Technical Papers
Sep 7, 2020

Dynamics Analysis of a Jet-Fuel Surrogate and Development of a Skeletal Mechanism for Computational Fluid Dynamic Applications

Publication: Journal of Energy Engineering
Volume 146, Issue 6

Abstract

The autoignition dynamics of a three-component surrogate jet fuel (66.2% n-dodecane, 15.8% n-proplylbenzene, 18.0% 1,3,5-trimethylcyclohexane) suitable for usage as Jet A-1 and RP-3 aviation fuels are analyzed, using the detailed mechanism of Liu et al. (2019). The conditions considered are relevant to the operation of gas turbines and the analysis is performed using mathematical tools of the computational singular perturbation (CSP) method. The key chemical pathways and species are identified in the analysis of a homogeneous adiabatic and constant pressure ignition system for a wide range of initial conditions. In particular, the key role of hydrogen and CO-related chemistry is highlighted, with an increasing importance as the initial temperature increases. The C2H4C2H3CH2CHO pathway is also identified as playing a secondary but nonnegligible role with an importance increasing with initial temperature, favoring the system’s explosive dynamics and, thus, promoting ignition. Finally, C2H4 is identified as being a species with a key (secondary) role to the system’s explosive dynamics, but its role is replaced by C3H6 and, eventually, by O2 as the initial temperature increases. In the second part of the current work, a 58-species skeletal mechanism is generated using a previously developed algorithmic process based on CSP. The developed skeletal mechanism was tested in a wide range of initial conditions, including both ignition delay time and laminar flame speed calculations. For the conditions that were of interest in the current work, the skeletal mechanism approximated the detailed mechanism with very small error. The 58-species skeletal mechanism is shown to be ideal for use in computational fluid dynamics applications not only because of its small size but also because of its sufficiently slow associated fast timescale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Banerjee, S., R. Tangko, D. A. Sheen, H. Wang, and C. T. Bowman. 2016. “An experimental and kinetic modeling study of n-dodecane pyrolysis and oxidation.” Combust. Flame 163 (Jan): 12–30. https://doi.org/10.1016/j.combustflame.2015.08.005.
csp. 2015. CSPTk—A software toolkit for the CSP and TSR analysis of kinetic models and the simplification and reduction of chemical kinetics mechanisms. The software can be obtained upon request to M. Valorani ([email protected]). Rome: Sapienza Univ. of Rome.
Dagaut, P. 2006. “Kinetics of jet fuel combustion over extended conditions: Experimental and modeling.” J. Eng. Gas Turbines Power 129 (2): 394–403. https://doi.org/10.1115/1.2364196.
Dagaut, P., A. El Bakali, and A. Ristori. 2006. “The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels.” Fuel 85 (7–8): 944–956. https://doi.org/10.1016/j.fuel.2005.10.008.
Diamantis, D. J., D. C. Kyritsis, and D. A. Goussis. 2015a. “The reactions supporting or opposing the development of explosive modes: Auto-ignition of a homogeneous methane/air mixture.” Proc. Combust. Inst. 35 (1): 267–274. https://doi.org/10.1016/j.proci.2014.07.063.
Diamantis, D. J., E. Mastorakos, and D. A. Goussis. 2015b. “Autoignition: The nature and interaction of the developing explosive modes.” Combust. Theor. Model. 19 (3): 382–433. https://doi.org/10.1080/13647830.2015.1027273.
Dooley, S., et al. 2010. “A jet fuel surrogate formulated by real fuel properties.” Combust. Flame 157 (12): 2333–2339. https://doi.org/10.1016/j.combustflame.2010.07.001.
Fang, X., Z. Huang, X. Qiao, D. Ju, and X. Bai. 2018. “Skeletal mechanism development for a 3-component jet fuel surrogate using semi-global sub-mechanism construction and mechanism reduction.” Fuel 229 (Oct): 53–59. https://doi.org/10.1016/j.fuel.2018.04.159.
Gao, C. W., et al. 2015. “JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation.” Combust. Flame 162 (8): 3115–3129. https://doi.org/10.1016/j.combustflame.2015.02.010.
