Technical Papers
Aug 28, 2021

Origami Metamaterials with Near-Constant Poisson Functions over Finite Strains

Publication: Journal of Engineering Mechanics
Volume 147, Issue 11

Abstract

Origami-based structures have gained interest in recent years due to their potential to develop lattice materials, called metamaterials, the mechanics of which are primarily driven by the unit cell geometry. The folding deformations of typical origami metamaterials result in stretch-dependent Poisson’s ratios, and therefore in Poisson functions with significant variability across finite deformation. This limits their applicability, because the desired response is retained only for a narrow strain range. To overcome this limitation, a class of composite origami metamaterials with a nearly a constant Poisson function, specifically in the range 0.5 to 1.2 over a finite stretch of up to 3.0 with a minimum of 1.1, is presented. Drawing from the recently proposed Morph pattern, the composite system is built as a compatible combination of two sets of cells with contrasting Poisson effects. The number and dimensions of the cells were optimized for a stretch-independent Poisson function. The effects of various strain measures in defining the Poisson function were discussed. The results of the study were validated using a bar-and-hinge-based numerical framework capable of simulating the finite deformation behavior of the proposed designs.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Siva Poornan Vasudevan acknowledges the support from the fellowship offered by Prime Minister’s Research Fellows (PMRF) Scheme, Ministry of Human Resource Development, Government of India. Phanisri Pradeep Pratapa acknowledges the support from the Indian Institute of Technology Madras through a seed grant, and the Science & Engineering Research Board (SERB) of the Department of Science & Technology, Government of India through award SRG/2019/000999. The information provided in this paper is the sole opinion of the authors and does not necessarily reflect the views of the sponsors or sponsoring agencies.

