Abstract

Soft network materials with biomimetic mechanical properties such as a negative Poisson’s ratio have important applications in tissue engineering, biomedical devices, and soft robotics. Several finite-element (FE)-based design strategies have been developed to produce network materials with prescribed mechanical properties. However, obtaining network designs with a prescribed negative Poisson’s ratio over large strain remains a challenge. Here, an optimization framework was developed using isogeometric analysis and a genetic algorithm for the design of soft missing rib structures with controllable negative Poisson’s ratios over large strains. The missing rib structures with six ligaments were optimized to achieve constant negative Poisson’s ratios ranging from 0.1 to 0.6 up to 70% tensile strain under plane stress condition. The optimization framework was employed to obtain a missing rib network design with deformation behavior closely matching that of cat’s skin up to 90% tensile strain. This optimized design was fabricated using a biocompatible material via liquid additive manufacturing and validated experimentally, demonstrating the potential of the soft missing rib designs for biomedical applications.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All models used during the study appear in the published paper. Experimental data used during the study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank Dr. Saumitra Kamalakar Vajandar and Dr. Balaji Vengatachalam for their help in performing experiments.

References

Abdeljaber, O., O. Avci, and D. J. Inman. 2016. “Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms.” J. Sound Vib. 369 (May): 50–62. https://doi.org/10.1016/j.jsv.2015.11.048.
Atalay, O., A. Atalay, J. Gafford, H. Wang, R. Wood, and C. Walsh. 2017. “A highly stretchable capacitive-based strain sensor based on metal deposition and laser rastering.” Adv. Mater. Technol. 2 (9): 1700081. https://doi.org/10.1002/admt.201700081.
Babaee, S., J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi. 2013. “3D soft metamaterials with negative Poisson’s ratio.” Adv. Mater. 25 (36): 5044–5049. https://doi.org/10.1002/adma.201301986.
Bertoldi, K., P. M. Reis, S. Willshaw, and T. Mullin. 2010. “Negative Poisson’s ratio behavior induced by an elastic instability.” Adv. Mater. 22 (3): 361–366. https://doi.org/10.1002/adma.200901956.
Bian, J., Y. Ding, Y. Duan, X. Wan, and Y. Huang. 2017. “Buckling-driven self-assembly of self-similar inspired micro/nanofibers for ultra-stretchable electronics.” Soft Matter 13 (40): 7244–7254. https://doi.org/10.1039/C7SM01686G.
Biot, M. A. 1939. “Non-linear theory of elasticity and the linearized case for a body under initial stress.” London Edinburgh Dublin Philos. Mag. J. Sci. 27 (183): 468–489. https://doi.org/10.1080/14786443908562246.
Bouville, F., E. Maire, S. Meille, B. Van de Moortèle, A. J. Stevenson, and S. Deville. 2014. “Strong, tough and stiff bioinspired ceramics from brittle constituents.” Nat. Mater. 13 (5): 508–514. https://doi.org/10.1038/nmat3915.
Cai, G., J. Wang, K. Qian, J. Chen, S. Li, and P. S. Lee. 2017. “Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection.” Adv. Sci. (Weinh) 4 (2): 1600190. https://doi.org/10.1002/advs.201600190.
Chen, Y., T. Li, F. Scarpa, and L. Wang. 2017. “Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control.” Phys. Rev. Appl. 7 (2): 024012. https://doi.org/10.1103/PhysRevApplied.7.024012.
Cho, S., and S.-H. Ha. 2009. “Isogeometric shape design optimization: Exact geometry and enhanced sensitivity.” Struct. Multidiscip. Optim. 38 (1): 53. https://doi.org/10.1007/s00158-008-0266-z.
Choi, M.-J., and S. Cho. 2018. “Isogeometric configuration design optimization of shape memory polymer curved beam structures for extremal negative Poisson’s ratio.” Struct. Multidiscip. Optim. 58 (5): 1861–1883. https://doi.org/10.1007/s00158-018-2088-y.
Choi, M.-J., S.-H. Kang, M.-H. Oh, and S. Cho. 2019. “Controllable optimal design of auxetic structures for extremal Poisson’s ratio of 2.” Compos. Struct. 226 (8): 111215. https://doi.org/10.1016/j.compstruct.2019.111215.
