Technical Papers
Aug 30, 2022

A Perspective on Darcy’s Law across the Scales: From Physical Foundations to Particulate Mechanics

Publication: Journal of Engineering Mechanics
Volume 148, Issue 11

Abstract

This paper puts forward a perspective or opinion that we can demonstrate Darcy’s law is valid at any scale where fluid can be modeled/analyzed as a continuum. Darcy’s law describes the flow of a fluid through a porous medium by a linear relationship between the flow rate and the pore pressure gradient through the permeability tensor. We show that such a linear relationship can be established at any scale, so long as the permeability tensor is expressed as a function of adequate parameters that describe the pore space geometry, fluid properties, and physical phenomena. Analytical models at pore scale provide essential information on the key variables that permeability depends on under different flow regimes. Upscaling techniques based on the Lippman-Schwinger equation, pore network models, or Eshelby’s homogenization theory make it possible to predict fluid flow beyond the pore scale. One of the key challenges to validate these techniques is to characterize microstructure and measure transport properties at multiple scales. Recent developments in imaging, multiscale modeling, and advanced computing offer new possibilities to address some of these challenges.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

Some of the arguments made in this paper are inspired from a formal debate held by COS and BC and moderated by CA during the Biot-Bažant Conference on Engineering Mechanics and Physics of Porous Materials, held June 1–3, 2021. A recording of the debate is available in O’ Sullivan and Coasne (2021). We thank R. Hartkamp for providing the data for the molecular simulation snapshot in Fig. 1(a). We also thank Mr. Tokio Morimoto, who provided the images in Figs. 1(b and d). Some of the arguments presented in this paper originated from Chloé Arson’s project “BRITE Pivot Track: Micro-macro modeling of reactive flow and rock weathering enhanced by Artificial Intelligence,” which is funded by the US National Science Foundation (NSF) under grant CMMI No. 2135584. The financial support from the NSF is gratefully acknowledged.

