Technical Papers
Aug 29, 2022

Numerical Research on the Effect of Operating Parameters on Combustion and Performance Characteristics of Cyclohexane/N-Heptane HCCI

Publication: Journal of Energy Engineering
Volume 148, Issue 6

Abstract

A numerical simulation method was used in this study to explore the effects of equivalence ratio, intake air temperature, intake air pressure, compression ratio, and engine speed on the combustion and performance characteristics of cyclohexane/n-heptane dual-fuel HCCI (homogeneously charged compression ignition) using a zero-dimensional single-zone combustion model. In this paper, the ignition delay time and laminar flame speed were used to verify the selected chemical reaction kinetics mechanism, and the effect of each engine parameter variation on the combustion performance of cyclohexane/n-heptane dual-fuel HCCI was numerically simulated. The results demonstrate that the advanced combustion phase occurred with an increase in equivalence ratio, intake air temperature, intake pressure, and compression ratio as well as a decrease in engine speed. The work indicated increases on average by about 27% for each 0.2 increment in equivalence ratio. The excessive rise in intake air temperature leads to higher pressure rise rate and lower indicated work. For every 10 kPa improvement in intake pressure, the starting point of combustion is advanced by about 1.3°CA, and the peak pressure in the cylinder is improved by about 11 bar. The appropriate improvement of the compression ratio increases the heat release rate and the indicated work. The effect of engine speed is not so significant. The peak in-cylinder pressure rises by only about 1.22 bar for each 100 rpm increment in engine speed, and the indicated work and indicated mean effective pressure improve only about 3%. Ultimately, it is found that the introduction of cyclohexane makes the low-temperature heat release region in HCCI combustion of cyclohexane/n-heptane weaker than that of pure heptane.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work is sponsored by the “open fund of National Synchrotron Radiation Laboratory (NSRL) in Hefei (2018-HLS-PT-001746 and 2018-HLS-PT-001757),” “State Key Laboratory of Engines at Tianjin University (K2018-09),” and “the Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport (2020III021GX and KLMPET2021-03).”

References

AlRamadan, A. S., M. Ben Houidi, J. Sotton, M. Bellenoue, B. Johansson, and S. M. Sarathy. 2021. “Three-stage auto-ignition of n-heptane and methyl-cyclohexane mixtures at lean conditions in a flat piston rapid compression machine.” Proc. Combust. Inst. 38 (4): 5539–5548. https://doi.org/10.1016/j.proci.2020.05.038.
Alrbai, M., B. R. Qawasmeh, Z. Al-Hamamre, M. S. Sari, and Y. Taamneh. 2018. “Impact of exhaust gas recirculation on performance and emissions of free-piston electrical generator fueled by DME.” J. Energy Eng. 144 (3): 04018027. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000542.
Amjad, A. K., R. K. Saray, S. M. S. Mahmoudi, and A. Rahimi. 2011. “Availability analysis of n-heptane and natural gas blends combustion in HCCI engines.” Energy 36 (12): 6900–6909. https://doi.org/10.1016/j.energy.2011.09.046.
Andrae, J. C. G. 2018. “Kinetic modeling of the influence of cyclohexane on the homogeneous ignition of a gasoline surrogate fuel.” Energy Fuels 32 (3): 3975–3984. https://doi.org/10.1021/acs.energyfuels.7b04023.
Aydogan, B. 2020a. “Combustion characteristics, performance and emissions of an acetone/n-heptane fuelled homogenous charge compression ignition (HCCI) engine.” Fuel 275 (Sep): 117840. https://doi.org/10.1016/j.fuel.2020.117840.
Aydogan, B. 2020b. “An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine.” Energy 192 (Feb): 116600. https://doi.org/10.1016/j.energy.2019.116600.
Blomberg, C. K., Y. M. Wright, and K. Boulouchos. 2018. “A phenomenological HCCI combustion model in 0D and 3D-CFD.” Fuel 226 (Aug): 365–380. https://doi.org/10.1016/j.fuel.2018.03.133.
Bogrek, A., C. Hasimoglu, A. Calam, and B. Aydogan. 2021. “Effects of n-heptane/toluene/ethanol ternary fuel blends on combustion, operating range and emissions in premixed low temperature combustion.” Fuel 295 (Jul): 120628. https://doi.org/10.1016/j.fuel.2021.120628.
