with application to pile driving in sand.” Comput. Geotech. 74: 141–150. https://doi.org/10.1016/j.compgeo.2016.01.003.
Herle, I. 1997. Hypoplastizität und Granulometrie einfacher Korngerüste. Karlsruhe: Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe.
Herle, I., and G. Gudehus. 1999. “Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies.” Mech. Cohesive-Frict. Mater. 4 (5): 461–486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:5%3C461::AID-CFM71%3E3.0.CO;2-P.
Ishihara, K. 1993. “Liquefaction and flow failure during Earthquakes.” Geotechnique 43 (3): 351–451. https://doi.org/10.1680/geot.1993.43.3.351.
Jaky, J. 1948. “Pressure in silos.” In Vol. 1 of Proc., 2nd Int. Conf. on Soil Mechanics and Foundation Engineering, 103–107. Rotterdam, The Netherlands: The Conference.
Kluger, M. O., S. Kreiter, V. G. Moon, R. P. Orense, P. R. Mills, and T. Morz. 2019. “Undrained cyclic shear behaviour of weathered tephra.” Geotechnique 69 (6): 489–500. https://doi.org/10.1680/jgeot.17.P.083.
Kluger, M. O., S. Kreiter, F. T. Stähler, M. Goodarzi, T. Stanski, and T. Mörz. 2021. “Cone penetration tests in dry and saturated ticino sand.” Bull. Eng. Geol. Environ. 80 (5): 4079–4088. https://doi.org/10.1007/s10064-021-02156-y.
Knudsen, S., T. Lunne, V. S. Quinteros, T. Vestgården, L. Krogh, and R. Bøgelund-Pedersen. 2019. “Effect of reconstitution techniques on the triaxial stress-strength behaviour of a very dense sand.” In Proc., XVII ECSMGE-2019 on Soil Mechanics and Geotechnical Engineering. Keykjavík, Iceland: Icelandic Geotechnical Society.
Kolymbas, D. 1991. “An outline of hypoplasticity.” Arch. Appl. Mech. 61 (3): 143–151. https://doi.org/10.1007/BF00788048.
Kouretzis, G. P., D. C. Sheng, and D. Wang. 2014. “Numerical simulation of cone penetration testing using a new critical state constitutive model for sand.” Comput. Geotech. 56: 50–60. https://doi.org/10.1016/j.compgeo.2013.11.002.
Kozicki, J., M. Niedostatkiewicz, J. Tejchman, and H. B. Muhlhaus. 2013. “Discrete modeling results of a direct shear test for granular materials versus FE results.” Granular Matter 15 (5): 607–627. https://doi.org/10.1007/s10035-013-0423-y.
Kreiter, S., T. Moerz, M. Strasser, M. Lange, W. Schunn, B. Schlue, D. Otto, and A. Kopf. 2010. “Advanced dynamic soil testing—introducing the new MARUM dynamic triaxial testing device.” In Submarine mass movements and their consequences. Advances in natural and technological hazards research, edited by D. C. Mosher, 31–41. Dordrecht: Springer.
Ladd, RS. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lagioia, R., A. Sanzeni, and F. Colleselli. 2006. “Air, water and vacuum pluviation of sand specimens for the triaxial apparatus.” Soils Found 46 (1): 61–67. https://doi.org/10.3208/sandf.46.61.
Lam, W.-K., and F. Tatsuoka. 1988. “Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand.” Soils Found 28 (1): 89–106. https://doi.org/10.3208/sandf1972.28.89.
Maier, T. 2003. “Nonlocal modeling of softening in hypoplasticity.” Comput. Geotech. 30 (7): 599–610. https://doi.org/10.1016/S0266-352X(03)00075-2.
Maier, T. 2004. “Comparison of non-local and polar modeling of softening in hypoplasticity.” Int. J. Numer. Anal. Methods Geomech. 28 (3): 251–268. https://doi.org/10.1002/nag.334.
Mašín, D. 2012. “Hypoplastic Cam-clay model.” Geotechnique 62 (6): 549–553. https://doi.org/10.1680/geot.11.T.019.
Matsuoka, H., and T. Nakai. 1974. “Stress-deformation and strength characteristics of soil under three different principal stresses.” Proc. Japan Soc. Civ. Eng. 232: 59–70. https://doi.org/10.2208/jscej1969.1974.232_59.
Moormann, C., F. Kirsch, and V. Herwig. 2016. “Vergleich des axialen und lateralen Tragverhaltens von vibrierten und gerammten Stahlrohrpfählen.” In Proc.,34. Baugrundtagung. Vorträge, Stadthalle: Bielefeld.
Mulilis, J. P., H. B. Seed, C. K. Chan, J. K. Mitchell, and K. Arulanandan. 1977. “Effects of sample preparation on sand liquefaction.” Journal of the Geotechnical Engineering Division 103 (2): 91–108. https://doi.org/10.1061/AJGEB6.0000387.