References

Abdalrahman, T., S. Scheiner, and C. Hellmich. 2015. “Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.” J. Theor. Biol. 365 (Nov): 433–444. https://doi.org/10.1016/j.jtbi.2014.10.011.
Arson, C., and J.-M. Pereira. 2013. “Influence of damage on pore size distribution and permeability of rocks.” Int. J. Numer. Anal. Methods Geomech. 37 (8): 810–831. https://doi.org/10.1002/nag.1123.
Bahmani, B., and W. Sun. 2021. “A KD-tree-accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics data.” Comput. Methods Appl. Mech. Eng. 382 (3): 113868. https://doi.org/10.1016/j.cma.2021.113868.
Barrat, J. L., and J. P. Hansen. 2003. Basic concepts for simple and complex liquids. Cambridge, MA: Cambridge University Press.
Barthélémy, J.-F. 2009. “Effective permeability of media with a dense network of long and micro fractures.” Transp. Porous Media 76 (1): 153–178. https://doi.org/10.1007/s11242-008-9241-9.
Bear, J. 2018. “Modeling phenomena of flow and transport in porous media.” In Theory and applications of transport in porous media. Berlin: Springer.
Berryman, J. G., and S. C. Blair. 1986. “Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions.” J. Appl. Phys. 60 (6): 1930–1938. https://doi.org/10.1063/1.337245.
Bignonnet, F. 2020. “Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size.” Comput. Methods Appl. Mech. Eng. 369 (12): 113237. https://doi.org/10.1016/j.cma.2020.113237.
Bignonnet, F., and L. Dormieux. 2013. “FFT-based homogenization of permeability using a Hashin-Shtrikman type variational framework.” In Proc., 5th BIOT Conf. on Poromechanics, 1245–1254. Reston, VA: ASCE.
Bignonnet, F., and L. Dormieux. 2014. “FFT-based bounds on the permeability of complex microstructures.” Int. J. Numer. Anal. Methods Geomech. 38 (16): 1707–1723. https://doi.org/10.1002/nag.2278.
Bird, R. B., W. E. Stewart, and E. N. Lightfoot. 2002. Transport phenomena. 2nd ed. New York: Wiley.
Blunt, M. J., B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pentland. 2013. “Pore-scale imaging and modeling.” Adv. Water Resour. 51 (14): 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003.
Bocquet, L., and E. Charlaix. 2010. “Nanofluidics, from bulk to interfaces.” Chem. Soc. Rev. 39 (3): 1073–1095. https://doi.org/10.1039/B909366B.
Boţan, A., F.-J. Ulm, R. J.-M. Pellenq, and B. Coasne. 2015. “Bottom-up model of adsorption and transport in multiscale porous media.” Phys. Rev. E 91 (3): 032133. https://doi.org/10.1103/PhysRevE.91.032133.
Boutin, C., J.-L. Auriault, and C. Geindreau. 2010. Homogenization of coupled phenomena in heterogenous media. New York: Wiley.
Brace, W., J. Walsh, and W. Frangos. 1968. “Permeability of granite under high pressure.” J. Geophys. Res. 73 (6): 2225–2236. https://doi.org/10.1029/JB073i006p02225.
Brisard, S., and L. Dormieux. 2010. “FFT-based methods for the mechanics of composites: A general variational framework.” Comput. Mater. Sci. 49 (3): 663–671. https://doi.org/10.1016/j.commatsci.2010.06.009.
Brisard, S., and L. Dormieux. 2012. “Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites.” Comput. Methods Appl. Mech. Eng. 217 (Jan): 197–212. https://doi.org/10.1016/j.cma.2012.01.003.
Brisard, S., and S. Ghabezloo. 2017. “Variational estimates of the poroelastic coefficients.” In Proc., 6th Biot Conf. on Poromechanics, 1266–1273. Reston, VA: ASCE.
Bryant, S., and M. Blunt. 1992. “Prediction of relative permeability in simple porous media.” Phys. Rev. A 46 (6): 2004–2011. https://doi.org/10.1103/PhysRevA.46.2004.
Carman, P. C. 1937. “Fluid flow through granular beds.” Trans. Inst. Chem. Eng. 15 (55): 150–166.
Cashman, P. M., and M. Preene. 2021. Groundwater lowering in construction a practical guide to dewatering. 3rd ed. London: CRC Press.
Cedergren, H. 1967. Seepage, drainage and flow nets. New York: Wiley.
Cedergren, H. 1997. Seepage, drainage, and flow nets. New York: Wiley.
Chareyre, B., A. Cortis, and E. Catalano. 2012. “Pore-scale modeling of viscous flow and induced forces in dense sphere packings.” Transp. Porous Media 92 (6): 473–493. https://doi.org/10.1007/s11242-011-9915-6.
Chen, S.-H., X.-M. Feng, and S. Isam. 2008. “Numerical estimation of rev and permeability tensor for fractured rock masses by composite element method.” Int. J. Numer. Anal. Methods Geomech. 32 (12): 1459–1477. https://doi.org/10.1002/nag.679.