Calam, A. 2020. “Study on the combustion characteristics of acetone/n-heptane blend and RON50 reference fuels in an HCCI engine at different compression ratios.” Fuel 271 (Jul): 117646. https://doi.org/10.1016/j.fuel.2020.117646.
Calam, A., B. Aydogan, and S. Halis. 2020. “The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine.” Fuel 266 (Apr): 117071. https://doi.org/10.1016/j.fuel.2020.117071.
Calam, A., H. Solmaz, E. Yilmaz, and Y. Icingur. 2019. “Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine.” Energy 168 (Feb): 1208–1216. https://doi.org/10.1016/j.energy.2018.12.023.
Canakci, M. 2008. “An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine.” Fuel 87 (8–9): 1503–1514. https://doi.org/10.1016/j.fuel.2007.08.002.
Celebi, S., C. Hasimoglu, A. Uyumaz, S. Halis, A. Calam, H. Solmaz, and E. Yilmaz. 2021. “Operating range, combustion, performance and emissions of an HCCI engine fueled with naphtha.” Fuel 283 (Jan): 118828. https://doi.org/10.1016/j.fuel.2020.118828.
Chang, J., O. Guralp, Z. Filipi, D. Assanis, T.-W. Kuo, P. Najt, and R. Rask. 2004. “New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux.” In Proc., Powertrain and Fluid Systems Conference and Exhibition. Ann Arbor, MI: Univ. of Michigan.
Chen, H. Y., M. F. Wang, X. Wang, D. Q. Li, Z. X. Pan, and C. Bae. 2020. “Experimental investigation of particulate matter structures under partially premixed combustion in a compression ignition engine.” Fuel 259 (Jan): 116286. https://doi.org/10.1016/j.fuel.2019.116286.
Cinar, C., A. Uyumaz, H. Solmaz, F. Sahin, S. Polat, and E. Yilmaz. 2015. “Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels.” Fuel Process. Technol. 130 (Feb): 275–281. https://doi.org/10.1016/j.fuproc.2014.10.026.
Daley, S. M., A. M. Berkowitz, and M. A. Oehlschlaeger. 2008. “A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures.” Int. J. Chem. Kinect. 40 (10): 624–634. https://doi.org/10.1002/kin.20353.
Datta, A., and B. K. Mandal. 2016. “Effect of compression ratio on the performance, combustion and emission from a diesel engine using palm biodiesel.” In Proc., 11th Int. Conf. on Mechanical Engineering, edited by M. Ali, M. A. S. Akanda, and A. Morshed. Dhaka, Bangladesh: Bangladesh Univ. of Engineering and Technology.
Davis, S. G., and C. K. Law. 1998. “Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames.” In Vol. 1 of Proc., Symp. (Int.) on Combustion, 521–527. San Jose, CA: Areometrics, Inc.
El-Kassaby, M., and M. A. Nemit-Allah. 2013. “Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel.” Alexandria Eng. J. 52 (1): 1–11. https://doi.org/10.1016/j.aej.2012.11.007.
Epping, K., S. Aceves, R. Bechtold, and J. E. Dec. 2002. The potential of HCCI combustion for high efficiency and low emissions. Warrendale, PA: SAE International.
Fathi, M., R. K. Saray, and M. D. Checkel. 2010. “Detailed approach for apparent heat release analysis in HCCI engines.” Fuel 89 (9): 2323–2330. https://doi.org/10.1016/j.fuel.2010.04.030.
Feng, H., C. Zhang, M. Wang, D. Liu, X. Yang, and L. Chia-Fon. 2014. “Availability analysis of n-heptane/iso-octane blends during low-temperature engine combustion using a single-zone combustion model.” Energy Convers. Manage. 84 (Aug): 613–622. https://doi.org/10.1016/j.enconman.2014.04.061.
Gan, S., H. K. Ng, and K. M. Pang. 2011. “Homogeneous charge compression ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines.” Appl. Energy 88 (3): 559–567. https://doi.org/10.1016/j.apenergy.2010.09.005.
