Technical Papers
Feb 22, 2021

Mechanical Behaviors of Sandy Sediments Bearing Pore-Filling Methane Hydrate under Different Intermediate Principal Stress

Publication: International Journal of Geomechanics
Volume 21, Issue 5

Abstract

Methane hydrates are an attractive source of future clean energy and are abundant in voids of sediments, in permafrost regions, and along continental slopes. Understanding the mechanical behavior of methane hydrate-bearing sediment (MHBS) is essential for commercial gas production from hydrate reservoirs. In this paper, the effects of the intermediate principal stress are studied on the microscopic and macroscopic mechanical behavior of MHBS-filled porous media. Using discrete element method (DEM) simulations, methane hydrates are modeled as cemented agglomerates filling the pores of soil at a specific hydration level. The simulated sample is sheared under strain-controlled conditions to different values of the intermediate principal stress ratio b. The results suggest evolution rules of the principal stresses that depend on the parameter b. The friction angle increases with b, reaching a peak value at a certain value, after which it decreases. Monitoring local variables, including principal strong fabric, contact rose diagram, coordination number, and damage parameter, the effects on the macroscopic bulk behavior are demonstrated. In particular, the changes in the fabric tensor are strongly correlated with response to changes in the principal stresses, the parameter b, and the strain tensor.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research was funded by the China Postdoctoral fund (with Grant No. 2019M651580), the Chinese National Natural Science Foundation (with Grant No. 41877241), and Research Project of Chinese National major scientific instrument (with Grant No. 41827807). All the supports are greatly appreciated.

Notation

The following symbols are used in this paper:
b
intermediate principal stress ratio;
d
dilatancy index;
dɛd
increment on the equivalent deviatoric strain;
dɛv
change in volumetric strain;
D
mean diameter of the soil particle;
Ec
Young's modulus of the soil;
ea
void ratio in the agglomerate;
|Fc|
magnitude of the contact force at contact c in the simulation;
F11s
major principal fabric;
F22s
intermediate principal fabric;
F33s
minor principal fabric;
Mcr
critical stress ratio for different values of b;
N
number of MH agglomerates required in the sample;
Nbf
number of surviving MH bonds at any given state;
Nc
number of contacts;
Ncf
number of MH bonds in the initial state;
Ncs
number of the strong contacts;
Np
number of particles;
np
number of the particles in the agglomerate;
nis
component of the unit vector ns at the contact between grains i and j;
p
mean effective stress;
q
generalized shear stress;
Ra
equivalent radius of the sphere of equal volume;
Rbf
fraction of intact MH bonds;
Fp|
magnitude of unbalanced force on particle p;
η
stress ratio;
ɛd
equivalent deviatoric strain;
ɛv
volumetric strain;
ɛ1
major principal strain;
ɛ2
intermediate principal strain;
ɛ3
minor principal strain;
σ1
major principal stress;
σ2
intermediate principal stress; and
σ3
minor principal stresses.