Ng, C. W. W., T. Boonyarak, and D. Mašín. 2013. “Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels.” Can. Geotech. J. 50 (9): 935–946. https://doi.org/10.1139/cgj-2012-0445.
Niemunis, A., and I. Herle. 1997. “Hypoplastic model for cohesionless soils with elastic strain range.” Mech. Cohesive-Frict. Mater. 2 (4): 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.
Phuong, N. T. V., A. Rohe, R. B. J. Brinkgreve, and A. F. van Tol. 2018. “Hypoplastic model for crushable sand.” Soils Found 58 (3): 615–626. https://doi.org/10.1016/j.sandf.2018.02.022.
Phuong, N. T. V., A. F. van Tol, A. S. K. Elkadi, and A. Rohe. 2016. “Numerical investigation of pile installation effects in sand using material point method.” Comput. Geotech. 73: 58–71. https://doi.org/10.1016/j.compgeo.2015.11.012.
Pucker, T., B. Bienen, and S. Henke. 2013. “CPT based prediction of foundation penetration in siliceous sand.” Appl. Ocean Res. 41: 9–18. https://doi.org/10.1016/j.apor.2013.01.005.
Qiu, G., S. Henke, and J. Grabe. 2011. “Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations.” Comput. Geotech. 38 (1): 30–39. https://doi.org/10.1016/j.compgeo.2010.09.002.
Quinteros, S., T. Lunne, L. Krogh, R. Bøgelund-Pedersen, and J. Brink Clausen. 2018. “Shallow depth characterisation and stress history assessment of an over-consolidated sand in Cuxhaven, Germany.” In Cone Penetration Testing IV: Proc., 4th Int. Symp. on Cone Penetration Testing (CPT 2018), edited by Hicks, Pisano, and Peuchen, 525–531. London: CRC Press.
Randolph, M., M. Jamiolkowski, and L. Zdravkovic. 2004. “Load carrying capacity of foundations.” In Proc., Skempton Memorial Conf., edited by R. J. Jardine, D. M. Potts, and K. G. Higgins, 207–240. London: Thomas Telford.
Rondón, H., T. Wichtmann, T. Triantafyllidis, and A. Lizcano. 2007. “Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements.” Acta Geotech. 2 (2): 113–126. https://doi.org/10.1007/s11440-007-0030-3.
Rowe, P. 1969. “The relation between the shear strength of sands in triaxial compression, plane strain and direct.” Geotechnique 19 (1): 75–86. https://doi.org/10.1680/geot.1969.19.1.75.
Salgado, R., J. Mitchell, and M. Jamiolkowski. 1997. “Cavity expansion and penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 123 (4): 344–354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
Sindowski, K.-H. 1965. “Die drenthestadiale Altenwalder Stauchmoräne südlich Cuxhaven.” Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (ZDGG) 115 (1): 158–162. https://doi.org/10.1127/zdgg/115/1965/158.
Singh, S., H. B. Seed, and C. K. Chan. 1982. “Undisturbed sampling of saturated sands by freezing.” J. Geotech. Eng. Div. 108 (2): 247–264. https://doi.org/10.1061/AJGEB6.0001242.
Stähler, F. T., S. Kreiter, M. Goodarzi, D. Al-Sammaraie, and T. Mörz. 2018. “Liquefaction resistance by static and vibratory cone penetration tests.” In: Proc., 4th Int. Symp. on Cone Penetration Testing, 592–598. Delft, Netherlands: CRC Press.
Suryasentana, S. K., and B. M. Lehane. 2014. “Numerical derivation of CPT-based p–y curves for piles in sand.” Geotechnique 64 (3): 186–194. https://doi.org/10.1680/geot.13.P.026.
Suzuki, Y., and B. Lehane. 2015. “Analysis of CPT end resistance at variable penetration rates using the spherical cavity expansion method in normally consolidated soils.” Comput. Geotech. 69: 141–152. https://doi.org/10.1016/j.compgeo.2015.04.019.
Tatsuoka, F., and Y. Kohata. 1995. “Stiffness of hard soils and soft rocks in engineering applications.” In Vol. 2 of Pre-Failure Deformation of Geomaterials. Proc., Int. Symp. Rotterdam, Netherlands: AA Balkema.
Tatsuoka, F., M. Sakamoto, T. Kawamura, and S. Fukushima. 1990. “Strength anisotropy and shear band direction in plane strain tests of sand.” Soils Found 30 (1): 35–54. https://doi.org/10.3208/sandf1972.30.35.
Tejchman, J., and E. Bauer. 2005. “Fe-simulations of a direct and a true simple shear test within a polar hypoplasticity.” Comput. Geotech. 32 (1): 1–16. https://doi.org/10.1016/j.compgeo.2004.11.004.