Chen, Y., S. Hu, C. Zhou, and L. Jing. 2014. “Micromechanical modeling of anisotropic damage-induced permeability variation in crystalline rocks.” Rock Mech. Rock Eng. 47 (5): 1775–1791. https://doi.org/10.1007/s00603-013-0485-5.
Coasne, B. 2016. “Multiscale adsorption and transport in hierarchical porous materials.” New J. Chem. 40 (12): 4078–4094. https://doi.org/10.1039/C5NJ03194J.
Darcy, H. 1856. Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Paris: Victor Dalmont.
Darson-Balleur, S. 2019. Guide to support fluids for deep foundations. Abuja, Nigeria: European Federation of Foundation Contractors.
Dienes, J. K. 1982. “Permeability, percolation and statistical crack mechanics.” In Proc., 23rd US Symp. on Rock Mechanics (USRMS). Alexandria, VA: American Rock Mechanics Association.
Dong, H., and M. J. Blunt. 2009. “Pore-network extraction from micro-computerized-tomography images.” Phys. Rev. E 80 (10): 036307. https://doi.org/10.1103/PhysRevE.80.036307.
Dormieux, L., and D. Kondo. 2004. “Approche micromécanique du couplage perméabilité–endommagement.” C.R. Méc. 332 (2): 135–140. https://doi.org/10.1016/j.crme.2003.11.003.
Ejezie, J. O., S. A. Jefferis, C. Lam, M. Sedighi, and S. M. Ahmad. 2021. “Permeation behaviour of PHPA polymer fluids in sand.” Géotechnique 71 (7): 561–570. https://doi.org/10.1680/jgeot.18.P.353.
Estermann, S.-J., and S. Scheiner. 2018. “Multiscale modeling provides differentiated insights to fluid flow-driven stimulation of bone cellular activities.” Front. Phys. 6 (Sep): 76. https://doi.org/10.3389/fphy.2018.00076.
Falk, K., B. Coasne, R. Pellenq, F.-J. Ulm, and L. Bocquet. 2015. “Subcontinuum mass transport of condensed hydrocarbons in nanoporous media.” Nat. Commun. 6 (10): 6949. https://doi.org/10.1038/ncomms7949.
Fortin, J., S. Stanchits, S. Vinciguerra, and Y. Guéguen. 2011. “Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure.” Tectonophysics 503 (1–2): 60–74. https://doi.org/10.1016/j.tecto.2010.09.028.
Gueguen, Y., and J. Dienes. 1989. “Transport properties of rocks from statistics and percolation.” Math. Geol. 21 (1): 1–13. https://doi.org/10.1007/BF00897237.
Hansbo, S. 2001. “Consolidation equation valid for both Darcian and non-Darcian flow.” Géotechnique 51 (1): 51–54. https://doi.org/10.1680/geot.2001.51.1.51.
Hartkamp, R., B. Siboulet, J.-F. Dufrêche, and B. Coasne. 2015. “Ion-specific adsorption and electroosmosis in charged amorphous porous silica.” Phys. Chem. Chem. Phys. 17 (10): 24683–24695. https://doi.org/10.1039/C5CP03818A.
Heider, Y., H. S. Suh, and W. Sun. 2021. “An offline multi-scale unsaturated poromechanics model enabled by self-designed/self-improved neural networks.” Int. J. Numer. Anal. Methods Geomech. 45 (9): 1212–1237. https://doi.org/10.1002/nag.3196.
Ineson, J. 1956. “Darcy’s law and the evaluation of permeability.” Int. Assoc. Hydrol. Sci. 41 (56): 165–172.
Kärger, J., D. M. Ruthven, and D. N. Theodorou. 2012. Diffusion in nanoporous materials. New York: Wiley.
Knappett, J., and R. Craig. 2012. Craig’s soil mechanics. London: CRC Press.
Knight, C., C. O’Sullivan, B. van Wachem, and D. Dini. 2020. “Computing drag and interactions between fluid and polydisperse particles in saturated granular materials.” Comput. Geotech. 117 (13): 103210. https://doi.org/10.1016/j.compgeo.2019.103210.
Kozeny, J. 1927. “Uber kapillare leitung der wasser in boden.” In Vol. 136 of Proc., Class I, 271–306. Vienna, Austria: Royal Academy of Science.
Lebensohn, R. A., R. Brenner, O. Castelnau, and A. D. Rollett. 2008. “Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper.” Acta Mater. 56 (15): 3914–3926. https://doi.org/10.1016/j.actamat.2008.04.016.
Levasseur, S., F. Collin, R. Charlier, and D. Kondo. 2013. “A micro–macro approach of permeability evolution in rocks excavation damaged zones.” Comput. Geotech. 49 (12): 245–252. https://doi.org/10.1016/j.compgeo.2012.12.001.
Mavko, G., and A. Nur. 1997. “The effect of a percolation threshold in the Kozeny-Carman relation.” Geophysics 62 (5): 1480–1482. https://doi.org/10.1190/1.1444251.
McQuarrie, D. A. 2000. Statistical mechanics. New York: Harper & Row.
Mezhoud, S., V. Monchiet, M. Bornert, and D. Grande. 2020. “Computation of macroscopic permeability of doubly porous media with FFT based numerical homogenization method.” Eur. J. Mech. B Fluids 83 (12): 141–155. https://doi.org/10.1016/j.euromechflu.2020.04.012.
