Technical Papers
Aug 16, 2021

Influence of Sand Morphology on Interparticle Force and Stress Transmission Using Three-Dimensional Discrete- and Finite-Element Methods

Publication: Journal of Engineering Mechanics
Volume 147, Issue 10

Abstract

In the last two decades, particle morphology has emerged as an essential and critical property for proper evaluation of the constitutive behavior of granular materials. When a mass of sand is loaded in a confined compression, a complex network of force chains develops and evolves to resist the applied stresses. Force chains have been extensively studied in the literature using the discrete element method (DEM) and to a lesser extent using the finite-element method (FEM). This paper investigates the influence of three-dimensional (3D) sand morphology on the onset and evolution of force chains within sand using both 3D DEM and FEM simulations. In-situ synchrotron microcomputed tomography (SMT) technique was utilized to acquire multiple 3D scans of a specimen composed of natural silica sand that was loaded under one-dimensional (1D) confined uniaxial compression. The SMT scans were processed and used to calibrate parameters for both DEM and FEM models, where particle sizes and shapes closely matched the natural morphology and fabric of sand particles within the tested specimen. In another virtual specimen, individual sand particles were substituted with equivalent spherical particles that have the same volume and center of mass. FEM and DEM simulations were then executed on the virtual specimen using the same model parameters that were calibrated by the tested sand specimen. A comparison between the numerically simulated results of the virtual and tested specimens revealed a stiffer boundary response of reaction load versus displacement at the top loading platen of the specimen composed of particles with sand-like morphology. On the contrary, a microscale assessment showed higher particle stresses and interparticle contact forces between the spherical particles than the sand-like particles under the same boundary load on the top-loading platen. The results of the paper advocate for the importance of modeling sand using the actual sand morphology in a quest for an accurate numerical prediction of interparticle contact forces, particle stresses, and the development of force chains in sands.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The synchrotron microcomputed tomography (SMT) images that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This material was partially funded by the US National Science Foundation (NSF) under Grant No. CMMI-1362510. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF. The SMT scans presented in this paper were collected using the X-Ray Operations and Research Beamline Station 13-BMD of the Advanced Photon Source (APS), a USDOE Office of Science User Facility operated by the Argonne National Laboratory (ANL) under Contract No. DE-AC02-06CH11357. We acknowledge the support of GeoSoilEnviroCARS (Sector 13), which is funded by the NSF Earth Sciences (EAR-1128799), and the DOE Geosciences (DE-FG02-94ER14466). We thank Dr. Mark Rivers for his guidance at APS.

