Technical Papers
Dec 13, 2019

Dynamic Mechanical Behavior of Granite under the Effects of Strain Rate and Temperature

Publication: International Journal of Geomechanics
Volume 20, Issue 2

Abstract

The dynamic properties of rock under different strain rates and temperatures play an important role in the stability of rock mass. To investigate the dynamic behavior of granite specimens subjected to high strain rates and relatively low temperatures, dynamic compression tests were carried out using the split Hopkinson pressure bar (SHPB) experimental system. The strain rate effect on dynamic characteristics of granite at temperatures from 25°C to 150°C were studied and the relationships between dynamic failure modes and the energy absorption of granite specimens at different strain rates were revealed through rock fragment analysis. Meanwhile, the damage evolution was quantified by elastic moduli and porosity. The results indicate that the dynamic peak stress, peak strain, and specific energy absorption (SEA) have positive correlations with strain rates. The dynamic compression strength shows an increase when the temperature rises from 50°C to 110°C, then decreases with higher temperatures, while the elastic modulus is more sensitive to temperature than strain rate. The thermal damage decreases at low temperature and appears to be negative below 110°C. A power function relation between SEA and fragment size is found to exist at different strain rates. It denotes that 110°C is a critical temperature that induces changes in physico-mechanical properties and the relatively low temperature has an enhancement effect on the dynamic strength of granite samples.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51474158) and the National Key Basic Research Program of China (Grant No. 2014CB239203). The authors also express thanks to Professor Qiuhong Wu, Dr. Fei Wang, and Dr. Lei Wen for the SHPB and NMR tests technical support. The editors and the reviewers are acknowledged for their valuable comments.

