Technical Papers
May 30, 2022

Influence of Creep and Sand Type on the Compression Behavior of Sand–Rubber Composites

Publication: International Journal of Geomechanics
Volume 22, Issue 8

Abstract

Even though the mechanical behavior of granular soil–rubber mixtures has attracted significant attention and promising applications in geotechnical engineering, less attention has been paid to the influence of creep and long-term response of these composites. The present study examined the compression behavior of two types of sands mixed with recycled granulated rubber with emphasis on the influence of rubber percentage and sand grain type, providing in this way some new insights with emphasis on creep influences. One natural material is composed of Leighton Buzzard quartz sand of noncrushable grains, and the second material is composed of completely decomposed granite of crushable grains (note that the terms crushable and noncrushable refer to the range of maximum overburden pressures applied in the study that ranged from 0.3 to 6.7 MPa). The influence of creep on the compression behavior of the samples was associated with the location (or not) of the pure sand and their mixtures on the normal compression line (NCL) when creep deformations were evaluated. In specific, the rate of creep deformation was found to be independent of the stress level as long as the sample had reached its NCL during compression. Even though for LBS–rubber, there was a clear decrease of the stiffness of the mixtures expressed with the constrained modulus, this was not the case for the CDG–rubber mixtures, and within the scatter of the data, the ratio of creep index to compression index fell in a relatively narrow range (0.005–0.05), suggesting that the creep deformations could be predicted based on conventional oedometer tests with short-term measurements of the applied normal stress.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The work described in this paper was fully supported by an SRG-Fd grant (Project no. 7005545).

References

Alaie, R., R. Jamshidi Chenari, and M. Karimpour-Fard. 2021. “Shaking table study on sand-EPS beads-mixtures using a laminar box.” Geosynth. Int. 28 (3): 224–237. https://doi.org/10.1680/jgein.20.00039.
Allen, T., and R. Bathurst. 2002. “Observed long-term performance of geosynthetic walls and implications for design.” Geosynth. Int. 9 (5–6): 567–606. https://doi.org/10.1680/gein.9.0228.
Altuhafi, F., C. O’sullivan, and I. Cavarretta. 2013. “Analysis of an image-based method to quantify the size and shape of sand particles.” J. Geotech. Geoenviron. Eng. 139 (8): 1290–1307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855.
Altuhafi, F., and M. R. Coop. 2011. “Changes to particle characteristics associated with the compression of sands.” Géotechnique 61 (6): 459–471. https://doi.org/10.1680/geot.9.P.114.
Anastasiadis, A., K. Senetakis, and K. Pitilakis. 2012a. “Small-strain shear modulus and damping ratio of sand–rubber and gravel–rubber mixtures.” Geotech. Geol. Eng. 30 (2): 363–382. https://doi.org/10.1007/s10706-011-9473-2.
Anastasiadis, A., K. Senetakis, K. Pitilakis, C. Gargala, and I. Karakasi. 2012b. “Dynamic behavior of sand/rubber mixtures. Part I: Effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio.” J. ASTM Int. 9 (2): 103680. https://doi.org/10.1520/JAI103680.
Asadi, M., K. Thoeni, and A. Mahboubi. 2018. “An experimental and numerical study on the compressive behavior of sand–rubber particle mixtures.” Comput. Geotech. 104: 185–195. https://doi.org/10.1016/j.compgeo.2018.08.006.
ASTM. 1998. Standard practice for use of scrap tires in civil engineering applications. ASTM D6270-98. West Conshohocken, PA: ASTM.
Augustesen, A., M. Liingaard, and P. V. Lade. 2004. “Evaluation of time-dependent behavior of soils.” Int. J. Geomech. 4 (3): 137–156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).
Benessalah, I., A. Arab, M. Sadek, and R. Bouferra. 2019. “Laboratory study on the compressibility of sand–rubber mixtures under one dimensional consolidation loading conditions.” Granular Matter 21 (1): 1–9. https://doi.org/10.1007/s10035-018-0860-8.
