Technical Papers
Oct 10, 2022

Structures That Can Be Made with Carbon Nanotube Fibers but Not with Other Materials

Publication: Journal of Engineering Mechanics
Volume 148, Issue 12

Abstract

As already indicated by Galileo, the laws of rescaling for load-bearing structures do not follow the simple geometric proportion because the structural weight increases more than the structural capacity and can equally lead to an effective loss of stiffness. Developing the theory originally proposed by Stüssi, the structural capacity of various materials are compared on the basis of performance indexes, such as specific strength and specific stiffness. This highlights how the structural weight increases as a function of the service load for various static schemes, dictating a theoretical limit for the structural size. Worked examples are presented in the fields of civil, marine, and aerospace engineering. Solution-spun carbon nanotube fibers appear promising because they are sustainable green materials whose capacity is superior to the best steels and comparable with the state-of-the-art carbon and Kevlar fibers. It is expected that the continuous improvement of the production techniques can bring their performances close to the theoretical limit of the constituent carbon nanotubes (CNTs), allowing the construction of superstructures not even imaginable today with the currently available materials.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the article.

References

Appell, D. 2011. “Stairway to the heavens.” Phys. World 24 (12): 30–34. https://doi.org/10.1088/2058-7058/24/12/36.
Ashby, M. 1999. Materials selection in mechanical design. 2nd ed. Oxford: Butterworth-Heinemann.
Bai, Y., et al. 2018. “Carbon nanotube bundles with tensile strength over 80 GPa.” Nat. Nanotechnol. 13 (7): 589–595. https://doi.org/10.1038/s41565-018-0141-z.
Barhoum, A., K. Pal, H. Rahier, H. Uludag, I. Kim, and M. Bechelany. 2019. “Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications.” Appl. Mater. Today 17 (Dec): 1–35. https://doi.org/10.1016/j.apmt.2019.06.015.
Carpinteri, A., and N. Pugno. 2008. “Super-bridges suspended over carbon nanotube cables.” J. Phys.: Condens. Matter 20 (47): 1–8. https://doi.org/10.1088/0953-8984/20/47/474213.
CMA Inc. 2018. “T700G standard modulus fiber.” Accessed January 29, 2020. https://www.cma.com/file_viewer.php?id5111.
Croce, P. 2013. “Non-linear behavior of heavy stays.” Int. J. Solids Struct. 50 (7–8): 1093–1107. https://doi.org/10.1016/j.ijsolstr.2012.12.012.
De Miranda, F. 1988. “Long span bridges. Design aspects.” Costruzioni Metalliche 4: 141–167.
Dischinger, F. 1949. “Hängebrücken für schwerste Verkehrslasten (1 and 2).” Der Bauingenieur 24 (4): 107–113.
Dürer, A. 1532. De Symmetria Partium In Rectis Formis Humanorum Corporum. Nuremberg, Germany: Hieronymus Formschneider.
Ernst, J. 1965. “Der E-Modul von Seilen Under Berücksichtigung des Durchhanges.” Der Bauingenieur 40 (2): 52–55.
Galilei, G. 1638. Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica e i movimenti locali. Leiden, Netherlands: Ludovico Elzeviro.
Galilei, G. 1899. “Due lezioni all’Accademia Fiorentina circa la figura, sito e grandezza dell’Inferno di Dante.” In Vol. 9 of Le Opere di Galileo Galilei, 29–57. Florence, Italy: Barbera.
Galilei, G. 1954. Two new sciences. Translated by H. Crew and A. de Salvio. New York: Dover.
Galuppi, L., M. Pasquali, and G. Royer-Carfagni. 2019. “The effective tensile and bending stiffness of nanotube fibers.” Int. J. Mech. Sci. 163 (Nov): 105089. https://doi.org/10.1016/j.ijmecsci.2019.105089.