Garcia-Camacha Gutierrez, I., R. Martin Martin, and J. Sanz Argent. 2020. “Optimal-robust selection of a fuel surrogate for homogeneous charge compression ignition modeling.” PLoS One 15 (6): e0234963. https://doi.org/10.1371/journal.pone.0234963.
Gong, Z., L. Feng, L. Wei, W. Qu, and L. Li. 2020. “Shock tube and kinetic study on ignition characteristics of lean methane/n-heptane mixtures at low and elevated pressures.” Energy 197 (Apr): 117242. https://doi.org/10.1016/j.energy.2020.117242.
Gowthaman, S., and A. P. Sathiyagnanam. 2018. “Analysis the optimum inlet air temperature for controlling homogeneous charge compression ignition (HCCI) engine.” Alexandria Eng. J. 57 (4): 2209–2214. https://doi.org/10.1016/j.aej.2017.08.011.
Griffiths, J. F., R. Piazzesi, E. M. Sazhina, S. S. Sazhin, P.-A. Glaude, and M. R. Heikal. 2012. “CFD modelling of cyclohexane auto-ignition in an RCM.” Fuel 96 (1): 192–203. https://doi.org/10.1016/j.fuel.2011.12.059.
Hadia, F., S. Wadhah, H. Ammar, and O. Ahmed. 2017. “Investigation of combined effects of compression ratio and steam injection on performance, combustion and emissions characteristics of HCCI engine.” Case Stud. Thermal Eng. 10 (Sep): 262–271. https://doi.org/10.1016/j.csite.2017.07.005.
Hartmann, M., I. Gushterova, M. Fikri, C. Schulz, R. Schiessl, and U. Maas. 2011. “Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling.” Combust. Flame 158 (1): 172–178. https://doi.org/10.1016/j.combustflame.2010.08.005.
Hasan, M. M., M. M. Rahman, M. N. Kabir, and A. A. Abdullah. 2017. “Numerical study on the combustion and performance characteristics of a HCCI engine resulting from the autoignition of gasoline surrogate fuel.” J. Energy Eng. 143 (5): 04017049. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000478.
Hasan, M. M., M. M. Rahman, K. Kadirgama, and D. Ramasamy. 2018. “Numerical study of engine parameters on combustion and performance characteristics in an n-heptane fueled HCCI engine.” Appl. Therm. Eng. 128 (Jan): 1464–1475. https://doi.org/10.1016/j.applthermaleng.2017.09.121.
Hu, T., S. Liu, L. Zhou, and W. Li. 2006. “Effects of compression ratio on performance, combustion, and emission characteristics of an HCCI engine.” Proc. Inst. Mech. Eng., Part D: J. Autom. Eng. 220 (D5): 637–645. https://doi.org/10.1243/09544070JAUTO130.
Jahanian, O., and S. A. Jazayeri. 2012. “A comprehensive numerical study on effects of natural gas composition on the operation of an HCCI engine.” Oil Gas Sci. Technol.-Rev. IFP Energies Nouvelles 67 (3): 503–515. https://doi.org/10.2516/ogst/2011133.
Jung, D., and N. Iida. 2015. “Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard.” Appl. Energy 138 (Jan): 315–330. https://doi.org/10.1016/j.apenergy.2014.10.085.
Kee, R. J., F. M. Rupley, and J. A. Miller. 1989. Chemkin-II: A FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics. Livermore, CA: Sandia National Labs.
Khandavilli, M. V., M. Djokic, F. H. Vermeire, H.-H. Carstensen, K. M. Van Geem, and G. B. Marin. 2018. “Experimental and kinetic modeling study of cyclohexane pyrolysis.” Energy Fuels 32 (6): 7153–7168. https://doi.org/10.1021/acs.energyfuels.8b00966.
Kocakulak, T., M. Babagiray, C. Nacak, S. M. S. Ardebili, A. Calam, and H. Solmaz. 2022. “Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends.” Renewable Energy 182 (Jan): 827–841. https://doi.org/10.1016/j.renene.2021.10.041.
Komninos, N. P., and C. D. Rakopoulos. 2012. “Modeling HCCI combustion of biofuels: A review.” Renewable Sustainable Energy Rev. 16 (3): 1588–1610. https://doi.org/10.1016/j.rser.2011.11.026.