Bernal, A., R. Salgado, R. Swan, and C. Lovell. 1997. “Interaction between tire shreds, rubber–sand and geosynthetics.” Geosynth. Int. 4 (6): 623–643. https://doi.org/10.1680/gein.4.0108.
Bosscher, P. J., T. B. Edil, and N. N. Eldin. 1992. Construction and performance of a shredded waste tire test embankment. Transportation Research Record (1345). Washington, DC: Transportation Research Board.
Bosscher, P. J., T. B. Edil, and S. Kuraoka. 1997. “Design of highway embankments using tire chips.” J. Geotech. Geoenviron. Eng. 123 (4): 295–304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295).
Bowman, E. T., and K. Soga. 2003. “Creep, ageing and microstructural change in dense granular materials.” Soils Found. 43 (4): 107–117. https://doi.org/10.3208/sandf.43.4_107.
Chen, W.-B., K. Liu, W.-Q. Feng, L. Borana, and J.-H. Yin. 2020a. “Influence of matric suction on nonlinear time-dependent compression behavior of a granular fill material.” Acta Geotech. 15 (3): 615–633. https://doi.org/10.1007/s11440-018-00761-y.
Chen, W.-B., K. Liu, Z.-Y. Yin, and J.-H. Yin. 2020b. “Crushing and flooding effects on one-dimensional time-dependent behaviors of a granular soil.” Int. J. Geomech. 20 (2): 04019156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001560.
Chen, X., and J. Zhang. 2016. “Effect of load duration on particle breakage and dilative behavior of residual soil.” J. Geotech. Geoenviron. Eng. 142 (9): 06016008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001488.
Cheng, Z., J. Wang, and W. Li. 2020. “The micro-mechanical behaviour of sand–rubber mixtures under shear: An experimental study based on X-ray micro-tomography.” Soils Found. 60 (5): 1251–1268. https://doi.org/10.1016/j.sandf.2020.08.001.
Deng, A., and Y. Xiao. 2010. “Measuring and modeling proportion-dependent stress–strain behavior of EPS–sand mixture.” Int. J. Geomech. 10 (6): 214–222. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000062.
Dickson, T. H., D. F. Dwyer, and D. N. Humphrey. 2001. “Prototype tire-shred embankment construction.” Transp. Res. Rec. 1755 (1): 160–167. https://doi.org/10.3141/1755-17.
Edil, T. B. 2002. “Mechanical properties and mass behavior of shredded tire-soil mixtures.” In Proc., Int. Workshop on Light-Weight Geo-Materials, 17–32. Tokyo: Japanese Geotechnical Society.
Edil, T. B. 2004. “A review of mechanical and chemical properties of shredded tires and soil mixtures.” Geotech. Spec. Publ. 127: 1–21.
Edil, T. B., and P. J. Bosscher. 1994. “Engineering properties of tire chips and soil mixtures.” Geotech. Test. J. 17 (4): 453–464. https://doi.org/10.1520/GTJ10306J.
Ehsani, M., N. Shariatmadari, and S. Mirhosseini. 2015. “Shear modulus and damping ratio of sand-granulated rubber mixtures.” J. Cent. South Univ. 22 (8): 3159–3167. https://doi.org/10.1007/s11771-015-2853-7.
Einav, I. 2007. “Breakage mechanics—part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
El-Sherbiny, R. M., S. H. Ramadan, and M. A. El-Khouly. 2018. “Dynamic properties of sand-EPS bead mixtures.” Geosynth. Int. 25 (4): 456–470. https://doi.org/10.1680/jgein.18.00021.
Evans, T. M., and J. R. Valdes. 2011. “The microstructure of particulate mixtures in one-dimensional compression: Numerical studies.” Granular Matter 13 (5): 657–669. https://doi.org/10.1007/s10035-011-0278-z.
Fannin, R. 2001. “Long-term variations of force and strain in a steep geogrid-reinforced soil slope.” Geosynth. Int. 8 (1): 81–96. https://doi.org/10.1680/gein.8.0187.