References

Barreto, D., and C. O’Sullivan. 2012. “The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions.” Granular Matter 14 (4): 505–521. https://doi.org/10.1007/s10035-012-0354-z.
Blumenfeld, R. 2007. “On entropic characterization of granular materials.” In Granular and complex materials, edited by T. Aste, T. Di Matteo, and A. Tordesillas, 43–53. Singapore: World Scientific.
Blumenfeld, R., S. F. Edwards, and S. M. Walley, eds. 2015. The Oxford handbook of soft condensed matter. Oxford, UK: Oxford Handbooks.
Brugada, J., Y. P. Cheng, K. Soga, and J. C. Santamarina. 2010. “Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution.” Granular Matter 12 (5): 517–525. https://doi.org/10.1007/s10035-010-0210-y.
Cheng, Y. F., L. D. Li, S. Mahmood, and Q. Cui. 2013. “Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments.” Appl. Math. Mech. 34 (11): 1421–1432. https://doi.org/10.1007/s10483-013-1756-7.
Cheng, Y. P., Y. Nakata, and M. D. Bolton. 2003. “Discrete element simulation of crushable soil.” Géotechnique 53 (7): 633–641. https://doi.org/10.1680/geot.2003.53.7.633.
Clayton, C. R. I., J. A. Priest, and E. V. L. Rees. 2010. “The effects of hydrate cement on the stiffness of some sands.” Géotechnique 60 (6): 435–445. https://doi.org/10.1680/geot.2010.60.6.435.
Collett, T., et al. 2015. “Methane hydrates in nature-current knowledge and challenges.” J. Chem. Eng. Data 60 (2): 319–329. https://doi.org/10.1021/je500604h.
Cui, Y., A. Nouri, D. Chan, and E. Rahmati. 2016. “A new approach to DEM simulation of sand production.” J. Pet. Sci. Eng. 147: 56–67. https://doi.org/10.1016/j.petrol.2016.05.007.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Dallimore, S. R., and T. S. Collett. 2005. “Summary and implications of the Mallik 2002 gas hydrate production research well program.” In Scientific results from the Mallik gas hydrate production well program, 1–36. Vancouver, BC, Canada: Geological Survey of Canada.
Dorostkar, O., and A. A. Mirghasemi. 2018. “On the micromechanics of true triaxial test, insights from 3D DEM study.” Iran. J. Sci. Technol. Trans. Civ. Eng. 42 (3): 1–15. https://doi.org/10.1007/s40996-018-0102-7.
Francisca, F., T. S. Yun, C. Ruppel, and J. C. Santamarina. 2005. “Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province.” Earth Planet. Sci. Lett. 237 (3–4): 924–939. https://doi.org/10.1016/j.epsl.2005.06.050.
He, J., and M. J. Jiang. 2016. “Three-dimensional distinct element novel sample-preparing method and mechanical behavior for pore-filling type of methane hydrate-bearing soil.” [In Chinese.] J. Tonji Univ. 44 (5): 709–717. https://doi.org/10.11908/j.issn.0253-374x.2016.05.008.
He, J., M. J. Jiang, and J. Liu. 2017. “Effect of different temperatures and pore pressures on geomechanical properties of pore-filling type of methane hydrate soils based on the DEM simulations.” In Proc., 7th Int. Conf. on Discrete Element Methods, 827–835. Singapore: Springer.
Huang, X., K. J. Hanley, C. O’Sullivan, C. Y. Kwok, and M. A. Wadee. 2014a. “DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials.” Granular Matter 16 (5): 641–655. https://doi.org/10.1007/s10035-014-0520-6.
Huang, X., C. O’sullivan, K. J. Hanley, and C. Y. Kwok. 2014b. “Discrete-element method analysis of the state parameter.” Géotechnique 64 (12): 954–965. https://doi.org/10.1680/geot.14.P.013.
Hyodo, M., Y. H. Li, J. Yoneda, Y. Nakata, N. Yoshimoto, A. Nishimura, and Y. Song. 2013a. “Mechanical behavior of gas-saturated methane hydrate-bearing sediments.” J. Geophys. Res.: Solid Earth 118 (10): 5185–5194. https://doi.org/10.1002/2013JB010233.