References

Amirrahmat, S., W. H. Imseeh, K. A. Alshibli, P. Kenesei, Z. A. Jarrar, and H. Sharma. 2020. “3D experimental measurements of evolution of force chains in natural silica sand.” J. Geotech. Geoenviron. Eng. 146 (5): 04020027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002241.
Andrade, J. E., and C. F. Avila. 2012. “Granular element method (GEM): Linking inter-particle forces with macroscopic loading.” Granular Matter 14 (1): 51–61. https://doi.org/10.1007/s10035-011-0298-8.
Azéma, E., F. Radjai, B. Saint-Cyr, J.-Y. Delenne, and P. Sornay. 2013. “Rheology of three-dimensional packings of aggregates: Microstructure and effects of nonconvexity.” Phys. Rev. E 87 (5): 052205. https://doi.org/10.1103/PhysRevE.87.052205.
Bassett, D. S., E. T. Owens, K. E. Daniels, and M. A. Porter. 2012. “Influence of network topology on sound propagation in granular materials.” Phys. Rev. E 86 (4): 041306. https://doi.org/10.1103/PhysRevE.86.041306.
Behringer, R., D. Howell, L. Kondic, S. Tennakoon, and C. Veje. 1999. “Predictability and granular materials.” Phys. D 133 (1): 1–17. https://doi.org/10.1016/S0167-2789(99)00094-9.
Bouchaud, J.-P., M. Cates, and P. Claudin. 1995. “Stress distribution in granular media and nonlinear wave equation.” J. Phys. I 5 (6): 639–656. https://doi.org/10.1051/jp1:1995157.
Cavarretta, I., and C. O’sullivan. 2012. “The mechanics of rigid irregular particles subject to uniaxial compression.” Géotechnique 62 (8): 681–692. https://doi.org/10.1680/geot.10.P.102.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Cil, M., and K. Alshibli. 2014. “3D evolution of sand fracture under 1D compression.” Géotechnique 64 (5): 351–364. https://doi.org/10.1680/geot.13.P.119.
Cil, M. B., and K. A. Alshibli. 2015. “Modeling the influence of particle morphology on the fracture behavior of silica sand using a 3D discrete element method.” Comptes Rendus Mécanique 343 (2): 133–142. https://doi.org/10.1016/j.crme.2014.11.004.
Cil, M. B., K. A. Alshibli, and P. Kenesei. 2017. “3D experimental measurement of lattice strain and fracture behavior of sand particles using synchrotron X-ray diffraction and tomography.” J. Geotech. Geoenviron. Eng. 143 (9): 04017048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001737.
Clark, A. H., L. Kondic, and R. P. Behringer. 2012. “Particle scale dynamics in granular impact.” Phys. Rev. Lett. 109 (23): 238302. https://doi.org/10.1103/PhysRevLett.109.238302.
Coppersmith, S., C.-H. Liu, S. Majumdar, O. Narayan, and T. Witten. 1996. “Model for force fluctuations in bead packs.” Phys. Rev. E 53 (5): 4673. https://doi.org/10.1103/PhysRevE.53.4673.
Coste, C., E. Falcon, and S. Fauve. 1997. “Solitary waves in a chain of beads under Hertz contact.” Phys. Rev. E 56 (5): 6104. https://doi.org/10.1103/PhysRevE.56.6104.
Cundall, P. A., and O. D. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Daniels, K. E., and N. W. Hayman. 2008. “Force chains in seismogenic faults visualized with photoelastic granular shear experiments.” J. Geophys. Res. Solid Earth 113 (11): B11411. https://doi.org/10.1029/2008JB005781.
Dantu, P. 1957. “Contribution l’étude méchanique et géométrique des milieux pulvérulents.”. In Proc., 4th Int. Conf. on Soil Mechanics and Foundation Engineering, 133. Oxford, UK: Butterworths Scientific Publication.
Daraio, C., V. Nesterenko, E. Herbold, and S. Jin. 2005. “Strongly nonlinear waves in a chain of Teflon beads.” Phys. Rev. E 72 (1): 016603. https://doi.org/10.1103/PhysRevE.72.016603.
De Jong, G. D. J. 1969. “Étude photo-Élastique d’un empilement de disques.” In Soil mechanics and transport in porous media, edited by H.C.J. Van Duijn and A. Verruijt. New York: Springer. https://doi.org/10.1007/978-1-4020-3629-3_15.
Druckrey, A. M., and K. A. Alshibli. 2016. “3D finite element modeling of sand particle fracture based on in situ X-ray synchrotron imaging.” Int. J. Numer. Anal. Methods Geomech. 40 (3): 105. https://doi.org/10.1002/nag.2396.
Druckrey, A. M., K. A. Alshibli, and R. I. Al-Raoush. 2016. “3D characterization of sand particle-to-particle contact and morphology.” Comput. Geotech. 74 (Nov): 26–35. https://doi.org/10.1016/j.compgeo.2015.12.014.