Tejchman, J., I. Herle, and J. Wehr. 1999. “FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization.” Int. J. Numer. Anal. Methods Geomech. 23 (15): 2045–2074. https://doi.org/10.1002/(Sici)1096-9853(19991225)23:1%3C2045::Aid-Nag48%3E3.0.Co;2-B.
Tolooiyan, A., and K. Gavin. 2011. “Modeling the cone penetration test in sand using cavity expansion and arbitrary lagrangian eulerian finite element methods.” Comput. Geotech. 38 (4): 482–490. https://doi.org/10.1016/j.compgeo.2011.02.012.
Vaid, Y. P., S. Sivathayalan, and D. Stedman. 1999. “Influence of specimen-reconstituting method on the undrained response of sand.” Geotech. Test. J. 22 (3): 187–195. https://doi.org/10.1520/GTJ11110J.
Vesic, A. S. 1972. “Expansion of cavities in infinite soil mass.” J. Soil Mech. Found. Div. 98 (3): 265–290. https://doi.org/10.1061/JSFEAQ.0001740.
von Wolffersdorff, P. A. 1996. “A hypoplastic relation for granular materials with a predefined limit state surface.” Mech. Cohesive-Frict. Mater. 1 (3): 251–271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3%3C251::AID-CFM13%3E3.0.CO;2-3.
Wichtmann, T. 2005. Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, Germany: Inst. für Grundbau und Bodenmechanik Bochum University.
Wichtmann, T., J. Machaček, H. Zachert, and H. Günther. 2019. “Validierung eines hochzyklischen Akkumulationsmodells anhand von Modellversuchen und Messungen an realen Bauwerken.” Bautechnik 96 (2): 160–175. https://doi.org/10.1002/bate.201800056.
Wichtmann, T., and T. Triantafyllidis. 2016. “An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part I—tests with monotonic loading and stress cycles.” Acta Geotech. 11 (4): 739–761. https://doi.org/10.1007/s11440-015-0402-z.
Wood, F. M., J. A. Yamamuro, and P. V. Lade. 2008. “Effect of depositional method on the undrained response of silty sand.” Can. Geotech. J. 45 (11): 1525–1537. https://doi.org/10.1139/T08-079.
Wu, W., E. Bauer, and D. Kolymbas. 1996. “Hypoplastic constitutive model with critical state for granular materials.” Mech. Mater. 23 (1): 45–69. https://doi.org/10.1016/0167-6636(96)00006-3.
Xu, X., and B. Lehane. 2008. “Pile and penetrometer end bearing resistance in two-layered soil profiles.” Geotechnique 58 (3): 187–197. https://doi.org/10.1680/geot.2008.58.3.187.
Yamamuro, J. A., and F. M. Wood. 2004. “Effect of depositional method on the undrained behavior and microstructure of sand with silt.” Soil Dyn. Earthquake Eng. 24 (9–10): 751–760. https://doi.org/10.1016/j.soildyn.2004.06.004.
Yu, H. S., and G. T. Houlsby. 1991. “Finite cavity expansion in dilatant soils: Loading analysis.” Geotechnique 41 (2): 173–183. https://doi.org/10.1680/geot.1991.41.2.173.
Yu, H. S., and J. K. Mitchell. 1998. “Analysis of cone resistance: Review of methods.” J. Geotech. Geoenviron. Eng. 124 (2): 140–149. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(140).
Yu, H. S., F. Schnaid, and I. F. Collins. 1996. “Analysis of cone pressuremeter tests in sands.” Journal of Geotechnical Engineering 122 (8): 623–632. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(623).

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 8August 2022

History

Received: Oct 18, 2021
Accepted: Mar 30, 2022
Published online: May 30, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 30, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

School of Science/Te Aka Mātuatua, Univ. of Waikato, Hamilton 3240, New Zealand; MARUM – Center for Marine Environmental Sciences, Univ. of Bremen, 28359 Bremen, Germany (corresponding author). ORCID: https://orcid.org/0000-0001-9130-8948. Email: [email protected]
Majid Goodarzi
COWI A/S Hamburg Branch Office, 20457 Hamburg, Germany; MARUM – Center for Marine Environmental Sciences, Univ. of Bremen, 28359 Bremen, Germany.
Stefan Kreiter
MARUM – Center for Marine Environmental Sciences, Univ. of Bremen, 28359 Bremen, Germany.
Pooyan Ghasemi
COWI A/S Hamburg Branch Office, 20457 Hamburg, Germany.
Taisiya Pein
Fraunhofer Institute for Wind Energy and Energy System Technology, 27572 Bremerhaven, Germany.
Tobias Mörz
MARUM – Center for Marine Environmental Sciences, Univ. of Bremen, 28359 Bremen, Germany; Geo-Engineering.org GmbH, 28239 Bremen, Germany.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Compressibility and permeability of weathered, sensitive volcanic ash (tephra) deposits at the Omokoroa flow slide, New Zealand, Engineering Geology, 10.1016/j.enggeo.2022.106885, 310, (106885), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share