Technical Papers
Feb 23, 2021

Dynamic Tensile Mechanical Properties and Fracture Characteristics of Water-Saturated Sandstone under the Freezing Effect

Publication: International Journal of Geomechanics
Volume 21, Issue 5

Abstract

Dynamic tensile mechanical characteristics of coal-rock mass under the freezing effect are an important subject that is supposed to be studied during the blasting of open-pit coal mines in Northwest China. In this study, the split Hopkinson pressure bar (SHPB) test system was used to perform dynamic Brazilian disc tests on saturated sandstone at normal temperature (25°C) and negative temperatures (−5°C, −10°C, −20°C, and −30°C). The high-speed failure process, macrofracture roughness and mesofracture morphologies of the samples were observed at different temperatures. The experimental results showed that the dynamic tensile strength of sandstone first increased and then decreased with the decrease of freezing temperature. In addition, a statistical model of the variation of sandstone tensile strength under the effect of temperature and loading rate was established. At different temperatures, all samples underwent the process of crack initiation from the center and then the main cracks penetrated the sample. At room temperature, a large number of secondary cracks formed at both ends of the samples and gradually merged with main cracks that do not occur at low temperatures. The fracture roughness of the sample at normal temperature was significantly greater than that at freezing temperatures, and there were no obvious rules of the roughness of fracture surfaces at different freezing temperatures. In the end, the change in the macroroughness of the fracture surface was explained by the brittle–ductile transition of the mesofracture morphologies of the sandstone samples at different temperatures.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Financial support for this work was provided by the National Natural Science Foundation (Grant Nos. Z4U179534, Z4U194686, 51704281 and 12072363).

References

Ai, D. H., Y. C. Zhao, Q. F. Wang, and C. W. Li. 2020. “Crack propagation and dynamic properties of coal under SHPB impact loading: Experimental investigation and numerical simulation.” Theor. Appl. Fract. Mech. 105: 102393. https://doi.org/10.1016/j.tafmec.2019.102393.
Aoki, K., K. Hibiya, and T. Yoshida. 1990. “Storage of refrigerated liquefied gases in rock caverns: Characteristics of rock under very low temperatures.” Tunnelling Underground Space Technol. 5 (4): 319–325. https://doi.org/10.1016/0886-7798(90)90126-5.
Azimian, A., and R. Ajalloeian. 2015. “Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity.” J. Geosci. 8 (4): 2069–2079. https://doi.org/10.1007/s12517-013-1235-4.
Chen, L., X. B. Mao, S. L. Yang, C. An, and P. Wu. 2019. “Experimental investigation on dynamic fracture mechanism and energy evolution of saturated yellow sandstone under different freeze-thaw temperatures.” Adv. Civ. Eng. 2019: 2375276. https://doi.org/10.1155/2019/2375276.
Chen, T. C., M. R. Yeung, and N. Mori. 2004. “Effect of water saturation on deterioration of welded tuff due to freeze-thaw action.” Cold Reg. Sci. Technol. 38 (2–3): 0–136. https://doi.org/10.1016/j.coldregions.2003.10.001.
Chen, W., B. Song, D. J. Frew, and M. J. Forrestal. 2003. “Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar.” Exp. Mech. 43 (1): 20–23. https://doi.org/10.1007/BF02410479.
Dai, F., R. Chen, and K. Xia. 2010a. “A semi-circular bend technique for determining dynamic fracture toughness.” Exp. Mech. 50 (6): 783–791. https://doi.org/10.1007/s11340-009-9273-2.
Dai, F., S. Huang, K. W. Xia, and Z. Y. Tan. 2010b. “Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar.” Rock Mech. Rock Eng. 43 (6): 657–666. https://doi.org/10.1007/s00603-010-0091-8.
Derdk, H. 1999. Fractography. Cambridge, UK: Cambridge University Press.
Dwivedi, R. D., A. K. Soni, R. K. Goel, and A. K. Dube. 2000. “Fracture toughness of rocks under sub-zero temperature conditions.” Int. J. Rock Mech. Min. Sci. 37 (8): 1267–1275. https://doi.org/10.1016/S1365-1609(00)00051-4.
Farrokhrouz, M., M. R. Asef, and R. Kharrat. 2014. “Empirical estimation of uniaxial compressive strength of shale formations.” Geophysics 79 (4): D227–D233. https://doi.org/10.1190/geo2013-0315.1.
