Technical Papers
Sep 11, 2020

Screening Study of the Effects of Impurity Gases on Hydrogen Storage in Metal-Organic Frameworks

Publication: Journal of Energy Engineering
Volume 146, Issue 6

Abstract

Metal-organic frameworks (MOFs) are perhaps one of the promising candidates for H2 storage in a fuel cell vehicle. However, impurity gases, such as H2O, CO2, CH4, O2, and N2 existing in the process of H2 production, have a detrimental impact on H2 storage. In the present work, the process of H2 with and without impurity gases (i.e., H2O, CO2, CH4, O2, and N2) adsorption in 95 MOFs is screened by molecular simulation. The effect of a low concentration of impurity gases on the H2 delivery capacity is studied. The results show that the effect of impurity gases on the H2 delivery capacity of 95 MOFs ranks as H2O>CO2>CH4>O2=N2. DIDDOK is demonstrated to exhibit the best gravimetric delivery capacity of H2, and ANUGIA exhibits the best volumetric delivery capacity of H2. These results show that one should consider impurity gas effects during screening the best adsorbent for H2 storage in fuel cell vehicles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 51806178), the Natural Science Basic Research Plan in Shaanxi Province of China (No.2019JQ-622), the Fundamental Research Funds for the Central Universities (No. G2018KY0303), and the Discipline Innovative Engineering Plan (B16038).