Mitchell, J., and K. Soga. 2005. Fundamentals of soil behavior. New York: Wiley.
Monchiet, V., G. Bonnet, and G. Lauriat. 2009. “A FFT-based method to compute the permeability induced by a stokes slip flow through a porous medium.” C.R. Méc. 337 (4): 192–197. https://doi.org/10.1016/j.crme.2009.04.003.
Moulinec, H., and P. Suquet. 1998. “A numerical method for computing the overall response of nonlinear composites with complex microstructure.” Comput. Methods Appl. Mech. Eng. 157 (1–2): 69–94. https://doi.org/10.1016/S0045-7825(97)00218-1.
Neuman, S. P. 1995. “On advective transport in fractal permeability and velocity fields.” Water Resour. Res. 31 (6): 1455–1460. https://doi.org/10.1029/95WR00426.
Nield, D. A., and A. Bejan. 2006. Convection in porous media. Berlin: Springer.
Nuth, M., and L. Laloui. 2008. “Advances in modelling hysteretic water retention curve in deformable soils.” Comput. Geotech. 35 (6): 835–844. https://doi.org/10.1016/j.compgeo.2008.08.001.
Obliger, A., R. Pellenq, F.-J. Ulm, and B. Coasne. 2016. “Free volume theory of hydrocarbon mixture transport in nanoporous materials.” J. Phys. Chem. Lett. 7 (19): 3712–3717. https://doi.org/10.1021/acs.jpclett.6b01684.
Onsager, L. 1931. “Reciprocity relations in irreversible thermodynamics. I.” Phys. Rev. 37 (98): 405–426. https://doi.org/10.1103/PhysRev.37.405.
O’Sullivan, C., and B. Coasne. 2021. “Debate: Darcy’s law is meaningless for flow within individual pores.” In Proc., Biot Bazant Conf. on Engineering Mechanics and Physics of Porous Materials. London: Figshare.
Pape, H., C. Clauser, and J. Iffland. 1999. “Permeability prediction based on fractal pore-space geometry.” Geophysics 64 (5): 1447–1460. https://doi.org/10.1190/1.1444649.
Pathirannahalage, S. K., et al. 2021. “Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations.” J. Chem. Inf. Model. 61 (9): 4521–4536. https://doi.org/10.1021/acs.jcim.1c00794.
Patzek, T., and D. Silin. 2001. “Shape factor and hydraulic conductance in noncircular capillaries: I. One-phase creeping flow.” J. Colloid Interface Sci. 236 (2): 295–304. https://doi.org/10.1006/jcis.2000.7413.
Pereira, J.-M., and C. Arson. 2013. “Retention and permeability properties of damaged porous rocks.” Comput. Geotech. 48 (8): 272–282. https://doi.org/10.1016/j.compgeo.2012.08.003.
Petersen, L. W., P. Moldrup, O. H. Jacobsen, and D. E. Rolston. 1996. “Relations between specific surface area and soil physical and chemical properties.” Soil Sci. 161 (1): 9–21. https://doi.org/10.1097/00010694-199601000-00003.
Reboul, N., E. Vincens, and B. Cambou. 2010. “A computational procedure to assess the distribution of constriction sizes for an assembly of spheres.” Comput. Geotech. 37 (1): 195–206. https://doi.org/10.1016/j.compgeo.2009.09.002.
Romero, E., A. Gens, and A. Lloret. 1999. “Water permeability, water retention and microstructure of unsaturated compacted boom clay.” Eng. Geol. 54 (1–2): 117–127. https://doi.org/10.1016/S0013-7952(99)00067-8.
Saar, M. O., and M. Manga. 1999. “Permeability-porosity relationship in vesicular basalts.” Geophys. Res. Lett. 26 (1): 111–114. https://doi.org/10.1029/1998GL900256.
Sanvitale, N., B. D. Zhao, E. T. Bowman, and C. O’Sullivan. 2021. “Particle-scale observation of seepage flow in granular soils using PIV and CFD.” Géotechnique 2022 (1): 1–57. https://doi.org/10.1680/jgeot.20.P.432.
Schubnel, A., P. M. Benson, B. D. Thompson, J. F. Hazzard, and R. P. Young. 2006. “Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities.” In Rock damage and fluid transport, Part I, 947–973. Berlin: Springer.
Smith, P., J. Simm, R. Gains, S. S. Mars, M. Perlea, and M. Wielputz. 2013. The international levee handbook. London: CIRIA.
Stauffer, D., and A. Aharony. 2018. Introduction to percolation theory. London: CRC Press.
Su, T.-C. 2018. “Exploring semi-solid alloy deformation with discrete element method simulations and synchrotron radiography.” Ph.D. thesis, Dept. of Materials, Imperial College London.
Sufian, A., C. Knight, C. O’Sullivan, B. van Wachem, and D. Dini. 2019. “Ability of a pore network model to predict fluid flow and drag in saturated granular materials.” Comput. Geotech. 110 (12): 344–366. https://doi.org/10.1016/j.compgeo.2019.02.007.