Hyodo, M., Y. Nakata, N. Yoshimoto, and T. Ebinuma. 2005. “Basic research on the mechanical behavior of methane hydrate-sediments mixture.” Soils Found. 45 (1): 75–85. https://doi.org/10.3208/sandf.45.1_75.
Hyodo, M., J. Yoneda, N. Yoshimoto, and Y. Nakata. 2013b. “Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed.” Soils Found. 53 (2): 299–314. https://doi.org/10.1016/j.sandf.2013.02.010.
Jiang, M. J., J. He, F. Liu, and J. F. Wang. 2015. “Three-dimensional DEM simulation of mechanical behavior of methane hydrate under triaxial compression.” In Geomechanics from micro to macro, edited by K. Soga, K. Kumar, G. Biscontin, and M. Kuo, 373–378. London: Taylor & Francis.
Jiang, M. J., J. He, J. F. Wang, B. Chareyre, and F. Y. Zhu. 2016. “DEM analysis of geomechanical properties of cemented methane hydrate bearing soils at different temperatures and pore pressures.” Int. J. Geomech. 16 (3): 04015087. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000612.
Jiang, M. J., J. He, J. F. Wang, Y. P. Zhou, and F. Y. Zhu. 2017. “Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness.” C.R. Mec. 345 (12): 868–889. https://doi.org/10.1016/j.crme.2017.09.003.
Jiang, M. J., J. M. Konrad, and S. Leroueil. 2003. “An efficient technique for generating homogeneous specimens for DEM studies.” Comput. Geotech. 30 (5): 579–597. https://doi.org/10.1016/S0266-352X(03)00064-8.
Jiang, M. J., F. Liu, and Y. Zhou. 2014a. “A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness.” Int. J. Numer. Anal. Methods Geomech. 38 (18): 1871–1897. https://doi.org/10.1002/nag.2282.
Jiang, M. J., F. Y. Zhu, F. Liu, and S. Utili. 2014b. “A bond contact model for methane hydrate-bearing sediments with interparticle cementation.” Int. J. Numer. Anal. Methods Geomech. 38 (17): 1823–1854. https://doi.org/10.1002/nag.2283.
Jung, J. W., J. C. Santamarina, and K. Soga. 2012. “Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations.” J. Geophys. Res.: Solid Earth 117: B04202. https://doi.org/10.1029/2011JB009040.
Kingston, E., C. Clayton, and J. Priest. 2008. “Gas hydrate growth morphologies and their effect on the stiffness and damping of a hydrate bearing sand.” In Proc., 6th Int. Conf. on Gas Hydrates, 1–8. Vancouver, BC: Np.
Kuhn, M. R. 2006. Oval and Ovalplot: Programs for analyzing dense particle assemblies with the discrete element method. Portland, OR: Univ. of Portland.
Lade, P. V., and J. M. Duncan. 1975. “Elastoplastic stress-strain theory for cohesionless soil.” J. Geotech. Eng. Div. 101 (10): 1037–1053.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Lin, J. S., Y. Seol, and J. H. Choi. 2015. “An SMP critical state model for methane hydrate-bearing sands.” Int. J. Numer. Anal. Methods Geomech. 39 (9): 969–987. https://doi.org/10.1002/nag.2347.
Luo, T. T., Y. C. Song, Y. M. Zhu, W Liu, Y. Liu, Y. Li, and Z. Wu. 2016. “Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea.” Mar. Pet. Geol. 77: 507–514. https://doi.org/10.1016/j.marpetgeo.2016.06.019.
Ma, T., Y. J. Chen, and M. Duan. 2018. “Chemo-poroelastic coupling method for wellbore stability analysis in shale gas formation with weakness planes.” Geotech. Geol. Eng. 36 (3): 1817–1831. https://doi.org/10.1007/s10706-017-0434-2.
Mahmud Sazzad, M., K. Suzuki, and A. Modaressi-Farahmand-Razavi. 2012. “Macro-micro responses of granular materials under different b values using DEM.” Int. J. Geomech. 12 (3): 220–228. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000133.
Matsumoto, R. 2000. “Methane hydrate estimates from the chloride and oxygen isotopic anomalies: Examples from the Blake Ridge and Nankai trough sediments.” Ann. N.Y. Acad. Sci. 912 (1): 39–50. https://doi.org/10.1111/j.1749-6632.2000.tb06758.x.