Kozarac, D., I. Taritas, D. Vuilleumier, S. Saxena, and R. W. Dibble. 2016. “Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine.” Energy 115 (Part 1): 180–193. https://doi.org/10.1016/j.energy.2016.08.055.
Krisman, A., E. R. Hawkes, S. Kook, M. Sjoeberg, and J. E. Dec. 2012. “On the potential of ethanol fuel stratification to extend the high load limit in stratified-charge compression-ignition engines.” Fuel 99 (Sep): 45–54. https://doi.org/10.1016/j.fuel.2012.04.001.
Liu, H., M. Yao, B. Zhang, and Z. Zheng. 2008. “Effects of inlet pressure and octane numbers on combustion and emissions of a homogeneous charge compression ignition (HCCI) engine.” Energy Fuels 22 (4): 2207–2215. https://doi.org/10.1021/ef800197b.
Liu, H., M. Yao, B. Zhang, and Z. Zheng. 2009. “Influence of fuel and operating conditions on combustion characteristics of a homogeneous charge compression ignition engine.” Energy Fuels 23 (3–4): 1422–1430. https://doi.org/10.1021/ef800950c.
Lu, X., D. Han, and Z. Huang. 2011. “Fuel design and management for the control of advanced compression-ignition combustion modes.” Prog. Energy Combust. Sci. 37 (6): 741–783. https://doi.org/10.1016/j.pecs.2011.03.003.
Lu, X., Y. Hou, L. Zu, and Z. Huang. 2006. “Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection.” Fuel 85 (17–18): 2622–2631. https://doi.org/10.1016/j.fuel.2006.05.003.
Lu, X., L. Ji, L. Zu, Y. Hou, C. Huang, and Z. Huang. 2007. “Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors.” Combust. Flame 149 (3): 261–270. https://doi.org/10.1016/j.combustflame.2007.01.002.
Luong, M. B., G. H. Yu, T. Lu, S. H. Chung, and C. S. Yoo. 2015. “Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion.” Combust. Flame 162 (12): 4566–4585. https://doi.org/10.1016/j.combustflame.2015.09.015.
Lutz, A. E., R. J. Kee, and J. A. Miller. 1988. SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Livermore, CA: Sandia National Labs.
Maurya, R. K., and A. K. Agarwal. 2011. “Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters.” Appl. Energy 88 (4): 1153–1163. https://doi.org/10.1016/j.apenergy.2010.09.027.
Maurya, R. K., and N. Akhil. 2016. “Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism.” Energy Convers. Manage. 121 (Aug): 55–70. https://doi.org/10.1016/j.enconman.2016.05.017.
McEnally, C. S., and L. D. Pfefferle. 2005. “Fuel decomposition and hydrocarbon growth processes for substituted cyclohexanes and for alkenes in nonpremixed flames.” Proc. Combust. Inst. 30 (1): 1425–1432. https://doi.org/10.1016/j.proci.2004.08.048.
Mitsopoulos, E.-P., K. Souflas, and P. Koutmos. 2021. “Effect of inlet mixture stratification on bluff-body stabilized, turbulent, prevaporized n-heptane-air flames.” J. Energy Eng. 147 (5): 04021037. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000789.
Mofijur, M., M. M. Hasan, T. M. I. Mahlia, S. M. A. Rahman, A. S. Silitonga, and H. C. Ong. 2019. “Performance and emission parameters of homogeneous charge compression ignition (HCCI) engine: A review.” Energies 12 (18): 3557. https://doi.org/10.3390/en12183557.
Pathania, R. S., A. W. Skiba, and E. Mastorakos. 2021. “Experimental investigation of unconfined turbulent premixed bluff-body stabilized flames operated with vapourised liquid fuels.” Combust. Flame 227 (5): 428–442. https://doi.org/10.1016/j.combustflame.2021.01.021.
Pitz, W. J., and C. J. Mueller. 2011. “Recent progress in the development of diesel surrogate fuels.” Prog. Energy Combust. Sci. 37 (3): 330–350. https://doi.org/10.1016/j.pecs.2010.06.004.
Ra, Y., and R. D. Reitz. 2011. “A combustion model for IC engine combustion simulations with multi-component fuels.” Combust. Flame 158 (1): 69–90. https://doi.org/10.1016/j.combustflame.2010.07.019.