Clausen, A., F. Wang, J. S. Jensen, O. Sigmund, and J. A. Lewis. 2015. “Topology optimized architectures with programmable Poisson’s ratio over large deformations.” Adv. Mater. 27 (37): 5523–5527. https://doi.org/10.1002/adma.201502485.
Cranford, S. W., A. Tarakanova, N. M. Pugno, and M. J. Buehler. 2012. “Nonlinear material behaviour of spider silk yields robust webs.” Nature 482 (7383): 72–76. https://doi.org/10.1038/nature10739.
Evans, K. E. 1991. “The design of doubly curved sandwich panels with honeycomb cores.” Compos. Struct. 17 (2): 95–111. https://doi.org/10.1016/0263-8223(91)90064-6.
Farrugia, P.-S., R. Gatt, E. Zammit Lonardelli, J. N. Grima, and K. E. Evans. 2019. “Different deformation mechanisms leading to auxetic behavior exhibited by missing rib square grid structures.” Phys. Status Solidi B 256 (1): 1800186. https://doi.org/10.1002/pssb.201800186.
Han, Y., and W. Lu. 2018. “Evolutionary design of nonuniform cellular structures with optimized Poisson’s ratio distribution.” Mater. Des. 141 (12): 384–394. https://doi.org/10.1016/j.matdes.2017.12.047.
He, Q., Z. Kang, and Y. Wang. 2014. “A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation.” Comput. Mech. 54 (3): 629–644. https://doi.org/10.1007/s00466-014-1011-7.
Hughes, T. J., J. A. Cottrell, and Y. Bazilevs. 2005. “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.” Comput. Methods Appl. Mech. Eng. 194 (39–41): 4135–4195. https://doi.org/10.1016/j.cma.2004.10.008.
Jakiela, M. J., C. Chapman, J. Duda, A. Adewuya, and K. Saitou. 2000. “Continuum structural topology design with genetic algorithms.” Comput. Methods Appl. Mech. Eng. 186 (2–4): 339–356. https://doi.org/10.1016/S0045-7825(99)00390-4.
Jang, K.-I., et al. 2015. “Soft network composite materials with deterministic and bio-inspired designs.” Nat. Commun. 6 (12): 6566. https://doi.org/10.1038/ncomms7566.
Javadi, A. A., A. Faramarzi, and R. Farmani. 2012. “Design and optimization of microstructure of Auxetic materials.” In Engineering computations. Bingley, UK: Emerald Group Publishing. https://www.emerald.com/insight/content/doi/10.1108/02644401211212398/full/html.
Jenkins, W. 1991. “Towards structural optimization via the genetic algorithm.” Comput. Struct. 40 (5): 1321–1327. https://doi.org/10.1016/0045-7949(91)90402-8.
Ji, B., and H. Gao. 2010. “Mechanical principles of biological nanocomposites.” Annu. Rev. Mater. Res. 40 (4): 77–100. https://doi.org/10.1146/annurev-matsci-070909-104424.
Jiang, Y., et al. 2018. “Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors.” Adv. Mater. 30 (12): 1706589. https://doi.org/10.1002/adma.201706589.
Kim, S., C. Laschi, and B. Trimmer. 2013. “Soft robotics: A bioinspired evolution in robotics.” Trends Biotechnol. 31 (5): 287–294. https://doi.org/10.1016/j.tibtech.2013.03.002.
Kostas, K., M. Fyrillas, C. Politis, A. Ginnis, and P. Kaklis. 2018. “Shape optimization of conductive-media interfaces using an IGA-BEM solver.” Comput. Methods Appl. Mech. Eng. 340 (23): 600–614. https://doi.org/10.1016/j.cma.2018.06.019.
Koudelka, P., O. Jirousek, T. Fila, and T. Doktor. 2016. “Compressive properties of auxetic structures produced with direct 3D printing.” Mater. Technol. 50 (3): 311–317. https://doi.org/10.17222/mit.2014.204.
Koutsianitis, P. I., G. K. Tairidis, G. A. Drosopoulos, and G. E. Stavroulakis. 2019. “Conventional and star-shaped auxetic materials for the creation of band gaps.” Arch. Appl. Mech. 89 (12): 2545–2562. https://doi.org/10.1007/s00419-019-01594-1.