Sun, W., and T.-F. Wong. 2018. “Prediction of permeability and formation factor of sandstone with hybrid lattice Boltzmann/finite element simulation on microtomographic images.” Int. J. Rock Mech. Min. Sci. 106 (Apr): 269–277. https://doi.org/10.1016/j.ijrmms.2018.04.020.
Suquet, P. 1990. “Une méthode simplifiée pour le calcul des propriétés élastiques de matériaux hétérogènes à structure périodique.” Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre [C.R. Acad. Sci. Sér. II: Méc. Phys. Chim., Sci. Univ. Sci. Terre] 311 (7): 769–774.
Talon, L., D. Bauer, N. Gland, S. Youssef, H. Auradou, and I. Ginzburg. 2012. “Assessment of the two relaxation time lattice-Boltzmann scheme to simulate stokes flow in porous media.” Water Resour. Res. 48 (4): 11385. https://doi.org/10.1029/2011WR011385.
Taylor, H., C. O’Sullivan, and W. Sim. 2015. “A new method to identify void constrictions in micro-CT images of sand.” Comput. Geotech. 69 (May): 279–290. https://doi.org/10.1016/j.compgeo.2015.05.012.
Taylor, H. F., C. O’Sullivan, W. W. Sim, and S. J. Carr. 2017. “Sub-particle-scale investigation of seepage in sands.” Soils Found. 57 (3): 439–452. https://doi.org/10.1016/j.sandf.2017.05.010.
Torquato, S. 1990. “Relationship between permeability and diffusion-controlled trapping constant of porous media.” Phys. Rev. Lett. 64 (22): 2644. https://doi.org/10.1103/PhysRevLett.64.2644.
Tyler, S. W., and S. W. Wheatcraft. 1990. “Fractal processes in soil water retention.” Water Resour. Res. 26 (5): 1047–1054. https://doi.org/10.1029/WR026i005p01047.
van der Linden, J. H., G. A. Narsilio, and A. Tordesillas. 2016. “Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.” Phys. Rev. E 94 (2): 022904. https://doi.org/10.1103/PhysRevE.94.022904.
van der Linden, J. H., A. Sufian, G. A. Narsilio, A. R. Russell, and A. Tordesillas. 2018. “A computational geometry approach to pore network construction for granular packings.” Comput. Geosci. 112 (Dec): 133–143. https://doi.org/10.1016/j.cageo.2017.12.004.
Van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Wang, K., and W. Sun. 2018. “A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning.” Comput. Methods Appl. Mech. Eng. 334 (36): 337–380. https://doi.org/10.1016/j.cma.2018.01.036.
Wang, K., and W. Sun. 2019a. “Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning.” Comput. Methods Appl. Mech. Eng. 346 (Nov): 216–241. https://doi.org/10.1016/j.cma.2018.11.026.
Wang, K., and W. Sun. 2019b. “An updated Lagrangian LBM–DEM–FEM coupling model for dual-permeability fissured porous media with embedded discontinuities.” Comput. Methods Appl. Mech. Eng. 344 (Sep): 276–305. https://doi.org/10.1016/j.cma.2018.09.034.
Wang, K., W. Sun, and Q. Du. 2019. “A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with ai-guided experimentation.” Comput. Mech. 64 (2): 467–499. https://doi.org/10.1007/s00466-019-01723-1.
Wheeler, S., R. Sharma, and M. Buisson. 2003. “Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils.” Géotechnique 53 (1): 41–54. https://doi.org/10.1680/geot.2003.53.1.41.
Zhang, C., and N. Lu. 2018. “What is the range of soil water density? Critical reviews with a unified model.” Rev. Geophys. 56 (3): 532–562. https://doi.org/10.1029/2018RG000597.
Zhao, B., and C. O’Sullivan. 2022. “Fluid particle interaction in packings of monodisperse angular particles.” Powder Technol. 395 (Sep): 133–148. https://doi.org/10.1016/j.powtec.2021.09.022.
Ziarani, A. S., and R. Aguilera. 2012. “Knudsen’s permeability correction for tight porous media.” Transp. Porous Media 91 (1): 239–260. https://doi.org/10.1007/s11242-011-9842-6.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 11November 2022

History

Received: Mar 29, 2022
Accepted: Jun 26, 2022
Published online: Aug 30, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 30, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Dept. of Civil and Environmental Engineering, Imperial College London SW7 2AZ, UK. ORCID: https://orcid.org/0000-0002-0935-1910. Email: [email protected]
Professor, School of Civil and Environmental Engineering, Georgia Institute of Technology, Altanta, GA 30332-0355 (corresponding author). ORCID: https://orcid.org/0000-0002-4477-1072. Email: [email protected]
Research Director, Université Grenoble Alpes, Centre National pour la Recherche Scientifique, Laboratoire Interdisciplinaire de Physique, 38000 France. ORCID: https://orcid.org/0000-0002-3933-9744

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share