Gokulakrishnan, P., G. Gaines, J. Currano, M. Klassen, and R. Roby. 2007. “Experimental and kinetic modeling of kerosene-type fuels at gas turbine operating conditions.” J. Eng. Gas Turbines Power 129 (3): 655–663. https://doi.org/10.1115/1.2436575.
Goussis, D., and S. Lam. 1992. “A study of homogeneous methanol oxidation kinetics using CSP.” In Vol. 24 of Symposium (International) on combustion, 113–120. Amsterdam, Netherlands: Elsevier.
Goussis, D. A., and H. N. Najm. 2006. “Model reduction and physical understanding of slowly oscillating processes: The circadian cycle.” Multiscale Model. Simul. 5 (4): 1297–1332. https://doi.org/10.1137/060649768.
Goussis, D. A., and M. Valorani. 2006. “An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems.” J. Comput. Phys. 214 (1): 316–346. https://doi.org/10.1016/j.jcp.2005.09.019.
Hadjinicolaou, M., and D. A. Goussis. 1998. “Asymptotic solution of stiff PDEs with the CSP method: The reaction diffusion equation.” SIAM J. Sci. Comput. 20 (3): 781–810. https://doi.org/10.1137/S1064827596303995.
Honnet, S., K. Seshadri, U. Niemann, and N. Peters. 2009. “A surrogate fuel for kerosene.” Proc. Combust. Inst. 32 (1): 485–492. https://doi.org/10.1016/j.proci.2008.06.218.
Humer, S., A. Frassoldati, S. Granata, T. Faravelli, E. Ranzi, R. Seiser, and K. Seshadri. 2007. “Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar nonpremixed flows.” Proc. Combust. Inst. 31 (1): 393–400. https://doi.org/10.1016/j.proci.2006.08.008.
Jaasim, M., E.-A. Tingas, F. E. H. Pérez, and H. G. Im. 2018. “Computational singular perturbation analysis of super-knock in SI engines.” Fuel 225 (Aug): 184–191. https://doi.org/10.1016/j.fuel.2018.03.128.
Kazakov, A., M. Chaos, Z. Zhao, and F. L. Dryer. 2006. “Computational singular perturbation analysis of two-stage ignition of large hydrocarbons.” J. Phys. Chem. A 110 (21): 7003–7009. https://doi.org/10.1021/jp057224u.
Khalil, A. T., D. M. Manias, E.-A. Tingas, D. C. Kyritsis, and D. A. Goussis. 2019. “Algorithmic analysis of chemical dynamics of the autoignition of NH3H2O2/air mixtures.” Energies 12 (23): 4422. https://doi.org/10.3390/en12234422.
Kooshkbaghi, M., C. E. Frouzakis, K. Boulouchos, and I. V. Karlin. 2015. “n-Heptane/air combustion in perfectly stirred reactors: Dynamics, bifurcations and dominant reactions at critical conditions.” Combust. Flame 162 (9): 3166–3179. https://doi.org/10.1016/j.combustflame.2015.05.002.
Kukkadapu, G., D. Kang, S. W. Wagnon, K. Zhang, M. Mehl, M. Monge-Palacios, H. Wang, S. S. Goldsborough, C. K. Westbrook, and W. J. Pitz. 2019. “Kinetic modeling study of surrogate components for gasoline, jet and diesel fuels: C7-C11 methylated aromatics.” Proc. Combust. Inst. 37 (1): 521–529. https://doi.org/10.1016/j.proci.2018.08.016.
Lam, S., and D. Goussis. 1989. “Understanding complex chemical kinetics with computational singular perturbation.” In Vol. 22 of Symposium (International) on combustion, 931–941. Amsterdam, Netherlands: Elsevier.
Lam, S., and D. Goussis. 1994. “The CSP method for simplifying kinetics.” Int. J. Chem. Kinet. 26 (4): 461–486. https://doi.org/10.1002/kin.550260408.
Lefebvre, A. H., and D. R. Ballal. 2010. Gas turbine combustion: Alternative fuels and emissions. London: CRC press.