References

Alderson, K. L., A. Fitzgerald, and K. E. Evans. 2000. “The strain dependent indentation resilience of auxetic microporous polyethylene.” J. Mater. Sci. 35 (16): 4039–4047. https://doi.org/10.1023/A:1004830103411.
Babaee, S., J. T. Overvelde, E. R. Chen, V. Tournat, and K. Bertoldi. 2016. “Reconfigurable origami-inspired acoustic waveguides.” Sci. Adv. 2 (11): e1601019. https://doi.org/10.1126/sciadv.1601019.
Babaee, S., J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi. 2013. “3D soft metamaterials with negative Poisson’s ratio.” Adv. Mater. 25 (36): 5044–5049. https://doi.org/10.1002/adma.201301986.
Ban, E., H. Wang, J. M. Franklin, J. T. Liphardt, P. A. Janmey, and V. B. Shenoy. 2019. “Strong triaxial coupling and anomalous Poisson effect in collagen networks.” Proc. Natl. Acad. Sci. 116 (14): 6790–6799. https://doi.org/10.1073/pnas.1815659116.
Beatty, M. F., and D. O. Stalnaker. 1986. “The Poisson function of finite elasticity.” J. Appl. Mech. 53 (4): 807–813. https://doi.org/10.1115/1.3171862.
Bertoldi, K., P. M. Reis, S. Willshaw, and T. Mullin. 2010. “Negative Poisson’s ratio behavior induced by an elastic instability.” Adv. Mater. 22 (3): 361–366. https://doi.org/10.1002/adma.200901956.
Bertoldi, K., V. Vitelli, J. Christensen, and M. van Hecke. 2017. “Flexible mechanical metamaterials.” Nat. Rev. Mater. 2 (11): 1–11. https://doi.org/10.1038/natrevmats.2017.66.
Boatti, E., N. Vasios, and K. Bertoldi. 2017. “Origami metamaterials for tunable thermal expansion.” Adv. Mater. 29 (26): 1700360. https://doi.org/10.1002/adma.201700360.
Cai, J., X. Deng, Y. Xu, and J. Feng. 2015. “Geometry and motion analysis of origami-based deployable shelter structures.” J. Struct. Eng. 141 (10): 06015001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001238.
Chen, Y., T. Li, F. Scarpa, and L. Wang. 2017. “Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control.” Phys. Rev. Appl. 7 (2): 024012. https://doi.org/10.1103/PhysRevApplied.7.024012.
Clausen, A., F. Wang, J. S. Jensen, O. Sigmund, and J. A. Lewis. 2015. “Topology optimized architectures with programmable Poisson’s ratio over large deformations.” Adv. Mater. 27 (37): 5523–5527. https://doi.org/10.1002/adma.201502485.
Cromvik, C., and K. Eriksson. 2006. “Airbag folding based on origami mathematics.” Chap. 2 in Origami. Boca Raton, FL: Taylor & Francis.
Del Grosso, A. E., and P. Basso. 2010. “Adaptive building skin structures.” Smart Mater. Struct. 19 (12): 124011. https://doi.org/10.1088/0964-1726/19/12/124011.
Delissen, A., G. Radaelli, L. A. Shaw, J. B. Hopkins, and J. L. Herder. 2018. “Design of an isotropic metamaterial with constant stiffness and zero Poisson’s ratio over large deformations.” J. Mech. Des. N Y 140 (11): 111405. https://doi.org/10.1115/1.4041170.
Felton, S., M. Tolley, E. Demaine, D. Rus, and R. Wood. 2014. “A method for building self-folding machines.” Science 345 (6197): 644–646. https://doi.org/10.1126/science.1252610.
Filipov, E. T., K. Liu, T. Tachi, M. Schenk, and G. H. Paulino. 2017. “Bar and hinge models for scalable analysis of origami.” Int. J. Solids Struct. 124 (Oct): 26–45. https://doi.org/10.1016/j.ijsolstr.2017.05.028.
Filipov, E. T., G. H. Paulino, and T. Tachi. 2019. “Deployable sandwich surfaces with high out-of-plane stiffness.” J. Struct. Eng. 145 (2): 04018244. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002240.
Filipov, E. T., T. Tachi, and G. H. Paulino. 2015. “Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.” Proc. Natl. Acad. Sci. 112 (40): 12321–12326. https://doi.org/10.1073/pnas.1509465112.
Greaves, G. N., A. L. Greer, R. S. Lakes, and T. Rouxel. 2011. “Poisson’s ratio and modern materials.” Nat. Mater. 10 (11): 823–837. https://doi.org/10.1038/nmat3134.
Hill, R. 1968. “On constitutive inequalities for simple materials—I.” J. Mech. Phys. Solids 16 (4): 229–242. https://doi.org/10.1016/0022-5096(68)90031-8.
Jiang, Y., et al. 2018. “Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors.” Adv. Mater. 30 (12): 1706589. https://doi.org/10.1002/adma.201706589.