Gigli, O. 1850. Studi s ulla Divina Commedia di Galileo Galilei, Vincenzo Borghini ed altri. Florence, Italy: Le Monnier.
Gotti, C., A. Sensini, A. Zucchelli, R. Carloni, and M. Focarete. 2020. “Hierarchical fibrous structures for muscle-inspired soft-actuators: A review.” Appl. Mater. Today 20 (Sep): 100772. https://doi.org/10.1016/j.apmt.2020.100772.
Guo, X., A. Riad, R. Chennareddy, and M. M. Reda Taha. 2018. “Seismic resistance of GFRP bolted joints with carbon nanotubes.” J. Eng. Mech. 144 (11): 1–8. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001528.
Hexcel. 2016. “Hextow IM10 carbon fiber data sheet.” Accessed January 29, 2020. https://www.hexcel.com/user_area/content_media/raw/IM10_HexTow_DataSheet.pdf.
Hoang, V., M. Hassan, and V. Gomes. 2018. “Coal derived carbon nanomaterials—Recent advances in synthesis and applications.” Appl. Mater. Today 12 (Sep): 342–358. https://doi.org/10.1016/j.apmt.2018.06.007.
Holler, R., V. Smejkal, F. Libisch, and C. Hellmich. 2020. “Energy landscapes of graphene under general deformations: DFT-to-hyperelasticity upscaling.” Int. J. Eng. Sci. 154 (Sep): 103342. https://doi.org/10.1016/j.ijengsci.2020.103342.
Iijima, S. 1991. “Helical microtubules of graphitic carbon.” Nature 354 (6348): 56–58. https://doi.org/10.1038/354056a0.
Kim, J., G. Sauti, B. Jensen, J. Smith, K. Wise, R. Wincheski, R. J. Cano, and E. J. Siochi. 2021. “Modifying carbon nanotube fibers: A study relating apparent interfacial shear strength and failure mode.” Carbon 173 (Mar): 857–869. https://doi.org/10.1016/j.carbon.2020.11.055.
Larssen, R., and S. E. Jackobsen. 2010. “Submerged floating tunnels for crossing of wide and deep fjords.” Procedia Eng. 4 (Jan): 171–178. https://doi.org/10.1016/j.proeng.2010.08.020.
Lu, K. 2010. “The future of metals.” Mater. Sci. 328 (5976): 319–320. https://doi.org/10.1126/science.1185866.
Martire, G. 2010. “The development of submerged floating tunnels as an innovative solution for waterway crossings.” Ph.D. thesis, Facoltà di Ingegneria, Dottorato di Ricerca in Ingegneria delle Costruzioni, Università degli Studi di Napoli Federico II.
Mazzolani, F., B. Faggiano, and G. Martire. 2010. “Design aspects of the AB prototype in the Qiandao Lake.” Procedia Eng. 4 (Jan): 21–33. https://doi.org/10.1016/j.proeng.2010.08.005.
Mazzolani, F., R. Landolfo, B. Faggiano, M. Esposto, F. Perotti, and G. Barbella. 2008. “Structural analyses of the submerged floating tunnel prototype in Qiandao Lake (PR of China).” Adv. Struct. Eng. 11 (4): 439–454. https://doi.org/10.1260/136943308785836862.
Meier, U. 1987. “Proposal for a carbon fibre reinforced composite bridge across the Strait of Gibraltar at its narrowest site.” Proc. Inst. Mech. Eng. 201 (2): 73–78. https://doi.org/10.1243/PIME_PROC_1987_201_048_02.
Meng, F., W. Lu, Q. Li, J. Byun, Y. Oh, and T. Chou. 2015. “Graphene-based fibers: A review.” Adv. Mater. 27 (35): 5113–5131. https://doi.org/10.1002/adma.201501126.
Mitsubishi Rayon Co. Ltd. 2016. “Coal tar pitch-based carbon fiber (CF) dialead.” Accessed May 11, 2020. https://makesat.com/uploads/product_document/37/DIALEAD_EN201609.pdf.
Peng, B., M. Locascio, P. Zapol, S. Li, S. Mielke, G. Schatz, and H. D. Espinosa. 2008. “Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.” Nat. Nanotechnol. 3 (10): 626–631. https://doi.org/10.1038/nnano.2008.211.
Pugno, N. 2006. “On the strength of the carbon nanotube-based space elevetor cable from nano to mega mechanics.” J. Phys.: Condens. Matter 18 (33): 1971–1990. https://doi.org/10.1088/0953-8584/18/33/S14.