Feng, W.-Q., B. Lali, Z.-Y. Yin, and J.-H. Yin. 2017. “Long-term nonlinear creep and swelling behavior of Hong Kong marine deposits in oedometer condition.” Comput. Geotech. 84: 1–15. https://doi.org/10.1016/j.compgeo.2016.11.009.
Feng, Z.-Y., and K. G. Sutter. 2000. “Dynamic properties of granulated rubber/sand mixtures.” Geotech. Test. J. 23 (3): 338–344. https://doi.org/10.1520/GTJ11055J.
Fonseca, J., C. O’sullivan, M. R. Coop, and P. D. Lee. 2012. “Non-invasive characterization of particle morphology of natural sands.” Soils Found. 52 (4): 712–722. https://doi.org/10.1016/j.sandf.2012.07.011.
Fonseca, J., A. Riaz, and D. Barreto. 2019a. “X-ray tomography of sand–rubber mixtures.” In Int. Conf., on Tomography of Materials and Structures. Canberra, Australia: Australian National University.
Fonseca, J., A. Riaz, J. Bernal-Sanchez J, D. Barreto, J. McDougall, M. Miranda-Manzanares, A. Marinelli, and V. Dimitriadi. 2019b. “Particle–scale interactions and energy dissipation mechanisms in sand–rubber mixtures.” Géotech. Lett. 9 (4): 263–268. https://doi.org/10.1680/jgele.18.00221.
Foose, G. J., C. H. Benson, and P. J. Bosscher. 1996. “Sand reinforced with shredded waste tires.” J. Geotech. Eng. 122 (9): 760–767. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760).
Foriero, A., and N. Ghafari. 2020. “Laboratory creep parameter determination of sand–TDA mixtures with subsequent FEM validation.” Indian Geotech. J. 50: 710–725. https://doi.org/10.1007/s40098-019-00407-0.
Fu, R., M. R. Coop, and X. Li. 2014. “The mechanics of a compressive sand mixed with tyre rubber.” Géotech. Lett. 4 (3): 238–243. https://doi.org/10.1680/geolett.14.00027.
Fu, R., M. R. Coop, and X. Li. 2017. “Influence of particle type on the mechanics of sand–rubber mixtures.” J. Geotech. Geoenviron. Eng. 143 (9): 04017059. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001680.
Fu, R., M. R. Coop, K. Senetakis, and X. Li. 2015. “An investigation of the particle breakage behaviour of rubber reinforced sand.” In Vol. 2 of Proc., TC105 ISSMGE Int. Symp. on Geomechanics from Micro to Macro, 1347–1350. Cambridge, UK: Taylor and Francis.
Gao, H., X. Li, Z. Wang, A. W. Stuedlein, and Y. Wang. 2019. “Dynamic shear modulus and damping of expanded polystyrene composite soils at low strains.” Geosynth. Int. 26 (4): 1–44.
Graham, J., J. H. A. Crooks, and A. L. Bell. 1983. “Time effects on the stress-strain behaviour of natural soft clays.” Géotechnique 33 (3): 327–340. https://doi.org/10.1680/geot.1983.33.3.327.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
He, H., W. Chen, Z.-Y. Yin, K. Senetakis, and J.-H. Yin. 2021. “A micromechanical-based study on the tribological and creep-relaxation behavior of sand–FRP composite interfaces.” Compos. Struct. 275: 114423. https://doi.org/10.1016/j.compstruct.2021.114423.
He, H., K. Senetakis, and M. R. Coop. 2019. “An investigation of the effect of shearing velocity on the inter-particle behavior of granular and composite materials with a new micromechanical dynamic testing apparatus.” Tribol. Int. 134: 252–263. https://doi.org/10.1016/j.triboint.2019.02.002.
Humphrey, D. N., and T. C. Sandford. 1993. “Tire chips as lightweight subgrade fill and retaining wall backfill.” In Proc., of the Symp. on Recovery and Effective Reuse of Discarded Materials and By-Products for Construction of Highway Facilities, 5–87. Washington, DC: Federal Highway Administration, US Dept. of Transportation.