Lakes, R. 1991. “Deformation mechanisms in negative Poisson’s ratio materials: Structural aspects.” J. Mater. Sci. 26 (9): 2287–2292. https://doi.org/10.1007/BF01130170.
Lian, H., P. Kerfriden, and S. Bordas. 2017. “Shape optimization directly from cad: An isogeometric boundary element approach using T-splines.” Comput. Methods Appl. Mech. Eng. 317 (12): 1–41. https://doi.org/10.1016/j.cma.2016.11.012.
Liu, J., and Y. Zhang. 2018. “Soft network materials with isotropic negative Poisson’s ratios over large strains.” Soft Matter 14 (5): 693–703. https://doi.org/10.1039/C7SM02052J.
Matsuoka, T., S. Yamamoto, and M. Takahara. 2001. “Prediction of structures and mechanical properties of composites using a genetic algorithm and finite element method.” J. Mater. Sci. 36 (1): 27–33. https://doi.org/10.1023/A:1004818203253.
Mazloomi, M. S., M. Ranjbar, L. Boldrin, F. Scarpa, S. Patsias, and N. Ozada. 2018. “Vibroacoustics of 2D gradient auxetic hexagonal honeycomb sandwich panels.” Compos. Struct. 187 (6): 593–603. https://doi.org/10.1016/j.compstruct.2017.10.077.
Meyers, M. A., J. McKittrick, and P.-Y. Chen. 2013. “Structural biological materials: Critical mechanics-materials connections.” Science 339 (6121): 773–779. https://doi.org/10.1126/science.1220854.
Mooney, M. 1940. “A theory of large elastic deformation.” J. Appl. Phys. 11 (9): 582–592. https://doi.org/10.1063/1.1712836.
Munch, E., M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie. 2008. “Tough, bio-inspired hybrid materials.” Science 322 (5907): 1516–1520. https://doi.org/10.1126/science.1164865.
Naik, N., J. Caves, E. L. Chaikof, and M. G. Allen. 2014. “Generation of spatially aligned collagen fiber networks through microtransfer molding.” Adv. Healthcare Mater. 3 (3): 367–374. https://doi.org/10.1002/adhm.201300112.
Nguyen, D. M., A. Evgrafov, and J. Gravesen. 2012. “Isogeometric shape optimization for electromagnetic scattering problems.” Prog. Electromagn. Res. B 45 (12): 117–146. https://doi.org/10.2528/PIERB12091308.
Nørtoft, P., and J. Gravesen. 2013. “Isogeometric shape optimization in fluid mechanics.” Struct. Multidiscip. Optim. 48 (5): 909–925. https://doi.org/10.1007/s00158-013-0931-8.
Pokkalla, D. K. 2020. “Isogeometric shape optimization of auxetics with prescribed nonlinear deformation.” Accessed September 19, 2020. https://scholarbank.nus.edu.sg/handle/10635/190526.
Pokkalla, D. K., L. H. Poh, and S. T. Quek. 2021. “Isogeometric shape optimization of missing rib auxetics with prescribed negative Poisson’s ratio over large strains using genetic algorithm.” Int. J. Mech. Sci. 193 (12): 106169. https://doi.org/10.1016/j.ijmecsci.2020.106169.
Pokkalla, D. K., Z.-P. Wang, L. H. Poh, and S. T. Quek. 2019. “Isogeometric shape optimization of smoothed petal auxetics with prescribed nonlinear deformation.” Comput. Methods Appl. Mech. Eng. 356 (32): 16–43. https://doi.org/10.1016/j.cma.2019.07.014.
Pratapa, P. P., K. Liu, and G. H. Paulino. 2019. “Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment.” Phys. Rev. Lett. 122 (15): 155501. https://doi.org/10.1103/PhysRevLett.122.155501.
Qian, X. 2010. “Full analytical sensitivities in NURBS based isogeometric shape optimization.” Comput. Methods Appl. Mech. Eng. 199 (29–32): 2059–2071. https://doi.org/10.1016/j.cma.2010.03.005.
Qiu, K., R. Wang, J. Zhu, and W. Zhang. 2020. “Optimization design of chiral hexagonal honeycombs with prescribed elastic properties under large deformation.” Chin. J. Aeronaut. 33 (3): 902–909. https://doi.org/10.1016/j.cja.2019.09.025.