References

Agrawal, M., and D. S. Sholl. 2019. “Effects of intrinsic flexibility on adsorption properties of metal-organic frameworks at dilute and nondilute loadings.” ACS Appl. Mater. Interfaces 11 (34): 31060–31068. https://doi.org/10.1021/acsami.9b10622.
Ahmed, A., Y. Liu, J. Purewal, L. D. Tran, A. G. Wong-Foy, M. Veenstra, A. J. Matzger, and D. J. Siegel. 2017. “Balancing gravimetric and volumetric hydrogen density in MOFs.” Energy Environ. Sci. 10 (11): 2459–2471. https://doi.org/10.1039/C7EE02477K.
Altintas, C., G. Avci, H. Daglar, E. Gulcay, I. Erucar, and S. Keskin. 2018a. “Computer simulations of 4240 MOF membranes for H2/CH4 separations: Insights into structure–performance relations.” J. Mater. Chem. A 6 (14): 5836–5847. https://doi.org/10.1039/C8TA01547C.
Altintas, C., G. Avci, H. Daglar, A. Nemati Vesali Azar, S. Velioglu, I. Erucar, and S. Keskin. 2018b. “Database for CO2 separation performances of MOFs based on computational materials screening.” ACS Appl. Mater. Interfaces 10 (20): 17257–17268. https://doi.org/10.1021/acsami.8b04600.
Altintas, C., I. Erucar, and S. Keskin. 2018c. “High-throughput computational screening of the metal organic framework database for CH4/H2 separations.” ACS Appl. Mater. Interfaces 10 (4): 3668–3679. https://doi.org/10.1021/acsami.7b18037.
Bobbitt, N. S., J. Chen, and R. Q. Snurr. 2016. “High-throughput screening of metal–organic frameworks for hydrogen storage at cryogenic temperature.” J. Phys. Chem. C 120 (48): 27328–27341. https://doi.org/10.1021/acs.jpcc.6b08729.
Bobbitt, N. S., and R. Q. Snurr. 2019. “Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage.” Mol. Simul. 45 (14–15): 1069–1081. https://doi.org/10.1080/08927022.2019.1597271.
Chen, B. L., N. W. Ockwig, A. R. Millward, D. S. Contreras, and O. M. Yaghi. 2005. “High H2 adsorption in a microporous metal-organic framework with open metal sites.” Angew. Chem. Int. Ed. 44 (30): 4745–4749. https://doi.org/10.1002/anie.200462787.
Chung, Y. G., et al. 2019. “Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019.” J. Chem. Eng. Data 64 (12): 5985–5998. https://doi.org/10.1021/acs.jced.9b00835.
Chung, Y. G., J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, and R. Q. Snurr. 2014. “Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput screening of nanoporous crystals.” Chem. Mater. 26 (21): 6185–6192. https://doi.org/10.1021/cm502594j.
DeCoste, J. B., M. H. Weston, P. E. Fuller, T. M. Tovar, G. W. Peterson, M. D. LeVan, and O. K. Farha. 2014. “Metal-organic frameworks for oxygen storage.” Angew. Chem. Int. Ed. 126 (51): 14316–14319. https://doi.org/10.1002/ange.201408464.
Dubbeldam, D., S. Calero, D. E. Ellis, and R. Q. Snurr. 2016. “RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials.” Mol. Simul. 42 (2): 81–101. https://doi.org/10.1080/08927022.2015.1010082.
Düren, T., and R. Q. Snurr. 2004. “Assessment of isoreticular metal-organic frameworks for adsorption separations: A molecular simulation study of methane/n-butane mixtures.” J. Phys. Chem. B 108 (40): 15703–15708. https://doi.org/10.1021/jp0477856.
Fang, H. J., A. Kulkarni, P. Kamakoti, R. Awati, P. I. Ravikovitch, and D. S. Sholl. 2016. “Identification of high CO2 capacity cationic zeolites by accurate computational screening.” Chem. Mater. 28 (11): 3887–3896. https://doi.org/10.1021/acs.chemmater.6b01132.
Furukawa, H., K. E. Cordova, M. O’Keeffe, and O. M. Yaghi. 2013. “The chemistry and applications of metal-organic frameworks.” Science 341 (6149): 1230444. https://doi.org/10.1126/science.1230444.
Gallo, M., and D. Glossman-Mitnik. 2009. “Fuel gas storage and separations by metal-organic frameworks: Simulated adsorption isotherms for H2 and CH4 and their equimolar mixture.” J. Phys. Chem. C 113 (16): 6634–6642. https://doi.org/10.1021/jp809539w.
Gomez, D. A., J. Toda, and G. Sastre. 2014. “Screening of hypothetical metal–organic frameworks for H2 storage.” PCCP 16 (35): 19001–19010. https://doi.org/10.1039/C4CP01848F.
Gómez-Gualdrón, D. A., T. C. Wang, P. García-Holley, R. M. Sawelewa, E. Argueta, R. Q. Snurr, J. T. Hupp, T. Yildirim, and O. K. Farha. 2017. “Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks.” ACS Appl. Mater. Interfaces 9 (39): 33419–33428. https://doi.org/10.1021/acsami.7b01190.
Guse, C., and R. Hentschke. 2012. “Simulation study of structural, transport, and thermodynamic properties of TIP4P/2005 water in single-walled carbon nanotubes.” J. Phys. Chem. B 116 (2): 751–762. https://doi.org/10.1021/jp210193w.
Karra, J. R., and K. S. Walton. 2010. “Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks.” J. Phys. Chem. C 114 (37): 15735–15740. https://doi.org/10.1021/jp105519h.
Keskin, S. 2020. “Screening for selectivity.” Nat. Energy 5 (1): 8–9. https://doi.org/10.1038/s41560-019-0514-z.
Kondo, M., Y. Irie, M. Miyazawa, H. Kawaguchi, S. Yasue, K. Maeda, and F. Uchida. 2007. “Synthesis and structural determination of new multidimensional coordination polymers with 4,4′-oxybis(benzoate) building ligands: Construction of coordination polymers with heteroorganic bridges.” J. Organomet. Chem. 692 (1): 136–141. https://doi.org/10.1016/j.jorganchem.2006.07.048.
Kumar, S., and T. J. D. Kumar. 2020. “Hydrogen trapping potential of Ca decorated metal-graphyne framework.” Energy 199 (Mar): 117453. https://doi.org/10.1016/j.energy.2020.117453.
Liu, Z. N., A. Fan, and C.-H. Ho. 2020. “Preparation of AC/Cu-BTC composite and its adsorption mechanisms.” J. Energy Eng. 146 (4): 04020018. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001678.
Manz, T. A., and D. S. Sholl. 2012. “Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials.” J. Chem. Theory Comput. 8 (8): 2844–2867. https://doi.org/10.1021/ct3002199.