Matsuoka, H., and T. Nakai. 1974. “Stress-deformation and strength characteristics of soil under three different principal stresses.” Proc. Jpn. Soc. Civ. Eng. 1974 (232): 59–70. https://doi.org/10.2208/jscej1969.1974.232_59.
Matsushima, T., and R. Blumenfeld. 2017. “Fundamental structural characteristics of planar granular assemblies: Self-organization and scaling away friction and initial state.” Phys. Rev. E 95 (3): 032905. https://doi.org/10.1103/PhysRevE.95.032905.
Minshull, T. A., and S. Chand. 2009. “The pore-scale distribution of sediment-hosted hydrates: Evidence from effective medium modeling of laboratory and borehole seismic data.” Geol. Soc. Spec. Publ. 319 (1): 93–101. https://doi.org/10.1144/SP319.8.
Miyazaki, K., A. Masui, Y. Sakamoto, K. Aoki, N. Tenma, and T. Yamaguchi. 2011. “Triaxial compressive properties of artificial methane-hydrate-bearing sediment.” J. Geophys. Res. 116 (B6): B06102. https://doi.org/10.1029/2010JB008049.
Nabeshima, Y., Y. Takai, and T. Komai. 2005. “Compressive strength and density of methane hydrate.” In Proc., 6th ISOPE Ocean Mining Symp., 199–202. Mountain View, CA: International Society of Offshore and Polar Engineers.
Ng, T. T. 2006. “Input parameters of discrete element methods.” J. Eng. Mech. 132 (7): 723–729. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(723).
O’sullivan, C., M. A. Wadee, K. J. Hanley, D. Barreto. 2013. “Use of DEM and elastic stability analysis to explain the influence of the intermediate principal stress on shear strength.” Géotechnique 63 (15): 1298–1309. https://doi.org/10.1680/geot.12.P.153.
Paull, C. K., and R. Matsumoto. 2000. “1. Leg 164 overview.” In Vol. 164 of Proc., Ocean Drilling Program. Scientific Results, edited by C. K. Paull, R. Matsumoto, P. J. Wallace and W. P. Dillon. 3–10. https://doi.org/10.2973/odp.proc.sr.164.204.2000.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Roscoe, K. H. 1970. “The influence of strains in soil mechanics.” Géotechnique 20 (2): 129–170. https://doi.org/10.1680/geot.1970.20.2.129.
Rutqvist, J., G. J. Moridis, T. Grover, S. Silpngarmlert, T. S. Collett, and S. A. Holdich. 2012. “Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments.” J. Pet. Sci. Eng. 92–93: 65–81. https://doi.org/10.1016/j.petrol.2012.06.004.
Satake, M. 1982. “Fabric tensor in granular materials.” In IUTAM Symp. on Deformation and Failure of Granular Materials, edited by P. A. Vermeer, and H. J. Luger, 63–68. Delft, Netherlands: Balkema.
Shin, H., and J. C. Santamarina. 2017. “Sediment–well interaction during depressurization.” Acta Geotech. 12 (4): 883–895. https://doi.org/10.1007/s11440-016-0493-1.
Soga, K., S. L. Lee, M. Y. A. Ng, and A. Klar. 2006. Vol. 4 of Characterisation and engineering properties of natural soils, 2591–1642. London: Taylor and Francis.
Song, Y., Y. Zhu, W. Liu, J. Zhao, Y. Li, Y. Chen, Z. Shen, Y. Lu, and C. Ji. 2014. “Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation.” Mar. Pet. Geol. 51 (2): 70–78. https://doi.org/10.1016/j.marpetgeo.2013.11.017.
Sun, D., W. X. Huang, and Y. P. Yao. 2008. “An experimental study of failure and softening in sand under three-dimensional stress condition.” Granular Matter 10 (3): 187–195. https://doi.org/10.1007/s10035-008-0083-5.
Sun, H., H. Wang, G. Wu, and X. Ge. 2019. “The mechanical properties of naturally deposited soft soil under true three-dimensional stress states.” Geotech. Test. J 42 (5): 1370–1383. https://doi.org/10.1520/GTJ20170436.
Sun, Y., X. Zhang, S. Wu, L. Wang, and S. Yang. 2018. “Relation of submarine landslide to hydrate occurrences in Baiyun Depression, South China Sea.” J. Ocean Univ. China 17 (1): 129–138. https://doi.org/10.1007/s11802-018-3458-1.