Jamshidi Chenari, R., R. Alaie, and B. Fatahi. 2019. “Constrained compression models for tirederived aggregate-sand mixtures using enhanced large scale oedometer testing apparatus.” Geotech. Geol. Eng. 37 (4): 2591–2610. https://doi.org/10.1007/s10706-018-00780-2.
Jamshidi Chenari, R., M. K. Fard, S. P. Maghfarati, F. Pishgar, and S. L. Machado. 2016. “An investigation on the geotechnical properties of sand–EPS mixture using large oedometer apparatus.” Constr. Build. Mater. 113: 773–782. https://doi.org/10.1016/j.conbuildmat.2016.03.083.
Jin, Y.-F., Z.-Y. Yin, Z.-X. Wu, and W.-H. Zhou. 2018. “Identifying parameters of easily crushable sand and application to offshore pile driving.” Ocean Eng. 154: 416–429. https://doi.org/10.1016/j.oceaneng.2018.01.023.
Kasyap, S. S., and K. Senetakis. 2018. “A micromechanical experimental study of kaolinite-coated sand grains.” Tribol. Int. 126: 206–217. https://doi.org/10.1016/j.triboint.2018.05.021.
Kasyap, S. S., K. Senetakis, and J. Zhao. 2021. “Cyclic normal load–displacement behaviour of clay-coated sand grain contacts.” Geotechnique 71 (3): 216–225.
Kazempour, S., R. J. Chenari, H. Ahmadi, M. Payan, and K. Senetakis. 2021. “Assessment of the compression characteristics and coefficient of lateral earth pressure of aggregate–expanded polystyrene beads composite fill–backfill using large oedometer experiments.” Constr. Build. Mater. 302: 124145. https://doi.org/10.1016/j.conbuildmat.2021.124145.
Khajeh, A., R. J. Chenari, and M. Payan. 2020. “A review of the studies on soil–EPS composites: Beads and blocks.” Geotech. Geol. Eng. 38: 3363–3383. https://doi.org/10.1007/s10706-020-01252-2.
Kim, H.-K., and J. C. Santamarina. 2008. “Sand–rubber mixtures (large rubber chips).” Can. Geotech. J. 45 (10): 1457–1466. https://doi.org/10.1139/T08-070.
Kong, D., and J. Fonseca. 2018. “Quantification of the morphology of shelly carbonate sands using 3D images.” Géotechnique 68 (3): 249–261. https://doi.org/10.1680/jgeot.16.P.278.
Krumbein, W. C., and L. L. Sloss. 1963. Stratigraphy and sedimentation. San Francisco: W. H. Freeman and Company.
Lade, P. V., and H. Karimpour. 2010. “Static fatigue controls particle crushing and time effects in granular materials.” Soils Found. 50 (5): 573–583. https://doi.org/10.3208/sandf.50.573.
Lee, C., H. Shin, and J. S. Lee. 2014. “Behavior of sand–rubber particle mixtures: Experimental observations and numerical simulations.” Int. J. Numer. Methods Eng. 38 (16): 1651–1663.
Lee, H. J., and H. S. Roh. 2007. “The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill.” Constr. Build. Mater. 21 (5): 1016–1026. https://doi.org/10.1016/j.conbuildmat.2006.02.003.
Lee, J. H., R. Salgado, and A. Bernal. 1999. “Shredded tires and rubber–sand as lightweight backfill.” J. Geotech. Geoenviron. Eng. 125 (2): 132–141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132).
Lee, J.-S., J. Dodds, and J. C. Santamarina. 2007. “Behavior of rigid-soft particle mixtures.” J. Mater. Civ. Eng. 19 (2): 179–184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179).
Li, B., M. Huang, and X. Zeng. 2016. “Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures.” J. Mater. Civ. Eng. 28 (11): 04016122. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001629.