Moghadam, P. Z., A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, and D. Fairen-Jimenez. 2017. “Development of a Cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future.” Chem. Mater. 29 (7): 2618–2625. https://doi.org/10.1021/acs.chemmater.7b00441.
Office of Energy Efficiency and Renewable Energy. 2020. “Hydrogen production: Natural gas reforming.” Accessed February 19, 2020. https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming.
Panella, B., M. Hirscher, H. Pütter, and U. Müller. 2006. “Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared.” Adv. Funct. Mater. 16 (4): 520–524. https://doi.org/10.1002/adfm.200500561.
Panella, B., M. Hirscher, and S. Roth. 2005. “Hydrogen adsorption in different carbon nanostructures.” Carbon 43 (10): 2209–2214. https://doi.org/10.1016/j.carbon.2005.03.037.
Park, J., R. P. Lively, and D. S. Sholl. 2017. “Establishing upper bounds on CO2 swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks.” J. Mater. Chem. A 5 (24): 12258–12265. https://doi.org/10.1039/C7TA02916K.
Potoff, J. J., and J. I. Siepmann. 2001. “Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen.” AlChE J. 47 (7): 1676–1682. https://doi.org/10.1002/aic.690470719.
Pukazhselvan, D., V. Kumar, and S. K. Singh. 2012. “High capacity hydrogen storage: Basic aspects, new developments and milestones.” Nano Energy 1 (4): 566–589. https://doi.org/10.1016/j.nanoen.2012.05.004.
Rowsell, J. L. C., A. R. Millward, K. S. Park, and O. M. Yaghi. 2004. “Hydrogen sorption in functionalized metal-organic frameworks.” J. Am. Chem. Soc. 126 (18): 5666–5667. https://doi.org/10.1021/ja049408c.
Schnobrich, J. K., O. Lebel, K. A. Cychosz, A. Dailly, A. G. Wong-Foy, and A. J. Matzger. 2010. “Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity.” J. Am. Chem. Soc. 132 (39): 13941–13948. https://doi.org/10.1021/ja107423k.
Siberio-Perez, D. Y., A. G. Wong-Foy, O. M. Yaghi, and A. J. Matzger. 2007. “Raman spectroscopic investigation of CH4 and N2 adsorption in metal-organic frameworks.” Chem. Mater. 19 (15): 3681–3685. https://doi.org/10.1021/cm070542g.
Tang, D., Y. Wu, R. J. Verploegh, and D. S. Sholl. 2018. “Efficiently exploring adsorption space to identify privileged adsorbents for chemical separations of a diverse set of molecules.” ChemSusChem 11 (9): 1567–1575. https://doi.org/10.1002/cssc.201702289.
Thornton, A. W., et al. 2017. “Materials genome in action: Identifying the performance limits of physical hydrogen storage.” Chem. Mater. 29 (7): 2844–2854. https://doi.org/10.1021/acs.chemmater.6b04933.
Voskuilen, T. G., T. L. Pourpoint, and A. M. Dailly. 2012. “Hydrogen adsorption on microporous materials at ambient temperatures and pressures up to 50 MPa.” Adsorption 18 (3): 239–249. https://doi.org/10.1007/s10450-012-9397-z.
Wang, H., L. Chen, Z. Qu, Y. Yin, Q. Kang, B. Yu, and W.-Q. Tao. 2020a. “Modeling of multi-scale transport phenomena in shale gas production: A critical review.” Appl. Energy 262 (Mar): 114575. https://doi.org/10.1016/j.apenergy.2020.114575.
Wang, H., Z. Qu, Y. Yin, J. Bai, and B. Yu. 2019. “Review of molecular simulation method for gas adsorption/desorption and diffusion in shale Matrix.” J. Therm. Sci. 28 (1): 1–16. https://doi.org/10.1007/s11630-018-1053-9.
Wang, H., Z. G. Qu, W. Zhang, Q. N. Yu, and Y. L. He. 2016. “Experimental and numerical study of CO2 adsorption on copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal organic framework.” Int. J. Heat Mass Transfer 92 (Jan): 859–863. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.036.
Wang, H., Z. G. Qu, and L. Zhou. 2018. “Coupled GCMC and LBM simulation method for visualizations of CO2/CH4 gas separation through Cu-BTC membranes.” J. Membr. Sci. 550 (Mar): 448–461. https://doi.org/10.1016/j.memsci.2017.12.066.
Wang, H., Y. Yin, J. Bai, and S. Wang. 2020b. “Multi-factor study of the effects of a trace amount of water vapor on low concentration CO2 capture by 5A zeolite particles.” RSC Adv. 10 (11): 6503–6511. https://doi.org/10.1039/C9RA08334K.
Wang, Q. M., D. M. Shen, M. Bülow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, and J. Semanscin. 2002. “Metallo-organic molecular sieve for gas separation and purification.” Microporous Mesoporous Mater. 55 (2): 217–230. https://doi.org/10.1016/S1387-1811(02)00405-5.
Wehbe, M., B. J. A. Tarboush, M. Shehadeh, and M. Ahmad. 2020. “Molecular dynamics simulations of the removal of lead (II) from water using the UiO-66 metal-organic framework.” Chem. Eng. Sci. 214 (Mar): 115396. https://doi.org/10.1016/j.ces.2019.115396.
Wu, Y., D. Tang, R. J. Verploegh, H. Xi, and D. S. Sholl. 2017. “Impacts of gas impurities from pipeline natural gas on methane storage in metal–organic frameworks during long-term cycling.” J. Phys. Chem. C 121 (29): 15735–15745. https://doi.org/10.1021/acs.jpcc.7b03459.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 146Issue 6December 2020

History

Received: Feb 26, 2020
Accepted: Jul 10, 2020
Published online: Sep 11, 2020
Published in print: Dec 1, 2020
Discussion open until: Feb 11, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, School of Aeronautics, Northwestern Polytechnical Univ., Xi’an, Shaanxi 710072, China. Email: [email protected]
Master’s Candidate, School of Aeronautics, Northwestern Polytechnical Univ., Xi’an, Shaanxi 710072, China. Email: [email protected]
Doctorate’s Candidate, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Xi’an Jiaotong Univ., Xi’an, Shaanxi 710049, China. ORCID: https://orcid.org/0000-0002-6343-6077. Email: [email protected]
Professor, Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Xi’an Jiaotong Univ., Xi’an, Shaanxi 710049, China (corresponding author). Email: [email protected]
Professor, School of Aeronautics, Northwestern Polytechnical Univ., Xi’an, Shaanxi 710072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share