Finol, J., Y. K. Guo, and X. D. Jing. 2001. “A rule based fuzzy model for the prediction of petrophysical rock parameters.” J. Pet. Sci. Eng. 29 (2): 97–113. https://doi.org/10.1016/S0920-4105(00)00096-6.
Gokceoglu, C. 2002. “A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition.” Eng. Geol. 66 (1–2): 39–51. https://doi.org/10.1016/S0013-7952(02)00023-6.
Gomez, J. T., A. Shukla, and A. Sharma. 2001. “Static and dynamic behavior of concrete and granite in tension with damage.” Theor. Appl. Fract. Mech. 36 (1): 37–49. https://doi.org/10.1016/S0167-8442(01)00054-4.
Gong, F. Q., and J. Hu. 2020. “Energy dissipation characteristic of red sandstone in the dynamic Brazilian disc test with SHPB setup.” Adv. Civ. Eng. 2020: 7160937. https://doi.org/10.1155/2020/7160937.
Huang, N., R. C. Liu, Y. Y. Jiang, B. Li, and L. Y. Yu. 2018. “Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models.” Adv. Water Resour. 113: 30–41. https://doi.org/10.1016/j.advwatres.2018.01.005.
Hughes, M. L., J. W. Tedesco, and C. A. Ross. 1993. “Numerical analysis of high strain rate splittingtensile tests.” Comput. Struct. 47 (4–5): 653–671. https://doi.org/10.1016/0045-7949(93)90349-I.
Inada, Y., and K. Yokota. 1984. “Some studies of low temperature rock strength.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 21 (3): 145–153. https://doi.org/10.1016/0148-9062(84)91532-8.
ISRM (International Society for Rock Mechanics). 1978. “Suggested methods for determining tensile strength of rock materials.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15 (3): 99–103. https://doi.org/10.1016/0148-9062(78)90003-7.
ISRM. 1981. “Rock characterization, testing and monitoring-ISRM suggested methods.” In Suggested methods for the quantitative description of discontinuities in rock masses, edited by E. T. Brown, 3–52. Oxford: Pergamon.
Karakul, H., and R. Ulusay. 2013. “Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation.” Rock Mech. Rock Eng. 46 (5): 981–999. https://doi.org/10.1007/s00603-012-0353-8.
Kolsky, H. 1949. “An investigation of the mechanical properties of materials at very high rates of loading.” Proc. Phys. Soc. B 62 (11): 676–700. https://doi.org/10.1088/0370-1301/62/11/302.
Kolsky, H. 1953. Vol. 3 of Stress waves in solids, 83–84. Oxford, UK: Clarendon Press.
Korshunov, A. A., S. P. Doroshenko, and A. L. Nevzorov. 2016. “The impact of freezing–thawing process on slope stability of earth structure in cold climate.” Procedia Eng. 143: 682–688. https://doi.org/10.1016/j.proeng.2016.06.100.
Lai, Y. M., S. M. Zhang, and W. B. Yu. 2012. “A new structure to control frost boiling and frost heave of embankments in cold regions.” Cold Reg. Sci. Technol. 79–80: 53–66. https://doi.org/10.1016/j.coldregions.2012.04.002.
Li, J. L., R. B. Kaunda, and K. P. Zhou. 2018a. “Experimental investigations on the effects of ambient freeze–thaw cycling on dynamic properties and rock pore structure deterioration of sandstone.” Cold Reg. Sci. Technol. 154: 133–141. https://doi.org/10.1016/j.coldregions.2018.06.015.
Li, J. L., K. P. Zhou, W. J. Liu, and Y. M. Zhang. 2018b. “Analysis of the effect of freeze–thaw cycles on the degradation of mechanical parameters and slope stability.” Bull. Eng. Geol. Environ. 77 (2): 573–580. https://doi.org/10.1007/s10064-017-1013-8.
Li, M., G. Lin, W. Zhou, X. B. Mao, L. Y. Zhang, and R. R. Mao. 2019. “Experimental study on dynamic tensile failure of sandstone specimens with different water contents.” Shock Vib. 2019: 7012752. https://doi.org/10.1155/2019/7012752.
Li, M., X. B. Mao, L. L. Cao, H. Pu, and A. H. Lu. 2017. “Influence of heating rate on the dynamic mechanical performance of coal measure rocks.” Int. J. Geomech. 17 (8): 04017020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000888.