References

Abd-Alla, A. M., S. M. Abo-Dahab, and F. S. Bayones. 2011a. “Rayleigh waves in generalized magneto thermo-viscoelastic granular medium under the influence of rotation, gravity field, and initial stress.” Math. Prob. Eng. 2011: 1–47. https://doi.org/10.1155/2011/763429.
Abd-Alla, A. M., S. M. Abo-Dahab, H. A. Hammad, and S. R. Mahmoud. 2011b. “On generalized magneto-thermoelastic Rayleigh waves in a granular medium under influence of gravity field and initial stress.” J. Vib. Control 17 (1): 115–128. https://doi.org/10.1177/1077546309341145.
Ahmed, S. M., and S. M. Abo-Dahab. 2010. “Propagation of love waves in an orthotropic granular layer under initial stress overlying semi-infinite granular medium.” J. Vib. Control 16 (12): 1845–1858. https://doi.org/10.1177/1077546309341154.
Akdag, S., M. Karakus, A. Taheri, G. Nguyen, and M. C. He. 2018. “Effects of thermal damage on strain burst mechanism for brittle rocks under true triaxial loading conditions.” Rock Mech. Rock Eng. 51 (6): 1657–1682. https://doi.org/10.1007/s00603-018-1415-3.
Alam, S., T. Chakraborty, V. Matsagar, K. S. Rao, P. Sharma, and M. Singh. 2015. “Characterization of Kota sandstone under different strain rates in uniaxial loading.” Geotech. Geol. Eng. 33 (1): 143–152. https://doi.org/10.1007/s10706-014-9810-3.
Bayer, J. V., F. Jaeger, and G. E. Schaumann. 2010. “Proton nuclear magnetic resonance (NMR) relaxometry in soil science applications.” Open Magn. Reson. J. 3 (1): 15–26. https://doi.org/10.2174/1874769801003010015.
Bluemich, B., S. Anferova, R. Pechnig, H. Pape, J. Arnold, and C. Clauser. 2004. “Mobile NMR for porosity analysis fo drill core sections.” J. Geophys. Eng. 1 (3): 177–180. https://doi.org/10.1088/1742-2132/1/3/001.
Brown, E. 1981. ISRM suggested methods, rock characterization testing & monitoring. London: Royal School of Mines.
Chakraborty, T., S. Mishra, J. Loukus, B. Halonen, and B. Bekkala. 2016. “Characterization of three himalayan rocks using a split hopkinson pressure bar.” Int. J. Rock Mech. Min. Sci. 100 (85): 112–118. https://doi.org/10.1016/j.ijrmms.2016.03.005.
Dai, F., Y. Xu, T. Zhao, N. W. Xu, and Y. Liu. 2016. “Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests.” Int. J. Rock Mech. Min. Sci. 88 (Oct): 49–60. https://doi.org/10.1016/j.ijrmms.2016.07.003.
Freire-Lista, D. M., R. Fort, and M. J. Varas-Muriel. 2016. “Thermal stress-induced micro-cracking in building granite.” Eng. Geol. 206 (May): 83–93. https://doi.org/10.1016/j.enggeo.2016.03.005.
Frew, D. J., M. J. Forrestal, and W. Chen. 2001. “A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials.” Exp. Mech. 41 (1): 40–46. https://doi.org/10.1007/BF02323102.
Fuenkajorn, K., and N. Kenkhunthod. 2010. “Influence of loading rate on deformability and compressive strength of three Thai sandstones.” Geotech. Geol. Eng. 28 (5): 707–715. https://doi.org/10.1007/s10706-010-9331-7.
Fuenkajorn, K., T. Sriapai, and P. Samsri. 2016. “Effects of loading rate on strength and deformability of Maha Sarakham salt.” Geol. Eng. 131 (May): 16–23. https://doi.org/10.1016/j.enggeo.2012.02.012.
Fukui, K., S. Okubo, and A. Ogawa. 2004. “Some aspects of loading-rate dependency of sanjome andesite strengths.” Int. J. Rock Mech. Min. Sci. 41 (7): 1215–1219. https://doi.org/10.1016/j.ijrmms.2004.06.001.
Funatsu, T., M. Kuruppu, and K. Matsui. 2014. “Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone.” Int. J. Rock Mech. Min. Sci. 67 (Apr): 1–8. https://doi.org/10.1016/j.ijrmms.2013.12.009.
Gao, G., W. Yao, K. Xia, and Z. Li. 2015. “Investigation of the rate dependence of fracture propagationin rocks using digital image correlation (DIC) method.” Eng. Fract. Mech. 138 (Apr): 146–155. https://doi.org/10.1016/j.engfracmech.2015.02.021.
Gautam, P. K., A. K. Verma, M. K. Jha, K. Sarkar, T. N. Singh, and R. K. Bajpai. 2016. “Study of strain rate and thermal damage of dholpur sandstone at elevated temperature.” Rock Mech. Rock. Eng 49 (9): 3805–3815. https://doi.org/10.1007/s00603-016-0965-5.
Gautam, P. K., A. K. Verma, S. Maheshwar, and T. N. Singh. 2016. “Thermo-mechanical analysis of different types of sandstone at elevated temperature.” Rock Mech. Rock Eng. 49 (5): 1985–1993. https://doi.org/10.1007/s00603-015-0797-8.
Hokka, M., J. Black, D. Tkalich, M. Fourmeau, A. Kane, N. Hoang, C. C. Li, W. W. Chen, and V. Kuokkala. 2016. “Effects of strain rate and confining pressure on the compressive behavior of Kuru granite.” Int. J. Impact Eng. 91 (May): 183–193. https://doi.org/10.1016/j.ijimpeng.2016.01.010.