Schenk, M., and S. D. Guest. 2013. “Geometry of Miura-folded metamaterials.” Proc. Natl. Acad. Sci. 110 (9): 3276–3281. https://doi.org/10.1073/pnas.1217998110.
Schwerdtfeger, J., F. Wein, G. Leugering, R. Singer, C. Körner, M. Stingl, and F. Schury. 2011. “Design of auxetic structures via mathematical optimization.” Adv. Mater. 23 (22–23): 2650–2654. https://doi.org/10.1002/adma.201004090.
Sigmund, O. 1994. “Materials with prescribed constitutive parameters: An inverse homogenization problem.” Int. J. Solids Struct. 31 (17): 2313–2329. https://doi.org/10.1016/0020-7683(94)90154-6.
Sigmund, O. 2007. “Morphology-based black and white filters for topology optimization.” Struct. Multidiscip. Optim. 33 (4): 401–424. https://doi.org/10.1007/s00158-006-0087-x.
Sigmund, O. 2009. “Manufacturing tolerant topology optimization.” Acta Mech. Sin. 25 (2): 227–239. https://doi.org/10.1007/s10409-009-0240-z.
Smith, C. W., J. Grima, and K. Evans. 2000. “A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model.” Acta Mater. 48 (17): 4349–4356. https://doi.org/10.1016/S1359-6454(00)00269-X.
Sun, S., T. Yu, T. T. Nguyen, E. Atroshchenko, and T. Bui. 2018. “Structural shape optimization by IGABEM and particle swarm optimization algorithm.” Eng. Anal. Boundary Elem. 88 (12): 26–40. https://doi.org/10.1016/j.enganabound.2017.12.007.
Tyburec, M., J. Zeman, M. Kružik, and D. Henrion. 2021. “Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy.” Struct. Multidiscip. Optim. 64 (4): 1963–1981. https://doi.org/10.1007/s00158-021-02957-5.
Vasudevan, S. P., and P. P. Pratapa. 2021. “Origami metamaterials with near-constant Poisson functions over finite strains.” J. Eng. Mech. 147 (11): 04021093. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002002.
Veronda, D., and R. Westmann. 1970. “Mechanical characterization of skin—Finite deformations.” J. Biomech. 3 (1): 111–124. https://doi.org/10.1016/0021-9290(70)90055-2.
Vogiatzis, P., S. Chen, X. Wang, T. Li, and L. Wang. 2017. “Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method.” Comput.-Aided Des. 83 (Sep): 15–32. https://doi.org/10.1016/j.cad.2016.09.009.
Wall, W. A., M. A. Frenzel, and C. Cyron. 2008. “Isogeometric structural shape optimization.” Comput. Methods Appl. Mech. Eng. 197 (33–40): 2976–2988. https://doi.org/10.1016/j.cma.2008.01.025.
Wang, C., S. Xia, X. Wang, and X. Qian. 2018a. “Isogeometric shape optimization on triangulations.” Comput. Methods Appl. Mech. Eng. 331 (Nov): 585–622. https://doi.org/10.1016/j.cma.2017.11.032.
Wang, F. 2018. “Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains.” J. Mech. Phys. Solids 114 (Jan): 303–318. https://doi.org/10.1016/j.jmps.2018.01.013.
Wang, F., O. Sigmund, and J. S. Jensen. 2014. “Design of materials with prescribed nonlinear properties.” J. Mech. Phys. Solids 69 (May): 156–174. https://doi.org/10.1016/j.jmps.2014.05.003.
Wang, Y., J. Gao, Z. Luo, T. Brown, and N. Zhang. 2017a. “Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials.” Eng. Optim. 49 (1): 22–42. https://doi.org/10.1080/0305215X.2016.1164853.
Wang, Y., W. Zhao, G. Zhou, Q. Gao, and C. Wang. 2018b. “Optimization of an auxetic jounce bumper based on Gaussian process metamodel and series hybrid GA-SQP algorithm.” Struct. Multidiscip. Optim. 57 (6): 2515–2525. https://doi.org/10.1007/s00158-017-1869-z.
Wang, Z.-P., and D. Kumar. 2017. “On the numerical implementation of continuous adjoint sensitivity for transient heat conduction problems using an isogeometric approach.” Struct. Multidiscip. Optim. 56 (2): 487–500. https://doi.org/10.1007/s00158-017-1669-5.