Ren, S., S. L. Kokjohn, Z. Wang, H. Liu, B. Wang, and J. Wang. 2017. “A multi-component wide distillation fuel (covering gasoline, jet fuel and diesel fuel) mechanism for combustion and PAH prediction.” Fuel 208 (Nov): 447–468. https://doi.org/10.1016/j.fuel.2017.07.009.
Saxena, S., and I. D. Bedoya. 2013. “Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits.” Prog. Energy Combust. Sci. 39 (5): 457–488. https://doi.org/10.1016/j.pecs.2013.05.002.
Seidel, L., K. Moshammer, X. Wang, T. Zeuch, K. Kohse-Hoeinghaus, and F. Mauss. 2015. “Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame.” Combust. Flame 162 (5): 2045–2058. https://doi.org/10.1016/j.combustflame.2015.01.002.
Shao, K., X. Liu, P. J. Jones, G. Sun, M. Gomez, B. P. Riser, and J. Zhang. 2021. “Thermal decomposition of cyclohexane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry: A study on the initial unimolecular decomposition mechanism.” PCCP 23 (16): 9804–9813. https://doi.org/10.1039/D1CP00459J.
Silke, E. J., W. J. Pitz, C. K. Westbrook, and M. Ribaucour. 2007. “Detailed chemical kinetic modeling of cyclohexane oxidation.” J. Phys. Chem. A 111 (19): 3761–3775. https://doi.org/10.1021/jp067592d.
Su, L., M. Zhang, J. Wang, and Z. Huang. 2021. “Direct numerical simulation of DME auto-ignition with temperature and composition stratification under HCCI engine conditions.” Fuel 285 (Feb): 119073. https://doi.org/10.1016/j.fuel.2020.119073.
Tanaka, S., F. Ayala, J. C. Keck, and J. B. Heywood. 2003. “Two-stage ignition in HCCI combustion and HCCI control by fuels and additives.” Combust. Flame 132 (1–2): 219–239. https://doi.org/10.1016/S0010-2180(02)00457-1.
Thanapiyawanit, B., and J. H. Lu. 2012. “Cooling effect of methanol on an n-heptane HCCI engine using a dual fuel system.” Int. J. Automot. Technol. 13 (7): 1013–1021. https://doi.org/10.1007/s12239-012-0104-6.
Tuan Le, A., D. Vinh Nguyen, T. Ha Khuong, and X. Hoi Nguyen. 2018. “Experimental investigation on establishing the HCCI process fueled by N-heptane in a direct injection diesel engine at different compression ratios.” Sustainability 10 (11): 3878. https://doi.org/10.3390/su10113878.
Uyumaz, A. 2015. “An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures.” Energy Convers. Manage. 98 (Jul): 199–207. https://doi.org/10.1016/j.enconman.2015.03.043.
van Lipzig, J. P. J., E. J. K. Nilsson, L. P. H. de Goey, and A. A. Konnov. 2011. “Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures.” Fuel 90 (8): 2773–2781. https://doi.org/10.1016/j.fuel.2011.04.029.
Voglsam, S., and F. Winter. 2012. “A global combustion model for simulation of n-heptane and iso-octane self ignition.” Chem. Eng. J. 203 (Sep): 357–369. https://doi.org/10.1016/j.cej.2012.06.086.
Vuilleumier, D., D. Kozarac, M. Mehl, S. Saxena, W. J. Pitz, R. W. Dibble, J.-Y. Chen, and S. M. Sarathy. 2014. “Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study.” Combust. Flame 161 (3): 680–695. https://doi.org/10.1016/j.combustflame.2013.10.008.
Wang, H., M. Yao, Z. Yue, M. Jia, and R. D. Reitz. 2015. “A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions.” Combust. Flame 162 (6): 2390–2404. https://doi.org/10.1016/j.combustflame.2015.02.005.
Wang, S., Y. Feng, Y. Qian, Y. Mao, M. Raza, L. Yu, and X. Lu. 2020. “Experimental and kinetic study of diesel/gasoline surrogate blends over wide temperature and pressure.” Combust. Flame 213 (Mar): 369–381. https://doi.org/10.1016/j.combustflame.2019.12.005.