Li, W., C. Y. Kwok, C. S. Sandeep, and K. Senetakis. 2019a. “Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro- to macro-scales.” Powder Technol. 342 (15): 907–916. https://doi.org/10.1016/j.powtec.2018.10.025.
Li, W., C. Y. Kwok, and K. Senetakis. 2019b. “Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand.” Can. Geotech. J. 57 (5): 763–769. https://doi.org/10.1139/cgj-2019-0112.
Liingaard, M., A. Augustesen, and P. V. Lade. 2004. “Characterization of models for time-dependent behavior of soils.” Int. J. Geomech. 4 (3): 157–177. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157).
Liu, H. 2012. “Long-term lateral displacement of geosynthetic-reinforced soil segmental retaining walls.” Geotext. Geomembr. 32: 18–27. https://doi.org/10.1016/j.geotexmem.2011.12.001.
Liu, H., and J. Martinez. 2014. “Creep behaviour of sand–geomembrane interfaces.” Geosynth. Int. 21 (1): 83–88. https://doi.org/10.1680/gein.13.00036.
Liu, L., G. Cai, and S. Liu. 2018. “Compression properties and micro-mechanisms of rubber–sand particle mixtures considering grain breakage.” Constr. Build. Mater. 187: 1061–1072. https://doi.org/10.1016/j.conbuildmat.2018.08.051.
Lopera Perez, J. C., C. Y. Kwok, and K. Senetakis. 2016. “Effect of rubber size on the behaviour of sand-rubber mixtures: A numerical investigation.” Comput. Geotech. 80: 199–214. https://doi.org/10.1016/j.compgeo.2016.07.005.
Lopera Perez, J. C., C. Y. Kwok, and K. Senetakis. 2017. “Investigation of the micro-mechanics of sand–rubber mixtures at very small strains.” Geosynth. Int. 24 (1): 30–44. https://doi.org/10.1680/jgein.16.00013.
Lopera Perez, J. C., C. Y. Kwok, and K. Senetakis. 2018. “Effect of rubber content on the unstable behaviour of sand–rubber mixtures under static loading.” Geotechnique 68 (7): 561–574.
McDowell, G. R. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G. R. 2003. “Micromechanics of creep of granular materials.” Géotechnique 53 (10): 915–916. https://doi.org/10.1680/geot.2003.53.10.915.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., and J. P. De Bono. 2013. “On the micro mechanics of one-dimensional normal compression.” Géotechnique 63 (11): 895–908. https://doi.org/10.1680/geot.12.P.041.
McDowell, G. R., and J. Khan. 2003. “Creep of granular materials.” Granular Matter 5 (3): 115–120. https://doi.org/10.1007/s10035-003-0142-x.
Mesri, G., and A. Castro. 1987. “Cα/Cc concept and K0 during secondary compression.” J. Geotech. Eng. 113 (3): 230–247. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(230).
Mesri, G., T. Feng, and J. Benak. 1990. “Postdensification penetration resistance of clean sands.” J. Geotech. Eng. 116 (7): 1095–1115. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1095).
Mesri, G., and P. M. Godlewski. 1977. “Time- and stress-compressibility interrelationship.” J. Geotech. Eng. 103 (5): 417–430.
Neaz Sheikh, M., M. Mashiri, J. Vinod, and H.-H. Tsang. 2013. “Shear and compressibility behavior of sand–tire crumb mixtures.” J. Mater. Civ. Eng. 25 (10): 1366–1374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000696.
Ngo, A. T., and J. R. Valdes. 2007. “Creep of sand–rubber mixtures.” J. Mater. Civ. Eng. 19 (12): 1101–1105. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1101).
Oldecop, L. A., and E. E. Alonso. 2007. “Theoretical investigation of the time-dependent behaviour of rockfill.” Géotechnique 57 (3): 289–301. https://doi.org/10.1680/geot.2007.57.3.289.
Rocchi, I., and M. R. Coop. 2014. “Experimental accuracy of the initial specific volume.” Geotech. Test. J. 37 (1): 20130047. https://doi.org/10.1520/GTJ20130047.