Kolken, H. M. A., and A. A. Zadpoor. 2017. “Auxetic mechanical metamaterials.” RSC Adv. 7 (9): 5111–5129. https://doi.org/10.1039/C6RA27333E.
Kumar, D., L. H. Poh, and S. T. Quek. 2021. “Isogeometric shape optimization of missing rib auxetics with prescribed negative Poisson’s ratio over large strains using genetic algorithm.” Int. J. Mech. Sci. 193 (Mar): 106169. https://doi.org/10.1016/j.ijmecsci.2020.106169.
Kuribayashi, K., K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, and M. Sasaki. 2006. “Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil.” Mater. Sci. Eng., A 419 (1–2): 131–137. https://doi.org/10.1016/j.msea.2005.12.016.
Lang, R. J. 2007. “The science of origami.” Phys. World 20 (2): 30. https://doi.org/10.1088/2058-7058/20/2/31.
Lang, R. J. 2017. Twists, tilings, and tessellations: Mathematical methods for geometric origami. Boca Raton, FL: AK Peters/CRC Press.
Li, S., H. Fang, S. Sadeghi, P. Bhovad, and K.-W. Wang. 2019. “Architected origami materials: How folding creates sophisticated mechanical properties.” Adv. Mater. 31 (5): 1805282. https://doi.org/10.1002/adma.201805282.
Li, Y., and C. Zeng. 2016. “Room-temperature, near-instantaneous fabrication of auxetic materials with constant Poisson’s ratio over large deformation.” Adv. Mater. 28 (14): 2822–2826. https://doi.org/10.1002/adma.201505650.
Liu, J., and Y. Zhang. 2018. “Soft network materials with isotropic negative Poisson’s ratios over large strains.” Soft Matter 14 (5): 693–703. https://doi.org/10.1039/C7SM02052J.
Liu, K., and G. H. Paulino. 2016. “MERLIN: A MATLAB implementation to capture highly nonlinear behavior of non-rigid origami.” In Proc., IASS Annual Symp. Int. Association for Shell and Spatial Structures (IASS), 1–10. Madrid, Spain: International Association for Shell and Spatial Structures.
Liu, K., and G. H. Paulino. 2017. “Nonlinear mechanics of non-rigid origami: An efficient computational approach.” Proc. R. Soc. Math. Phys. Eng. Sci. 473 (2206): 20170348. https://doi.org/10.1098/rspa.2017.0348.
Liu, K., and G. H. Paulino. 2018. “Highly efficient nonlinear structural analysis of origami assemblages using the MERLIN2 software.” In Chap. 7 in Origami. Boca Raton, FL: Taylor & Francis.
Mihai, L. A., and A. Goriely. 2017. “How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity.” Proc. R. Soc. Math. Phys. Eng. Sci. 473 (2207): 20170607. https://doi.org/10.1098/rspa.2017.0607.
Milton, G. W. 2013. “Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots.” J. Mech. Phys. Solids 61 (7): 1543–1560. https://doi.org/10.1016/j.jmps.2012.08.011.
Miura, K. 1985. Method of packaging and deployment of large membranes in space. Sagamihara, Japan: Institute of Space and Astronautical Sciences.
Nedjar, B. 2016. “On constitutive models of finite elasticity with possible zero apparent Poisson’s ratio.” Int. J. Solids Struct. 91 (Aug): 72–77. https://doi.org/10.1016/j.ijsolstr.2016.04.026.
Pedersen, C. B., T. Buhl, and O. Sigmund. 2001. “Topology synthesis of large-displacement compliant mechanisms.” Int. J. Numer. Methods Eng. 50 (12): 2683–2705. https://doi.org/10.1002/nme.148.
Pratapa, P. P., K. Liu, and G. H. Paulino. 2019. “Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment.” Phys. Rev. Lett. 122 (15): 155501. https://doi.org/10.1103/PhysRevLett.122.155501.
Pratapa, P. P., K. Liu, S. P. Vasudevan, and G. H. Paulino. 2021. “Reprogrammable kinematic branches in tessellated origami structures.” J. Mech. Robot. 13 (3): 031102. https://doi.org/10.1115/1.4049949.
Pratapa, P. P., P. Suryanarayana, and G. H. Paulino. 2018. “Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials.” J. Mech. Phys. Solids 118 (Sep): 115–132. https://doi.org/10.1016/j.jmps.2018.05.012.
Schenk, M., and S. D. Guest. 2011. “Origami folding: A structural engineering approach.” In Origami. Boca Raton, FL: Taylor & Francis.
Schenk, M., and S. D. Guest. 2013. “Geometry of Miura-folded metamaterials.” Proc. Natl. Acad. Sci. 110 (9): 3276–3281. https://doi.org/10.1073/pnas.1217998110.