Liu, B., Y.-T. Gao, A.-B. Jin, and D. Elmo. 2020. “Fracture characteristics of orebody rock with varied grade under dynamic Brazilian tests.” Rock Mech. Rock Eng. 53 (5): 2381–2398. https://doi.org/10.1007/s00603-020-02048-9.
Liu, B., N. Liu, D. Y. Li, G. Zhang, H. L. Deng, J. Wang, and S. J. Tang. 2017. “Frozen strength test on deep water-rich sandstone in Ordos.” [In Chinese.] J. Min. Sci. Technol. 2017 (1): 29–36. https://doi.org/CNKI:SUN:KYKX.0.2017-01-005.
Liu, C. J., H. W. Deng, H. T. Zhao, and J. Zhang. 2018. “Effects of freeze–thaw treatment on the dynamic tensile strength of granite using the Brazilian test.” Cold Reg. Sci. Technol. 155: 327–332. https://doi.org/10.1016/j.coldregions.2018.08.022.
Luo, X. D., N. Jiang, X. Y. Fan, N. F. Mei, and H. Luo. 2015. “Effects of freeze–thaw on the determination and application of parameters of slope rock mass in cold regions.” Cold Reg. Sci. Technol. 110: 32–37. https://doi.org/10.1016/j.coldregions.2014.11.002.
Magsipoc, E., Q. Zhao, and G. Grasselli. 2020. “2D and 3D roughness characterization.” Rock Mech. Rock Eng. 53 (3): 1495–1519. https://doi.org/10.1007/s00603-019-01977-4.
Park, C., J. H. Synn, H. S. Shin, D. S. Cheon, H. D. Lim, and S. W. Jeon. 2004. “An experimental study on the thermal characteristics of rock at low temperatures.” Int. J. Rock Mech. Min. Sci. 41 (3): 367–368. https://doi.org/10.1016/j.ijrmms.2003.12.084.
Pei, P. D., F. Dai, Y. Liu, and M. D. Wei. 2020. “Dynamic tensile behavior of rocks under static pre-tension using the flattened Brazilian disc method.” Int. J. Rock Mech. Min. Sci. 126: 104208. https://doi.org/10.1016/j.ijrmms.2019.104208.
Ping, Q., Q. Y. Ma, and P. Yuan. 2013. “Energy dissipation analysis of stone specimens in SHPB tensile test.” [In Chinese.] J. Min. Saf. Eng. 30 (3): 401–407.
Renliang, S., S. Yongwei, S. Liwei, and B. Yao. 2019. “Dynamic property tests of frozen red sandstone using a split Hopkinson pressure bar.” Earthquake Eng. Eng. Vibr. 18 (3): 511–519. https://doi.org/10.1007/s11803-019-0518-5.
Rong, G., J. Yang, L. Cheng, and C. Zhou. 2016. “Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process.” J. Hydrol. 541: 1385–1394. https://doi.org/10.1016/j.jhydrol.2016.08.043.
Sharifzadeh, M., Y. Mitani, and T. Esaki. 2008. “Rock joint surfaces measurement and analysis of aperture distribution under different normal and shear loading using GIS.” Rock Mech. Rock Eng. 41 (2): 299–323. https://doi.org/10.1007/s00603-006-0115-6.
Tatone, B. S. A., and G. Grasselli. 2009. “A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials.” Rev. Sci. Instrum. 80: 125110. https://doi.org/10.1063/1.3266964.
Tatone, B. S. A., and G. Grasselli. 2012. “Quantitative measurements of fracture aperture and directional roughness from rock cores.” Rock Mech. Rock Eng. 45 (4): 619–629. https://doi.org/10.1007/s00603-011-0219-5.
Tatone, B. S. A., and G. Grasselli. 2013. “An investigation of discontinuity roughness scale dependency using high-resolution surface measurements.” Rock Mech. Rock Eng. 46 (4): 657–681. https://doi.org/10.1007/s00603-012-0294-2.
Tse, R., and D. M. Cruden. 1979. “Estimating joint roughness coefficients.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16 (5): 303–307. https://doi.org/10.1016/0148-9062(79)90241-9.
Ulrich, T. J., and T. W. Darling. 2001. “Observation of anomalous elastic behavior in rock at low temperatures.” Geophys. Res. Lett. 28 (11): 2293–2296. https://doi.org/10.1029/2000GL012480.
Wang, P., J. Y. Xu, X. Y. Fang, and P. X. Wang. 2017. “Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze–thaw cycles.” Eng. Geol. 221: 104–113. https://doi.org/10.1016/j.enggeo.2017.02.025.