Sabelkin, V., H. Misak, S. Mall, R. Asmatulu, and P. E. Kladitis. 2012. “Tensile loading behavior of carbon nanotube wires.” Carbon 50 (7): 2530–2538. https://doi.org/10.1016/j.carbon.2012.01.077.
Seyedin, S., S. Moradi, C. Singh, and J. Razal. 2018. “Continuous production of stretchable conductive multifilaments in kilometerscale enables facile knitting of wearable strain sensing textiles.” Appl. Mater. Today 11 (Jun): 255–263. https://doi.org/10.1016/j.apmt.2018.02.012.
Shi, B., T. Wang, L. Shib, J. Lia, R. Wang, and J. Sun. 2020. “Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires.” Appl. Mater. Today 19 (Jun): 100610. https://doi.org/10.1016/j.apmt.2020.100610.
Stallard, J., W. Tan, F. Smail, T. Gspann, A. Boies, and N. Fleck. 2018. “The mechanical and electrical properties of direct-spun carbon nanotube mats.” Extreme Mech. Lett. 21 (May): 65–75. https://doi.org/10.1016/j.eml.2018.03.003.
Stüssi, F. 1964. Uber die Entwicklung der Wissenschaft im Bruckenbau. Zürich, Switzerland: Naturforschenden Gesellschaft.
Swan, P., C. Swan, P. Phister, D. Dotson, J. Bernard-Cooper, and B. Molloy. 2021. Space elevators: The green road to space. Morrisville, NC: Lulu Press for International Space Elevator Consortium.
Taylor, L., O. Dewey, R. Headrick, N. Komatsu, N. Peraca, G. Wehmeyer, J. Kono, and M. Pasquali. 2021. “Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers.” Carbon 171 (Jan): 689–694. https://doi.org/10.1016/j.carbon.2020.07.058.
Xiang, Y., and Y. Yang. 2016. “Challenge in design and construction of submerged floating tunnel and state-of-art.” In Vol. 166 of Proc., Int. Symp. on Submerged Floating Tunnels and Underwater Tunnel Structures, edited by S. Jiang, F. M. Mazzolani, J. Yu, and Y. Hong, 53–60. Amsterdam, Netherlands: Elsevier Procedia. https://doi.org/10.1016/j.proeng.2016.11.562.
Zhang, R., Q. Wen, W. Qian, D. Su, Q. Zhang, and F. Wei. 2011. “Superstrong ultralong carbon nanotubes for mechanical energy storage.” Adv. Mater. 23 (30): 3387–3391. https://doi.org/10.1002/adma.201100344.
Zhang, Y. Y., C. M. Wang, and V. B. C. Tan. 2006. “Buckling of multiwalled carbon nanotubes using Timoshenko beam theory.” J. Eng. Mech. 132 (9): 952–958. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(952).
Zhang, Z., B. Liu, Y. Zhang, K. Hwang, and H. Gao. 2014. “Ultra-strong collagen-mimic carbon nanotube bundles.” Carbon 77 (Oct): 1040–1053. https://doi.org/10.1016/j.carbon.2014.06.020.
Zhao, Q., M. Buongiorno Nardelli, and J. Bernholc. 2002. “Ultimate strength of carbon nanotubes: A theoretical study.” Phys. Rev. B 65 (14): 144105. https://doi.org/10.1103/PhysRevB.65.144105.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 12December 2022

History

Received: Mar 9, 2022
Accepted: May 2, 2022
Published online: Oct 10, 2022
Published in print: Dec 1, 2022
Discussion open until: Mar 10, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Reginald Desroches, F.ASCE
Professor and President, Dept. of Civil and Environmental Engineering, Rice Univ., Houston, TX 77005.
Giovanni Migliaccio
Postdoc Researcher, Dept. of Engineering and Architecture, Univ. of Parma, Parco Area delle Scienze 181/A, Parma I 43100, Italy.
Professor, Dept. of Engineering and Architecture, Univ. of Parma, Parco Area delle Scienze 181/A, Parma I 43100, Italy; Construction Technologies Institute—National Research Council of Italy (ITC-CNR), Viale Lombardia 49, San Giuliano Milanese I 20098, Italy (corresponding author). ORCID: https://orcid.org/0000-0003-4879-9846. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share