Li, S., B. Varatharajan, and F. Williams. 2001. “Chemistry of JP-10 ignition.” AIAA J. 39 (12): 2351–2356. https://doi.org/10.2514/2.1241.
Li, Y., A. Alfazazi, B. Mohan, E. A. Tingas, J. Badra, H. G. Im, and S. M. Sarathy. 2019. “Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model.” Fuel 247 (Jul): 164–178. https://doi.org/10.1016/j.fuel.2019.03.052.
Liu, Y.-X., S. Richter, C. Naumann, M. Braun-Unkhoff, and Z.-Y. Tian. 2019. “Combustion study of a surrogate jet fuel.” Combust. Flame 202 (Apr): 252–261. https://doi.org/10.1016/j.combustflame.2019.01.022.
Malewicki, T., S. Gudiyella, and K. Brezinsky. 2013. “Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1, 3, 5-trimethylbenzene surrogate fuel.” Combust. Flame 160 (1): 17–30. https://doi.org/10.1016/j.combustflame.2012.09.013.
Manias, D., A.-E. Tingas, F. E. Hernandez Perez, H. G. Im, R. M. Galassi, P. P. Ciottoli, and M. Valorani. 2018. “Analysis of hydrogen/air turbulent premixed flames at different karlovitz numbers using computational singular perturbation.” In 2018 AIAA Aerospace Sciences Meeting, 0364. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2018-0364.
Manias, D. M., A.-E. Tingas, H. G. Im, and Y. Minamoto. 2019a. “Dynamics analysis of a turbulent methane flame in mild combustion conditions.” In AIAA Scitech 2019 Forum, 1731. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2019-1731.
Manias, D. M., E. A. Tingas, C. E. Frouzakis, K. Boulouchos, and D. A. Goussis. 2016. “The mechanism by which CH2O and H2O2 additives affect the autoignition of CH4/air mixtures.” Combust. Flame 164 (Feb): 111–125. https://doi.org/10.1016/j.combustflame.2015.11.008.
Manias, D. M., E. A. Tingas, F. E. H. Pérez, R. M. Galassi, P. P. Ciottoli, M. Valorani, and H. G. Im. 2019c. “Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index.” Combust. Flame 200 (Feb): 155–167. https://doi.org/10.1016/j.combustflame.2018.11.023.
Manias, D. M., E.-A. Tingas, Y. Minamoto, and H. G. Im. 2019b. “Topological and chemical characteristics of turbulent flames at MILD conditions.” Combust. Flame 208 (Oct): 86–98. https://doi.org/10.1016/j.combustflame.2019.06.031.
Maris, D. T., and D. A. Goussis. 2015. “The “hidden” dynamics of the Rössler attractor.” Phys. D 295–296 (Mar): 66–90. https://doi.org/10.1016/j.physd.2014.12.010.
Massias, A., D. Diamantis, E. Mastorakos, and D. Goussis. 1999. “An algorithm for the construction of global reduced mechanisms with CSP data.” Combust. Flame 117 (4): 685–708. https://doi.org/10.1016/S0010-2180(98)00132-1.
Mawid, M., and B. Sekar. 2006. “Development of a detailed JP-8/jet-a chemical kinetic mechanism for high pressure conditions in gas turbine combustors.” In Vol. 42363 of Turbo expo: Power for land, sea, and air, 369–388.
Michalaki, L. I., and D. A. Goussis. 2018. “Asymptotic analysis of a TMDD model: When a reaction contributes to the destruction of its product.” J. Math. Biol. 77 (3): 821–855. https://doi.org/10.1007/s00285-018-1234-x.
Munzar, J., B. Akih-Kumgeh, B. Denman, A. Zia, and J. Bergthorson. 2013. “An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components.” Fuel 113 (Nov): 586–597. https://doi.org/10.1016/j.fuel.2013.05.105.
Najm, H. N., M. Valorani, D. A. Goussis, and J. Prager. 2010. “Analysis of methane–air edge flame structure.” Combust. Theor. Model. 14 (2): 257–294. https://doi.org/10.1080/13647830.2010.483021.
Naor, A., D. Michaels, and A. Grinberg Dana. 2018. “Automatic generation of reduced chemical mechanisms of liquid aviation fuels for application in combustion dynamics computations.” In 2018 AIAA aerospace sciences meeting, 0138. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2018-0138.