Rocchi, I., and M. R. Coop. 2015. “The effects of weathering on the physical and mechanical properties of a granitic saprolite.” Géotechnique 65 (6): 482–493. https://doi.org/10.1680/geot.14.P.177.
Sandeep, C. S., and K. Senetakis. 2018a. “Effect of Young’s modulus and surface roughness on the inter-particle friction of granular materials.” Materials 11 (2): 217. https://doi.org/10.3390/ma11020217.
Sandeep, C. S., and K. Senetakis. 2018b. “Grain-scale mechanics of quartz sand under normal and tangential loading.” Tribol. Int. 117: 261–271. https://doi.org/10.1016/j.triboint.2017.09.014.
Sandeep, C. S., and K. Senetakis. 2018c. “The tribological behavior of two potential-landslide saprolitic rocks.” Pure Appl. Geophys. 175 (12): 4483–4499. https://doi.org/10.1007/s00024-018-1939-1.
Senetakis, K., A. Anastasiadis, and K. Pitilakis. 2012. “Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes.” Soil Dyn. Earthquake Eng. 33 (1): 38–53. https://doi.org/10.1016/j.soildyn.2011.10.003.
Singh, M. J., W. Feng, D. Xu, and L. Borana. 2020. “Experimental study of compression behavior of Indian black cotton soil in oedometer condition.” Int. J. Geosynth. Ground Eng. 6: 1–13. https://doi.org/10.1007/s40891-020-0186-6.
Tian, Y., S. S. Kasyap, and K. Senetakis. 2021. “Influence of loading history and soil type on the normal contact behavior of natural sand grain–elastomer composite interfaces.” Polymers 13 (11): 1830. https://doi.org/10.3390/polym13111830.
Tian, Y., and K. Senetakis. 2021. “Influence of creep on the small-strain stiffness of sand–rubber mixtures.” Geotechnique 1–12. https://www.icevirtuallibrary.com/doi/10.1680/jgeot.20.P.208.
Tian, Y., and K. Senetakis. 2022. “On the contact problem of soft-rigid interfaces: Incorporation of mindlin-deresiewicz and self-deformation concepts.” Granular Matter 24 (1): 1–17. https://doi.org/10.1007/s10035-021-01186-3.
Tizpa, P., R. J. Chenari, and F. Farrokhi. 2020. “Constraint deformation behavior of sand–EPS beads mixture using discrete element modeling (DEM).” Adv. Civ. Eng. Mater. 9 (1): 666–682.
Tizpa, P., S. Kazempour, R. Jamshidi Chenari, F. Farrokhi, and H. Ahmadi. 2019. “Numerical and experimental investigations of the influence of grain size on the compressibility of sand–EPS mixtures.” Int. J. Geosynth. Ground Eng. 5: 30. https://doi.org/10.1007/s40891-019-0182-x.
Tsang, H.-H. 2008. “Seismic isolation by rubber–soil mixtures for developing countries.” Earthquake Eng. Struct. Dyn. 37 (2): 283–303. https://doi.org/10.1002/eqe.756.
Tsiavos, A., N. A. Alexander, A. Diambra, E. Ibraim, P. J. Vardanega, A. Gonzalez-Buelga, and A. Sextos. 2019. “A sand–rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation.” Soil Dyn. Earthquake Eng. 125: 105731. https://doi.org/10.1016/j.soildyn.2019.105731.
Valdes, J. R., and T. M. Evans. 2008. “Sand–rubber mixtures: Experiments and numerical simulations.” Can. Geotech. J. 45 (4): 588–595. https://doi.org/10.1139/T08-002.
Wang, W., and M. R. Coop. 2016. “An investigation of breakage behaviour of single sand particles using a high-speed microscope camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
Wartman, J., M. F. Natale, and P. M. Strenk. 2007. “Immediate and time-dependent compression of tire derived aggregate.” J. Geotech. Geoenviron. Eng. 133 (3): 245–256. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:3(245).