Wang, Z., Z. Cheng, W. Yuan, J. Cai, L. Zhang, F. Zhang, F. Qi, and J. Wang. 2012. “An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure.” Combust. Flame 159 (7): 2243–2253. https://doi.org/10.1016/j.combustflame.2012.02.019.
Wang, Z., G. Du, Z. Li, X. Wang, and D. Wang. 2019. “Study on the combustion characteristics of a high compression ratio HCCI engine fueled with natural gas.” Fuel 255 (Nov): 115701. https://doi.org/10.1016/j.fuel.2019.115701.
Waqas, M., S. Cheng, S. S. Goldsborough, T. Rockstroh, B. Johansson, and C. P. Kolodziej. 2021. “An experimental and numerical investigation to characterize the low-temperature heat release in stoichiometric and lean combustion.” Proc. Combust. Inst. 38 (4): 5673–5683. https://doi.org/10.1016/j.proci.2020.07.146.
Woschni, G. 1967. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. New York: SAE International.
Wu, F., A. P. Kelley, and C. K. Law. 2012. “Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures.” Combust. Flame 159 (4): 1417–1425. https://doi.org/10.1016/j.combustflame.2011.11.012.
Yao, M., Z. Zheng, and H. Liu. 2009. “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines.” Prog. Energy Combust. Sci. 35 (5): 398–437. https://doi.org/10.1016/j.pecs.2009.05.001.
Zhang, C., and H. Wu. 2016. “Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine.” J. Energy Inst. 89 (3): 346–353. https://doi.org/10.1016/j.joei.2015.03.005.
Zhang, C. H., J. R. Pan, J. J. Tong, and J. Li. 2011. “Effects of intake temperature and excessive air coefficient on combustion characteristics and emissions of HCCI combustion.” In Proc., 2nd Int. Conf. on Challenges in Environmental Science and Computer Engineering (CESCE), 1119–1127. Nanchang, China: Intelligent Information Technology Application Association.
Zhao, Y., B. Shen, and F. Wei. 2011. “Quantitative interpretation to the chain mechanism of free radical reactions in cyclohexane pyrolysis.” J. Nat. Gas Chem. 20 (5): 507–514. https://doi.org/10.1016/S1003-9953(10)60233-2.
Zhong, S., F. Zhang, Q. Du, and Z. Peng. 2020. “Characteristics of reactivity controlled combustion with n-heptane low temperature reforming products.” Fuel 275 (Sep): 117980. https://doi.org/10.1016/j.fuel.2020.117980.
Zhou, Y., D. Hariharan, R. Yang, S. Mamalis, and B. Lawler. 2019. “A predictive 0-D HCCI combustion model for ethanol, natural gas, gasoline, and primary reference fuel blends.” Fuel 237 (Feb): 658–675. https://doi.org/10.1016/j.fuel.2018.10.041.
Zhu, B., W. Chen, Y. Sun, B. Dai, and J. Liu. 2021. “Ignition and combustion characteristics of Al/n-Heptane nanoslurry fuel droplets via a laser-ignition model.” J. Energy Eng. 147 (6): 04021057. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000804.
Zou, J., H. Jin, D. Liu, X. Zhang, H. Su, J. Yang, A. Farooq, and Y. Li. 2022. “A comprehensive study on low-temperature oxidation chemistry of cyclohexane. II. Experimental and kinetic modeling investigation.” Combust. Flame 235 (Jan): 111550. https://doi.org/10.1016/j.combustflame.2021.111550.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 148Issue 6December 2022

History

Received: Nov 28, 2021
Accepted: May 22, 2022
Published online: Aug 29, 2022
Published in print: Dec 1, 2022
Discussion open until: Jan 29, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan Univ. of Technology, Wuhan, Hubei 430063, China. Email: [email protected]
Postgraduate, School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan Univ. of Technology, Wuhan, Hubei 430063, China. Email: [email protected]
Mingzhen Li [email protected]
Postgraduate, School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan Univ. of Technology, Wuhan, Hubei 430063, China. Email: [email protected]
Assistant Professor, School of Life Sciences, Jianghan Univ., Wuhan, Hubei 430056, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share