Neophytou, M., D. Goussis, E. Mastorakos, and R. Britter. 2005. “The conceptual development of a simple scale-adaptive reactive pollutant dispersion model.” Atmos. Environ. 39 (15): 2787–2794. https://doi.org/10.1016/j.atmosenv.2004.12.025.
Neophytou, M., D. Goussis, M. Van Loon, and E. Mastorakos. 2004. “Reduced chemical mechanisms for atmospheric pollution using computational singular perturbation analysis.” Atmos. Environ. 38 (22): 3661–3673. https://doi.org/10.1016/j.atmosenv.2004.02.061.
Pal, P., M. Valorani, P. G. Arias, H. G. Im, M. S. Wooldridge, P. P. Ciottoli, and R. M. Galassi. 2017. “Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations.” Proc. Combust. Inst. 36 (3): 3705–3716. https://doi.org/10.1016/j.proci.2016.07.059.
Patsatzis, D. G., and D. A. Goussis. 2019. “A new Michaelis-Menten equation valid everywhere multi-scale dynamics prevails.” Math. Biosci. 315 (Sep): 108220. https://doi.org/10.1016/j.mbs.2019.108220.
Patsatzis, D. G., D. T. Maris, and D. A. Goussis. 2016. “Asymptotic analysis of a target-mediated drug disposition model: Algorithmic and traditional approaches.” Bull. Math. Biol. 78 (6): 1121–1161. https://doi.org/10.1007/s11538-016-0176-y.
Patsatzis, D. G., E.-A. Tingas, D. A. Goussis, and S. M. Sarathy. 2019. “Computational singular perturbation analysis of brain lactate metabolism.” PLoS One 14 (12): e0226094. https://doi.org/10.1371/journal.pone.0226094.
Prager, J., H. N. Najm, M. Valorani, and D. A. Goussis. 2009. “Skeletal mechanism generation with CSP and validation for premixed n-heptane flames.” Proc. Combust. Inst. 32 (1): 509–517. https://doi.org/10.1016/j.proci.2008.06.074.
Prager, J., H. N. Najm, M. Valorani, and D. A. Goussis. 2011. “Structure of n-heptane/air triple flames in partially-premixed mixing layers.” Combust. Flame 158 (11): 2128–2144. https://doi.org/10.1016/j.combustflame.2011.03.017.
Raza, M., Y. Mao, L. Yu, and X. Lu. 2019. “Insights into the effects of mechanism reduction on the performance of n-decane and its ability to act as a single-component surrogate for jet fuels.” Energy & Fuels 33 (8): 7778–7790. https://doi.org/10.1021/acs.energyfuels.9b00971.
Safta, C., H. N. Najm, and O. Knio. 2011. TChem-A software toolkit for the analysis of complex kinetic models. Albuquerque, NM: Sandia National Laboratories.
Sarathy, S. M., E.-A. Tingas, E. F. Nasir, A. Detogni, Z. Wang, A. Farooq, and H. Im. 2019. “Three-stage heat release in n-heptane auto-ignition.” Proc. Combust. Inst. 37 (1): 485–492. https://doi.org/10.1016/j.proci.2018.07.075.
Seshadri, K., A. Frassoldati, A. Cuoci, T. Faravelli, U. Niemann, P. Weydert, and E. Ranzi. 2011. “Experimental and kinetic modeling study of combustion of JP-8, its surrogates and components in laminar premixed flows.” Combust. Theor. Model. 15 (4): 569–583. https://doi.org/10.1080/13647830.2011.552635.
Singh, E., E.-A. Tingas, D. Goussis, H. G. Im, and S. M. Sarathy. 2019. “Chemical ignition characteristics of ethanol blending with primary reference fuels.” Energy Fuels 33 (10): 10185–10196. https://doi.org/10.1021/acs.energyfuels.9b01423.
Song, W., E.-A. Tingas, and H. G. Im. 2018. “A computational analysis of methanol autoignition enhancement by dimethyl ether addition in a counterflow mixing layer.” Combust. Flame 195 (Sep): 84–98. https://doi.org/10.1016/j.combustflame.2018.03.037.