Seth, B. R. 1962. “Generalized strain measure with applications to physical problems.” In Proc., Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamic, I.U.T.A.M Symp. Oxford, UK: Pergamon Press.
Shaat, M., and A. Wagih. 2020. “Hinged-3D metamaterials with giant and strain-independent Poisson’s ratios.” Sci. Rep. 10 (1): 1–10. https://doi.org/10.1038/s41598-020-59205-x.
Sigmund, O. 2009. “Manufacturing tolerant topology optimization.” Acta Mech. Sin. 25 (2): 227–239. https://doi.org/10.1007/s10409-009-0240-z.
Silverberg, J. L., A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, and I. Cohen. 2014. “Using origami design principles to fold reprogrammable mechanical metamaterials.” Science 345 (6197): 647–650. https://doi.org/10.1126/science.1252876.
Silverberg, J. L., J.-H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, and I. Cohen. 2015. “Origami structures with a critical transition to bistability arising from hidden degrees of freedom.” Nat. Mater. 14 (4): 389–393. https://doi.org/10.1038/nmat4232.
Starkova, O., and A. Aniskevich. 2010. “Poisson’s ratio and the incompressibility relation for various strain measures with the example of a silica-filled SBR rubber in uniaxial tension tests.” Polym. Test. 29 (3): 310–318. https://doi.org/10.1016/j.polymertesting.2009.12.005.
Wang, F. 2018. “Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains.” J. Mech. Phys. Solids 114 (May): 303–318. https://doi.org/10.1016/j.jmps.2018.01.013.
Wang, F., O. Sigmund, and J. S. Jensen. 2014. “Design of materials with prescribed nonlinear properties.” J. Mech. Phys. Solids 69 (Sep): 156–174. https://doi.org/10.1016/j.jmps.2014.05.003.
Wang, H., D. Zhao, Y. Jin, M. Wang, T. Mukhopadhyay, and Z. You. 2020. “Modulation of multi-directional auxeticity in hybrid origami metamaterials.” Appl. Mater. Today 20 (Sep): 100715. https://doi.org/10.1016/j.apmt.2020.100715.
Wang, M. Y. 2009. “Mechanical and geometric advantages in compliant mechanism optimization.” Front. Mech. Eng. China 4 (3): 229–241. https://doi.org/10.1007/s11465-009-0066-1.
Waterhouse, W. 1983. “Do symmetric problems have symmetric solutions?” Am. Math. Mon. 90 (6): 378–387. https://doi.org/10.1080/00029890.1983.11971235.
Wei, Z. Y., Z. V. Guo, L. Dudte, H. Y. Liang, and L. Mahadevan. 2013. “Geometric mechanics of periodic pleated origami.” Phys. Rev. Lett. 110 (21): 215501. https://doi.org/10.1103/PhysRevLett.110.215501.
Xin, X., L. Liu, Y. Liu, and J. Leng. 2020. “4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties.” Adv. Funct. Mater. 30 (43): 2004226. https://doi.org/10.1002/adfm.202004226.
Zirbel, S. A., R. J. Lang, M. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P. Trease, S. P. Magleby, and L. L. Howell. 2013. “Accommodating thickness in origami-based deployable arrays.” J. Mech. Des. N Y 135 (11): 111005. https://doi.org/10.1115/1.4025372.
Zong, H., H. Zhang, Y. Wang, M. Y. Wang, and J. Y. H. Fuh. 2018. “On two-step design of microstructure with desired Poisson’s ratio for AM.” Mater. Des. 159 (Dec): 90–102. https://doi.org/10.1016/j.matdes.2018.08.032.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 147Issue 11November 2021

History

Received: Oct 9, 2020
Accepted: Jun 23, 2021
Published online: Aug 28, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 28, 2022

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Siva Poornan Vasudevan, S.M.ASCE [email protected]
Graduate Student, Dept. of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India (corresponding author). ORCID: https://orcid.org/0000-0002-3563-6901. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Soft Missing Rib Structures with Controllable Negative Poisson’s Ratios over Large Strains via Isogeometric Design Optimization, Journal of Engineering Mechanics, 10.1061/(ASCE)EM.1943-7889.0002149, 148, 11, (2022).
  • Experimental realization of tunable Poisson’s ratio in deployable origami metamaterials, Extreme Mechanics Letters, 10.1016/j.eml.2022.101685, 53, (101685), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share