Suzuki, S., and R. Kuwano. 2016. “Evaluation on stability of sand control in mining methane hydrate.” Prod. Res. 68 (4): 311–314. https://doi.org/10.11188/seisankenkyu.68.311.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
Tordesillas, A., and M. Muthuswamy. 2009. “On the modeling of confined buckling of force chains.” J. Mech. Phys. Solids 57 (4): 706–727. https://doi.org/10.1016/j.jmps.2009.01.005.
Uchida, S., K. Soga, and K. Yamamoto. 2012. “Critical state soil constitutive model for methane hydrate soil.” J. Geophys. Res. 117 (B3): B03209. https://doi.org/10.1029/2011JB008661.
Waite, W. F., et al. 2009. “Physical properties of hydrate-bearing sediments.” Rev. Geophys. 47 (4): RG4003. https://doi.org/10.1029/2008RG000279.
Wang, J., and H. Yan. 2012. “DEM analysis of energy dissipation in crushable soils.” Soils Found. 52 (4): 644–657. https://doi.org/10.1016/j.sandf.2012.07.006.
Wang, J. F., and M. J. Jiang. 2011. “Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries.” Granular Matter 13 (5): 631–641. https://doi.org/10.1007/s10035-011-0275-2.
Wang, Z., F. Jacobs, and M. Ziegler. 2016. “Experimental and DEM investigation of geogrid–soil interaction under pullout loads.” Geotext. Geomembr. 44 (3): 230–246. https://doi.org/10.1016/j.geotexmem.2015.11.001.
Xiao, Y., Y. Sun, H. Liu, and F. Yin. 2016. “Critical state behaviors of a coarse granular soil under generalized stress conditions.” Granular Matter 18 (2): 17. https://doi.org/10.1007/s10035-016-0623-3.
Xu, C. G., and X. S. Li. 2015. “Research progress on methane production from natural gas hydrates.” RSC Adv. 5 (67): 54672–54699. https://doi.org/10.1039/C4RA10248G.
Yang, Q. J., and C. F. Zhao. 2014. “Three-dimensional discrete element analysis of mechanical behavior of methane hydrate-bearing sediments.” [In Chinese.] Rock Soil Mech. 35 (1): 255–262. https://doi.org/10.16285/j.rsm.2014.01.004.
Yao, Y. P., T. Luo, and W. Hou. 2018. Soil constitutive models. Beijing: China Communications Press.
Ye, G. L., B. Ye, and F. Zhang. 2014. “Strength and dilatancy of overconsolidated clays in drained true triaxial tests.” J. Geotech. Geoenviron. Eng. 140 (4): 06013006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001060.
Zhang, X. H., X. B. Lu, X. D. Chen, L. M. Zhang, and Y. H. Shi. 2016. “Mechanism of soil stratum instability induced by hydrate dissociation.” Ocean Eng. 122: 74–83. https://doi.org/10.1016/j.oceaneng.2016.06.015.
Zhou, B., R. Q. Huang, H. B. Wang, and J. F. Wang. 2013. “DEM investigation of particle anti-rotation effects on the micro-mechanical response of granular materials.” Granular Matter 15 (3): 315–326. https://doi.org/10.1007/s10035-013-0409-9.
Zhou, W., L. Yang, G. Ma, X. Chang, Y. Cheng, and D. Li. 2015. “Macro–micro responses of crushable granular materials in simulated true triaxial tests.” Granular Matter 17 (4): 497–509. https://doi.org/10.1007/s10035-015-0571-3.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 5May 2021

History

Received: Mar 19, 2020
Accepted: Nov 4, 2020
Published online: Feb 22, 2021
Published in print: May 1, 2021
Discussion open until: Jul 22, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoc, College of Civil Engineering, Tongji Univ., Shanghai 200092, China; State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji Univ., Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji Univ., Shanghai 200092, China (corresponding author). Email: [email protected]
Raphael Blumenfeld [email protected]
Professor, Gonville & Caius College, Univ. of Cambridge, Trinity St., Cambridge CB2 1TA, UK. Email: [email protected]
Professor, State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji Univ., Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji Univ., Shanghai 200092, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share