Strelkova, M., I. Kirillov, B. Potapkin, A. Safonov, L. Sukhanov, S. Y. Umanskiy, M. Deminsky, A. Dean, B. Varatharajan, and A. Tentner. 2008. “Detailed and reduced mechanisms of jet a combustion at high temperatures.” Combust. Sci. Technol. 180 (10–11): 1788–1802. https://doi.org/10.1080/00102200802258379.
Tay, K. L., W. Yang, B. Mohan, D. Zhou, W. Yu, and F. Zhao. 2016. “Development of a reduced kerosene–diesel reaction mechanism with embedded soot chemistry for diesel engines.” Fuel 181 (Oct): 926–934. https://doi.org/10.1016/j.fuel.2016.05.029.
Tingas, E. A., H. G. Im, D. C. Kyritsis, and D. A. Goussis. 2018b. “The use of CO2 as an additive for ignition delay and pollutant control in CH4/air autoignition.” Fuel 211 (Jan): 898–905. https://doi.org/10.1016/j.fuel.2017.09.022.
Tingas, E. A., D. C. Kyritsis, and D. A. Goussis. 2015. “Autoignition dynamics of DME/air and EtOH/air homogeneous mixtures.” Combust. Flame 162 (9): 3263–3276. https://doi.org/10.1016/j.combustflame.2015.05.016.
Tingas, E. A., D. C. Kyritsis, and D. A. Goussis. 2016a. “Algorithmic determination of the mechanism through which H2O-dilution affects autoignition dynamics and NO formation in CH4/air mixtures.” Fuel 183 (Nov): 90–98. https://doi.org/10.1016/j.fuel.2016.06.057.
Tingas, E. A., D. C. Kyritsis, and D. A. Goussis. 2016b. “Ignition delay control of DME/air and EtOH/air homogeneous autoignition with the use of various additives.” Fuel 169 (Apr): 15–24. https://doi.org/10.1016/j.fuel.2015.11.081.
Tingas, E. A., D. M. Manias, S. M. Sarathy, and D. A. Goussis. 2018c. “CH4/air homogeneous autoignition: A comparison of two chemical kinetics mechanisms.” Fuel 223 (Jul): 74–85. https://doi.org/10.1016/j.fuel.2018.03.025.
Tingas, E.-A., D. J. Diamantis, and D. A. Goussis. 2018a. “Issues arising in the construction of QSSA mechanisms: The case of reduced n-heptane/air models for premixed flames.” Combust. Theor. Model. 22 (6): 1049–1083. https://doi.org/10.1080/13647830.2018.1470333.
Tingas, E.-A., D. C. Kyritsis, and D. A. Goussis. 2017. “Comparative investigation of homogeneous autoignition of DME/air and EtOH/air mixtures at low initial temperatures.” Combust. Theor. Model. 21 (1): 93–119. https://doi.org/10.1080/13647830.2016.1238513.
Tingas, E.-A., D. C. Kyritsis, and D. A. Goussis. 2019. “H2/air autoignition dynamics around the third explosion limit.” J. Energy Eng. 145 (1): 04018074. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000588.
Tingas, E.-A., Z. Wang, S. M. Sarathy, H. G. Im, and D. A. Goussis. 2018d. “Chemical kinetic insights into the ignition dynamics of n-hexane.” Combust. Flame 188 (Feb): 28–40. https://doi.org/10.1016/j.combustflame.2017.09.024.
Tosatto, L., B. A. V. Bennett, and M. D. Smooke. 2013. “Comparison of different DRG-based methods for the skeletal reduction of JP-8 surrogate mechanisms.” Combust. Flame 160 (9): 1572–1582. https://doi.org/10.1016/j.combustflame.2013.03.024.
Valorani, M., et al. 2020. “Computational singular perturbation method and tangential stretching rate analysis of large scale simulations of reactive flows: Feature tracking, time scale characterization, and cause/effect identification. Part 1, basic concepts.” In Data analysis for direct numerical simulations of turbulent combustion, 43–64. New York: Springer.