Huang, S., W. Chen, and K. Xia. 2010. “Quantification of dynamic tensile parameters of rocks using a modified SHB apparatus.” J. Rock Mech. Geotech. Eng. 2 (2): 162–168. https://doi.org/10.3724/SP.J.1235.2010.00162.
Imani, M., H. R. Nejati, and K. Goshtasbi. 2017. “Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate.” Soil Dyn. Earthquake Eng. 100 (Sep): 261–269. https://doi.org/10.1016/j.soildyn.2017.06.007.
Kima, E., A. Stineb, D. B. Oliveirab, and H. Changanib. 2017. “Correlations between the physical and mechanical properties of sandstones with changes of water content and loading rates.” Int. J. Rock Mech. Min. 100 (Dec): 255–262. https://doi.org/10.1016/j.ijrmms.2017.11.005.
Kinoshita, N., and H. Yasuhara. 2011. “Thermally induced behavior of the openings in rock mass affected by high temperatures.” Int. J. Geomech. 11 (2): 124–130. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000063.
Li, N., P. Zhang, and Q. W. Duan. 2003. “Dynamic damage model of the rock mass medium with microjoints.” Int. J. Damage Mech. 12 (2): 163–173. https://doi.org/10.1177/1056789503012002004.
Li, X., Q.-B. Zhang, L. He, and J. Zhao. 2017. “Particle-based numerical manifold method to model dynamic fracture process in rock blasting.” Int. J. Geomech. 17 (5): E4016014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000748.
Li, X. B., T. S. Lok, and J. Zhao. 2005. “Dynamic characteristics of granite subjected to intermediate loading rate.” Rock Mech. Rock. Eng. 38 (1): 21–39. https://doi.org/10.1007/s00603-004-0030-7.
Liu, H. Y., S. R. Lv, L. M. Zhang, and X. P. Yuan. 2015. “A dynamic damage constitutive model for a rock mass with persistent joints.” Int. J. Rock Mech. Min. Sci. 75 (Apr): 132–139. https://doi.org/10.1016/j.ijrmms.2015.01.013.
Liu, J. Z., J. Y. Xu, X. C. Lv, D. H. Zhao, and B. L. Leng. 2012. “Experimental study on dynamic mechanical properties of amphibolites, sericite-quartz schist and sandstone under impact loadings.” Int. J. Nonlinear Sci. Numer. Simul. 13 (2): 209–217. https://doi.org/10.1515/ijnsns-2011-121.
Liu, S., and J. Xu. 2015. “An experimental study on the physico-mechanical properties of two post-high-temperature rocks.” Eng. Geol. 185 (Feb): 63–70. https://doi.org/10.1016/j.enggeo.2014.11.013.
Liu, S., and J. Y. Xu. 2013. “Study on dynamic characteristics of marble under impact loading and high temperature.” Int. J. Rock Mech. Min. Sci. 62 (Sep): 51–58. https://doi.org/10.1016/j.ijrmms.2013.03.014.
Lu, Y., L. Wang, X. Sun, and J. Wang. 2017. “Experimental study of the influence of water and temperature on the mechanical behavior of mudstone and sand stone.” Bull. Eng. Geol. Environ. 76 (2): 645–660. https://doi.org/10.1007/s10064-016-0851-0.
Mahanta, B., A. Tripathy, V. Vishal, T. N. Singh, and P. G. Ranjith. 2017b. “Effects of strain rate on fracture toughness and energy release rate of gas shales.” Eng. Geol. 218 (Feb): 39–49. https://doi.org/10.1016/j.enggeo.2016.12.008.
Mahanta, B., N. Zhou Sirdesai, T. N. Singh, and P. G. Ranjith. 2017a. “Experimental study of strain rate sensitivity to fracture toughness of rock using flattened Brazilian disc.” Procedia Eng. 191 (5): 256–262. https://doi.org/10.1016/j.proeng.2017.05.179.
Mahmutoglu, Y. 2006. “The effects of strain rate and saturation on a micro-cracked marble.” Eng. Geol. 82 (3): 137–144. https://doi.org/10.1016/j.enggeo.2005.09.001.
Malik, A., T. Chakraborty, and K. S. Rao. 2018. “Strain rate effect on the mechanical behavior of basalt: Observations from static and dynamic tests.” Thin Walled Struct. 126 (May): 127–137. https://doi.org/10.1016/j.tws.2017.10.014.
Mambou, L. N., J. Ndop, and J. Ndjaka. 2014. “Theoretical investigations of mechanical properties of sandstone rock specimen at high temperatures.” J. Min. Sci. 50 (1): 69–80. https://doi.org/10.1134/S1062739114010116.
Millon, O., M. L. Ruiz-Ripoll, and T. Hoerth. 2016. “Analysis of the behavior of sedimentary rocks under impact loading.” Rock Mech. Rock Eng. 49 (11): 4257–4272. https://doi.org/10.1007/s00603-016-1010-4.
Peng, J., G. Rong, M. Cai, M. D. Yao, and C. B. Zhou. 2016. “Physical and mechanical behaviors of a thermal-damaged coarse marble under uniaxial compression.” Eng. Geol. 200 (Jan): 88–93. https://doi.org/10.1016/j.enggeo.2015.12.011.
Qi, C., M. Wang, and Q. Qian. 2009. “Strain-rate effects on the strength and fragmentation size of rocks.” Int. J. Impact Eng. 36 (12): 1355–1364. https://doi.org/10.1016/j.ijimpeng.2009.04.008.
Ramesh, K. T., J. D. Hogan, J. Kimberley, and A. Stickle. 2015. “A review of mechanisms and models for dynamic failure, strength, and fragmentation.” Planet. Space Sci. 107 (Mar): 10–23. https://doi.org/10.1016/j.pss.2014.11.010.