Wang, P., J. Y. Xu, S. Liu, S. H. Liu, and H. Y. Wang. 2016. “A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze–thaw weathering: Considering the strain-rate effect.” Cold Reg. Sci. Technol. 131: 16–23. https://doi.org/10.1016/j.coldregions.2016.08.003.
Wang, Q., B. B. Wu, and Y. S. H. Guo. 2019. “Dynamic tensile failure of Laurentian granite subjected to triaxial confinement.” Geotech. Lett. 9 (2): 116–120. https://doi.org/10.1680/jgele.18.00244.
Weng, L., Z. J. Wu, Q. S. Liu, and Z. Y. Wang. 2019. “Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures.” Eng. Fract. Mech. 220: 106659. https://doi.org/10.1016/j.engfracmech.2019.106659.
Wong, L. N. Y., C. J. Zou, and Y. Cheng. 2014. “Fracturing and failure behavior of carrara marble in quasistatic and dynamic Brazilian disc tests.” Rock Mech. Rock Eng. 47 (4): 1117–1133. https://doi.org/10.1007/s00603-013-0465-9.
Wu, B. B., W. Yao, and K. W. Xia. 2015. “Dynamic tensile failure of rocks under static pre-tension.” Int. J. Rock Mech. Min. Sci. 80: 12–18. https://doi.org/10.1016/j.ijrmms.2015.09.003.
Wu, B. B., W. Yao, and K. W. Xia. 2016. “An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement.” Rock Mech. Rock Eng. 49: 3855–3864. https://doi.org/10.1007/s00603-016-0946-8.
Xia, K. W., and W. Yao. 2015. “Dynamic rock tests using split Hopkinson (Kolsky) bar system – A review.” J. Rock Mech. Geotech. Eng. 7 (1): 27–59. https://doi.org/10.1016/j.jrmge.2014.07.008.
Xie, H. P., and Z. D. Chen. 1989. “Analysis of rock fracture micro-mechanism.” [In Chinese.] J. China Coal Soc. 2: 57–67.
Xing, H. Z., G. Wu, S. Dehkhoda, P. G. Ranjith, and Q. B. Zhang. 2019. “Fracture and mechanical characteristics of CO2-saturated sandstone at extreme loading conditions.” Int. J. Rock Mech. Min. Sci. 117: 132–141. https://doi.org/10.1016/j.ijrmms.2019.03.025.
Xu, X.-L., Z.-X. Kang, M. Ji, W.-X. Ge, and J. Chen. 2009. “Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature.” Procedia Earth Planet. Sci. 1 (1): 432–437. https://doi.org/10.1016/j.proeps.2009.09.069.
Yamabe, T., and K. M. Neaupane. 2001. “Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition.” Int. J. Rock Mech. Min. Sci. 38 (7): 1029–1034. https://doi.org/10.1016/S1365-1609(01)00067-3.
Yang, R. S., S. Fang, W. Li, Y. Yang, Z. J. G. Yue, and G. Engineering. 2019. “Experimental study on the dynamic properties of three types of rock at negative temperature.” Geotech. Geol. Eng. 37: 455–464, https://doi.org/10.1007/s10706-018-0622-8.
Yasar, E., and Y. Erdogan. 2004. “Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks.” Int. J. Rock Mech. Min. Sci. 41 (5): 871–875. https://doi.org/10.1016/j.ijrmms.2004.01.012.
Yilmaz, I. 2010. “Influence of water content on the strength and deformability of gypsum.” Int. J. Rock Mech. Min. Sci. 47 (2): 342–347. https://doi.org/10.1016/j.ijrmms.2009.09.002.
Yilmaz, I., and A. G. Yuksek. 2008. “An example of artificial neural network (ANN) application for indirect estimation of rock parameters.” Rock Mech. Rock Eng. 41 (5): 781–795. https://doi.org/10.1007/s00603-007-0138-7.
Yilmaz, I., and G. Yuksek. 2009. “Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models.” Int. J. Rock Mech. Min. Sci. 46 (4): 803–810. https://doi.org/10.1016/j.ijrmms.2008.09.002.
Yin, Q., R. C. Liu, H. W. Jing, H. J. Su, L. Y. Yu, and L. X. He. 2019. “Experimental study of nonlinear flow behaviors through fractured rock samples after high-temperature exposure.” Rock Mech. Rock Eng. 52 (9): 2963–2983. https://doi.org/10.1007/s00603-019-1741-0.