Valorani, M., P. P. Ciottoli, R. M. Galassi, S. Paolucci, T. Grenga, and E. Martelli. 2018. “Enhancements of the G-scheme framework.” Flow Turbul. Combust. 101 (4): 1023–1033. https://doi.org/10.1007/s10494-018-9942-2.
Valorani, M., F. Creta, F. Donato, H. N. Najm, and D. A. Goussis. 2006a. “A CSP-based skeletal mechanism generation procedure: Auto-ignition and premixed laminar flames in n-heptane/air mixtures.” In Proc., European Conf. on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands (ECCOMAS CFD). Delft, Netherlands: Delft Univ. of Technology.
Valorani, M., F. Creta, D. A. Goussis, J. C. Lee, and H. N. Najm. 2006b. “An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP.” Combust. Flame 146 (1–2): 29–51. https://doi.org/10.1016/j.combustflame.2006.03.011.
Valorani, M., and D. A. Goussis. 2001. “Explicit time-scale splitting algorithm for stiff problems: Auto-ignition of gaseous mixtures behind a steady shock.” J. Comput. Phys. 169 (1): 44–79. https://doi.org/10.1006/jcph.2001.6709.
Valorani, M., H. N. Najm, and D. A. Goussis. 2003. “CSP analysis of a transient flame-vortex interaction: Time scales and manifolds.” Combust. Flame 134 (1–2): 35–53. https://doi.org/10.1016/S0010-2180(03)00067-1.
Violi, A., S. Yan, E. Eddings, A. Sarofim, S. Granata, T. Faravelli, and E. Ranzi. 2002. “Experimental formulation and kinetic model for JP-8 surrogate mixtures.” Combust. Sci. Technol. 174 (11–12): 399–417. https://doi.org/10.1080/00102200215080.
Wang, B.-Y., D. Yu, G.-F. Pan, Y.-X. Liu, J.-J. Weng, and Z.-Y. Tian. 2018. “An experimental and modeling study on the low temperature oxidation of surrogate for JP-8 part I: Neat 1, 3, 5-trimethylbenzene.” Combust. Flame 192 (Jun): 507–516. https://doi.org/10.1016/j.combustflame.2017.12.030.
Yalamanchi, K. K., E.-A. Tingas, H. G. Im, and S. M. Sarathy. 2020. “Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales.” Int. J. Chem. Kinet. 52 (9): 599–610. https://doi.org/10.1002/kin.21373.
Yi, R., X. Chen, and C. P. Chen. 2019. “Surrogate for emulating physicochemical and kinetics characteristics of RP-3 aviation fuel.” Energy Fuels 33 (4): 2872–2879. https://doi.org/10.1021/acs.energyfuels.8b03999.
Yu, J., and X. Gou. 2018. “Comprehensive surrogate for emulating physical and kinetic properties of jet fuels.” J. Propul. Power 34 (3): 679–689. https://doi.org/10.2514/1.B36766.
Yu, W., F. Zhao, W. Yang, K. Tay, and H. Xu. 2018. “Development of an optimization methodology for formulating both jet fuel and diesel fuel surrogates and their associated skeletal oxidation mechanisms.” Fuel 231 (Nov): 361–372. https://doi.org/10.1016/j.fuel.2018.05.121.
Zhong, B.-J., and H.-S. Peng. 2019. “Development of a skeletal mechanism for aviation kerosene surrogate fuel.” J. Propul. Power 35 (3): 645–651. https://doi.org/10.2514/1.B37421.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 146Issue 6December 2020

History

Received: Jun 12, 2020
Accepted: Jul 6, 2020
Published online: Sep 7, 2020
Published in print: Dec 1, 2020
Discussion open until: Feb 7, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Nurina Sharmin
Perth College, Univ. of the Highlands and Islands, Crieff Rd., Perth PH1 2NX, UK.
Lecturer, Perth College, Univ. of the Highlands and Islands, Crieff Rd., Perth PH1 2NX, UK; School of Engineering and the Built Environment, Edinburgh Napier Univ., Edinburgh EH10 5DT, UK (corresponding author). ORCID: https://orcid.org/0000-0001-8849-1251. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share