Wang, Z.-P., L. H. Poh, J. Dirrenberger, Y. Zhu, and S. Forest. 2017b. “Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization.” Comput. Methods Appl. Mech. Eng. 323 (5): 250–271. https://doi.org/10.1016/j.cma.2017.05.013.
Weeger, O., B. Narayanan, and M. L. Dunn. 2019. “Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures.” Comput. Methods Appl. Mech. Eng. 345 (10): 26–51. https://doi.org/10.1016/j.cma.2018.10.038.
Wegst, U. G. K., H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie. 2015. “Bioinspired structural materials.” Nat. Mater. 14 (1): 23–36. https://doi.org/10.1038/nmat4089.
Xu, S., et al. 2014. “Soft microfluidic assemblies of sensors, circuits, and radios for the skin.” Science 344 (6179): 70–74. https://doi.org/10.1126/science.1250169.
Yang, J. C., J. Mun, S. Y. Kwon, S. Park, Z. Bao, and S. Park. 2019. “Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics.” Adv. Mater. 31 (48): 1904765. https://doi.org/10.1002/adma.201904765.
Yoon, M., and S. Cho. 2016. “Isogeometric shape design sensitivity analysis of elasticity problems using boundary integral equations.” Eng. Anal. Boundary Elem. 66 (Jan): 119–128. https://doi.org/10.1016/j.enganabound.2016.01.010.
Zhang, Z., Y.-W. Zhang, and H. Gao. 2011. “On optimal hierarchy of load-bearing biological materials.” Proc. R. Soc. B: Biol. Sci. 278 (1705): 519–525. https://doi.org/10.1098/rspb.2010.1093.
Zhang, Z. Q., B. Liu, Y. Huang, K. Hwang, and H. Gao. 2010. “Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution.” J. Mech. Phys. Solids 58 (10): 1646–1660. https://doi.org/10.1016/j.jmps.2010.07.004.
Zheng, Y., Y. Wang, X. Lu, Z. Liao, and J. Qu. 2020. “Evolutionary topology optimization for mechanical metamaterials with auxetic property.” Int. J. Mech. Sci. 179 (Jan): 105638. https://doi.org/10.1016/j.ijmecsci.2020.105638.
Zhu, Y., S. Jiang, J. Li, D. K. Pokkalla, Q. Wang, and C. Zhang. 2021. “Novel isotropic anti-tri-missing rib auxetics with prescribed in-plane mechanical properties over large deformations.” Int. J. Appl. Mech. 13 (10): 2150115. https://doi.org/10.1142/S1758825121501155.
Zhu, Y., S. Jiang, L. H. Poh, Y. Shao, and Q. Wang. 2020. “Enhanced hexa-missing rib auxetics for achieving targeted constant NPR and in-plane isotropy at finite deformation.” Smart Mater. Struct. 29 (4): 045030. https://doi.org/10.1088/1361-665X/ab7949.
Zhu, Y., Z.-P. Wang, and L. H. Poh. 2018. “Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation.” Smart Mater. Struct. 27 (5): 055001. https://doi.org/10.1088/1361-665X/aab33d.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 11November 2022

History

Received: Nov 10, 2021
Accepted: Jun 7, 2022
Published online: Aug 26, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Deepak Kumar Pokkalla, Ph.D., M.ASCE https://orcid.org/0000-0001-5339-8399 [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, 1 Engineering Dr. 2, Singapore 117576. ORCID: https://orcid.org/0000-0001-5339-8399. Email: [email protected]
Scientist, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, # 16-16 Connexis, Singapore 138632. ORCID: https://orcid.org/0000-0002-5604-5940
Jee Chin Teoh, Ph.D.
Research Fellow, Mechanobiology Institute, National Univ. of Singapore, 5A Engineering Dr. 1, Singapore 117411.
Associate Professor, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, 1 Engineering Dr. 2, Singapore 117576 (corresponding author). ORCID: https://orcid.org/0000-0002-7670-937X. Email: [email protected]
Chwee Teck Lim, Ph.D.
Professor, Dept. of Biomedical Engineering, National Univ. of Singapore, 4 Engineering Dr. 3, Singapore 117583.
Professor, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, 1 Engineering Dr. 2, Singapore 117576. ORCID: https://orcid.org/0000-0002-8514-0699

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share