Yin, Q., G. Ma, H. Jing, H. Wang, H. Su, Y. Wang, and R. Liu. 2017. “Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study.” J. Hydrol. 555: 169–184. https://doi.org/10.1016/j.jhydrol.2017.10.019.
Yin, T. B., X. B. Li, W. Z. Cao, and K. W. Xia. 2015. “Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test.” Rock Mech. Rock Eng. 48 (6): 2213–2223. https://doi.org/10.1007/s00603-015-0712-3.
Zhang, L. Y., X. B. Mao, M. Li, B. Li, R. X. Liu, and A. H. Lu. 2020. “Brittle–ductile transition of mudstone in coal measure rock strata under high temperature.” Int. J. Geomech. 20 (1): 04019149. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001549.
Zhang, Q. B., and J. Zhao. 2013. “Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads.” Int. J. Rock Mech. Min. Sci. 60 (8): 423–439. https://doi.org/10.1016/j.ijrmms.2013.01.005.
Zhang, Q. B., and J. Zhao. 2014. “A review of dynamic experimental techniques and mechanical behaviour of rock materials.” Rock Mech. Rock Eng. 47 (4): 1411–1478. https://doi.org/10.1007/s00603-013-0463-y.
Zhou, T., and J. B. Zhu. 2017. “An experimental investigation of tensile fracturing behavior of natural and artificial rocks in static and dynamic Brazilian disc tests.” Procedia Eng. 191: 992–998. https://doi.org/10.1016/j.proeng.2017.05.271.
Zhou, W., X. Y. Shi, X. Lu, C. C. Qi, B. Y. Luan, and F. M. Liu. 2020. “The mechanical and microstructural properties of refuse mudstone-GGBS-red mud based geopolymer composites made with sand.” Constr. Build Mater. 253: 119193. https://doi.org/10.1016/j.conbuildmat.2020.119193.
Zhou, Y. X., K. Xia, X. B. Li, H. B. Li, and F. Dai. 2012. “Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials.” Int. J. Rock Mech. Min. Sci. 49: 105–112. https://doi.org/10.1016/j.ijrmms.2011.10.004.
Zhou, Z. L., X. Cai, D. Ma, L. Chen, S. Wang, and L. Tan. 2018. “Dynamic tensile properties of sandstone subjected to wetting and drying cycles.” Constr. Build Mater. 182: 215–232. https://doi.org/10.1016/j.conbuildmat.2018.06.056.
Zhu, W. C., and C. A. Tang. 2006. “Numerical simulation of Brazilian disk rock failure under static and dynamic loading.” Int. J. Rock Mech. Min. Sci. 43 (2): 236–252. https://doi.org/10.1016/j.ijrmms.2005.06.008.
Zuo, J. P., H. Xie, H. Zhou, and S. Peng. 2007. “Thermal–mechanical coupled effect on fracture mechanism and plastic characteristics of sandstone.” Sci. China Ser. E: Technol. Sci. 50: 833–843. https://doi.org/10.1007/s11431-007-0081-6.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 5May 2021

History

Received: Dec 26, 2019
Accepted: Dec 6, 2020
Published online: Feb 23, 2021
Published in print: May 1, 2021
Discussion open until: Jul 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Gang Lin, Ph.D. [email protected]
School of Mechanics and Civil Engineering, China Univ. of Mining and Technology, Xuzhou 221116, China. Email: [email protected]
Associate Professor, State Key Laboratory for Geomechanics and Deep Underground Engineering, China Univ. of Mining and Technology, Xuzhou 221116, China (corresponding author). Email: [email protected]
Yanlong Chen [email protected]
Associate Professor, State Key Laboratory for Geomechanics and Deep Underground Engineering, China Univ. of Mining and Technology, Xuzhou 221116, China. Email: [email protected]
Jiazhi Zhang, Ph.D. [email protected]
School of Mechanics and Civil Engineering, China Univ. of Mining and Technology, Xuzhou 221116, China. Email: [email protected]
School of Mines, China Univ. of Mining and Technology, Xuzhou 221116, China. ORCID: https://orcid.org/0000-0002-3220-8880. Email: [email protected]
Dao Viet Doan [email protected]
Lecturer, Dept. of Underground and Mining Construction, Hanoi Univ. of Mining and Geology, 100803 Hanoi, Vietnam. Email: [email protected]
Master, School of Mechanics and Civil Engineering, China Univ. of Mining and Technology, Xuzhou 221116, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share