Ravi-Chandar, K., and W. G. Knauss. 1984. “An experimental investigation into dynamic fracture: I. Crack initiation and arrest.” Int. J. Fract. 25 (4): 247–262. https://doi.org/10.1007/BF00963460.
Ray, S. K., K. Sarkar, and T. N. Singh. 1999. “Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone.” Int. J. Rock Mech. Min. Sci. 36 (4): 543–549. https://doi.org/10.1016/S0148-9062(99)00016-9.
Sousa, L. M. O., L. M. S. del Rio, L. Calleja, V. G. R. de Argandoña, and A. R. Rey. 2005. “Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites.” Eng. Geol. 77 (1–2): 153–168. https://doi.org/10.1016/j.enggeo.2004.10.001.
Wang, P., J. Xu, S. Liu, S. Liu, and H. Wang. 2016. “A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze-thaw weathering: Considering the strain-rate effect.” Cold Reg. Sci. Technol. 131 (Nov): 16–23. https://doi.org/10.1016/j.coldregions.2016.08.003.
Wasantha, P. L. P., P. G. Ranjith, J. Zhao, S. S. Shao, and G. Permata. 2015. “Strain rate effect on the mechanical behaviour of sandstones with different grain sizes.” Rock Mech. Rock. Eng. 48 (5): 1883–1895. https://doi.org/10.1007/s00603-014-0688-4.
Xia, K., and W. Yao. 2015. “Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review.” J. Rock Mech. Geotech. Eng. 7 (1): 27–59. https://doi.org/10.1016/j.jrmge.2014.07.008.
Xu, X. L., and M. Karakus. 2018. “A coupled thermo-mechanical damage model for granite.” Int. J. Rock Mech. Min. Sci. 103 (Mar): 195–204. https://doi.org/10.1016/j.ijrmms.2018.01.030.
Yang, S. Q., P. G. Ranjith, H. W. Jing, W. L. Tian, and Y. Ju. 2017. “An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatment.” Geothermics 65 (Jan): 180–197. https://doi.org/10.1016/j.geothermics.2016.09.008.
Zhang, Q. B., and J. Zhao. 2013. “Effect of loading rate on fracture toughness and failure micro mechanisms in marble.” Eng. Fract. Mech. 102 (Apr): 288–309. https://doi.org/10.1016/j.engfracmech.2013.02.009.
Zhang, Q. B., and J. Zhao. 2014. “A review of dynamic experimental techniques and mechanical behaviour of rock materials.” Rock Mech. Rock Eng. 47 (4): 1411–1478. https://doi.org/10.1007/s00603-013-0463-y.
Zhou, Y. X., K. Xia, X. B. Li, H. B. Li, G. W. Ma, and J. Zhao. 2012. “Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials.” Int. J. Rock Mech. Min. 49 (1): 105–112. https://doi.org/10.1016/j.ijrmms.2011.10.004.
Zhu, W. C., L. L. Niu, S. H. Li, and Z. H. Xu. 2015. “Dynamic brazilian test of rock under intermediate strain rate: Pendulum hammer-driven SHPB test and numerical simulation.” Rock Mech. Rock Eng. 48 (5): 1867–1881. https://doi.org/10.1007/s00603-014-0677-7.
Zuo, Q. H., D. Disilvestro, and J. D. Richter. 2010. “A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading.” Int. J. Solids Struct. 47 (20): 2790–2798. https://doi.org/10.1016/j.ijsolstr.2010.06.009.
Zwiessler, R., T. Kenkmann, M. Poelchau, S. Nau, and S. Hess. 2017. “On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression.” J. Struct. Geol. 97 (Apr): 225–236. https://doi.org/10.1016/j.jsg.2017.03.007.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 2February 2020

History

Received: Aug 27, 2018
Accepted: Jul 17, 2019
Published online: Dec 13, 2019
Published in print: Feb 1, 2020
Discussion open until: May 13, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan Univ., Wuhan 430072, China; Ph.D. Candidate, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Professor, Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan Univ., Wuhan 430072, China; Professor, School of Power and Mechanical Engineering, Wuhan Univ., Wuhan 430072, China (corresponding author). Email: [email protected]
Zefeng Wang [email protected]
Lecturer, School of Urban Construction, Wuhan Univ. of Science and Technology, Wuhan 430065, China. Email: [email protected]
Xiaochuan Wang [email protected]
Professor, Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan Univ., Wuhan 430072, China; Professor, School of Power and Mechanical Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Dongping Zeng [email protected]
Ph.D. Candidate, Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan Univ., Wuhan 430072, China; Ph.D. Candidate, School of Power and Mechanical Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Lecturer, School of Environment and Resource, Southwest Univ. of Science and Technology, Mianyang 621010, China. ORCID: https://orcid.org/0000-0002-3957-8390. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share