WBCSD. 2010. “End of life tires: a framework for effective management systems.” World Business Council for Sustainable Development. Accessed June 25, 2019. https://docs.wbcsd.org/2010/10/A Framework For Effective Management Systems.pdf.
Wu, J., and S. Helwany. 1996. “A performance test for assessment of long-term creep behavior of soil-geosynthetic composites.” Geosynth. Int. 3 (1): 107–124. https://doi.org/10.1680/gein.3.0056.
Wu, M., J. Wang, and B. Zhao. 2022. “DEM modeling of one-dimensional compression of sands incorporating statistical particle fragmentation scheme.” Can. Geotech. J. 59: 144–157. https://doi.org/10.1139/cgj-2020-0308.
Xiao, Y., Z. Yuan, C. S. Desai, M. Zaman, Q. Chen, and H. Liu. 2020. “Effects of load duration and stress level on deformation and particle breakage of carbonate sands.” Int. J. Geomech. 20 (7): 06020014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001731.
Yi, Y., D. Meles S, S. Nassiri, and A. Bayat. 2015. “On the compressibility of tire-derived aggregate: Comparison of results from laboratory and field tests.” Can. Geotech. J. 52 (4): 442–458. https://doi.org/10.1139/cgj-2014-0110.
Yin, J.-H. 1999. “Nonlinear creep of soils in oedometer tests.” Géotechnique 49 (5): 699–707. https://doi.org/10.1680/geot.1999.49.5.699.
Yin, J.-H., and J. Graham. 1994. “Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress–strain behaviour of clays.” Can. Geotech. J. 31 (1): 42–52. https://doi.org/10.1139/t94-005.
Yin, J., and J. Graham. 1989. “General elastic visco-plastic consitutive relationship for 1-D straining in clays.” In Proc., 3rd Int. Symp. Numerical Models Geomechanics, 108–117. London: Elsevier Applied Science.
Youwai, S., and D. T. Bergado. 2003. “Strength and deformation characteristics of shredded rubber tire – sand mixtures.” Can. Geotech. J. 40 (2): 254–264. https://doi.org/10.1139/t02-104.
Zhang, B., T. Chen, C. Peng, and X. Qian. 2017. “Experimental study on loading-creep coupling effect in rockfill material.” Int. J. Geomech. 17 (9): 04017059. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000938.
Zhang, J., X. Chen, J. Zhang, and X. Wang. 2020. “Microscopic investigation of the packing features of soft-rigid particle mixtures using the discrete element method.” Adv. Powder Technol. 31 (7): 2951–2963. https://doi.org/10.1016/j.apt.2020.05.019.
Zhou, W., X. Xu, G. Ma, L. Yang, and X. Chang. 2016. “Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state.” Granular Matter 18 (4): 81. https://doi.org/10.1007/s10035-016-0678-1.
Zhu, H.-H., C.-C. Zhang, G.-X. Mei, B. Shi, and L. Gao. 2017. “Prediction of one-dimensional compression behavior of nansha clay using fractional derivatives.” Mar. Georesour. Geotechnol. 35 (5): 688–697. https://doi.org/10.1080/1064119X.2016.1217958.
Zornberg, J. G., A. R. Cabral, and C. Viratjandr. 2004. “Behaviour of tire shred– sand mixtures.” Can. Geotech. J. 41 (2): 227–241. https://doi.org/10.1139/t03-086.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 8August 2022

History

Received: Aug 6, 2021
Accepted: Mar 29, 2022
Published online: May 30, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 30, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Architecture and Civil Engineering, City Univ. of Hong Kong, Hong Kong. Email: [email protected]
Associate Professor, Dept. of Architecture and Civil Engineering, City Univ. of Hong Kong, Hong Kong (corresponding author). ORCID: https://orcid.org/0000-0003-0190-4768. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Experimental Investigation on the Compressive Behavior of Rubber–Sand Mixtures under Repeated Loading–Unloading, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17555, 36, 7, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share