Ferellec, J.-F., and G. R. McDowell. 2010. “A method to model realistic particle shape and inertia in DEM.” Granular Matter 12 (5): 459–467. https://doi.org/10.1007/s10035-010-0205-8.
Fu, R., X. Hu, and B. Zhou. 2017. “Discrete element modeling of crushable sands considering realistic particle shape effect.” Comput. Geotech. 91 (Oct): 179–191. https://doi.org/10.1016/j.compgeo.2017.07.016.
Gao, R., X. Du, Y. Zeng, Y. Li, and J. Yan. 2012. “A new method to simulate irregular particles by discrete element method.” J. Rock Mech. Geotech. Eng. 4 (3): 276–281. https://doi.org/10.3724/SP.J.1235.2012.00276.
Geng, J., G. Reydellet, E. Clément, and R. Behringer. 2003. “Green’s function measurements of force transmission in 2D granular materials.” Phys. D 182 (3): 274–303. https://doi.org/10.1016/S0167-2789(03)00137-4.
Guo, P. 2012. “Critical length of force chains and shear band thickness in dense granular materials.” Acta Geotech. 7 (1): 41–55. https://doi.org/10.1007/s11440-011-0154-3.
Guo, P., and X. Su. 2007. “Shear strength, interparticle locking, and dilatancy of granular materials.” Can. Geotech. J. 44 (5): 579–591. https://doi.org/10.1139/t07-010.
Hanley, K. J., C. O’Sullivan, J. C. Oliveira, K. Cronin, and E. P. Byrne. 2011. “Application of Taguchi methods to DEM calibration of bonded agglomerates.” Powder Technol. 210 (3): 230–240. https://doi.org/10.1016/j.powtec.2011.03.023.
Harmon, J. M., D. Arthur, and J. E. Andrade. 2020. “Level set splitting in DEM for modeling breakage mechanics.” Comput. Methods Appl. Mech. Eng. 365 (1): 112961. https://doi.org/10.1016/j.cma.2020.112961.
Heyliger, P., H. Ledbetter, and S. Kim. 2003. “Elastic constants of natural quartz.” J. Acoust. Soc. Am. 114 (2): 644–650. https://doi.org/10.1121/1.1593063.
Howell, D., R. Behringer, and C. Veje. 1999. “Stress fluctuations in a 2D granular Couette experiment: A continuous transition.” Phys. Rev. Lett. 82 (26): 5241. https://doi.org/10.1103/PhysRevLett.82.5241.
Hurley, R., S. Hall, J. Andrade, and J. Wright. 2016. “Quantifying interparticle forces and heterogeneity in 3D granular materials.” Phys. Rev. Lett. 117 (9): 098005. https://doi.org/10.1103/PhysRevLett.117.098005.
Hurley, R., S. Hall, and J. Wright. 2017. “Multi-scale mechanics of granular solids from grain-resolved X-ray measurements.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 473 (2207): 20170491. https://doi.org/10.1098/rspa.2017.0491.
Hurley, R., E. Marteau, G. Ravichandran, and J. E. Andrade. 2014. “Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity.” J. Mech. Phys. Solids 63 (Sep): 154–166. https://doi.org/10.1016/j.jmps.2013.09.013.
Hurley, R. C., E. B. Herbold, and D. C. Pagan. 2018. “Characterization of the crystal structure, kinematics, stresses and rotations in angular granular quartz during compaction.” J. Appl. Crystallogr. 51 (4): 1021–1034. https://doi.org/10.1107/S1600576718006957.
Imseeh, W. H., and K. A. Alshibli. 2018. “3D finite element modelling of force transmission and particle fracture of sand.” Comput. Geotech. 94 (4): 184–195. https://doi.org/10.1016/j.compgeo.2017.09.008.
Jarrar, Z. A., K. A. Alshibli, and R. I. Al-Raoush. 2020. “Three-dimensional evaluation of sand particle fracture using discrete-element method and synchrotron micro-computed tomography images.” J. Geotech. Geoenviron. Eng. 146 (7): 06020007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002281.
Jia, X., C. Caroli, and B. Velicky. 1999. “Ultrasound propagation in externally stressed granular media.” Phys. Rev. Lett. 82 (9): 1863. https://doi.org/10.1103/PhysRevLett.82.1863.
Kandasami, R. K., and T. G. Murthy. 2017. “Manifestation of particle morphology on the mechanical behaviour of granular ensembles.” Granular Matter 19 (2): 21. https://doi.org/10.1007/s10035-017-0703-z.
Kawamoto, R., E. Andò, G. Viggiani, and J. E. Andrade. 2016. “Level set discrete element method for three-dimensional computations with triaxial case study.” J. Mech. Phys. Solids 91 (Feb): 1–13. https://doi.org/10.1016/j.jmps.2016.02.021.
Kawamoto, R., E. Andò, G. Viggiani, and J. E. Andrade. 2018. “All you need is shape: Predicting shear banding in sand with LS-DEM.” J. Mech. Phys. Solids 111 (2): 375–392. https://doi.org/10.1016/j.jmps.2017.10.003.
Li, H., and G. R. McDowell. 2018. “Discrete element modelling of under sleeper pads using a box test.” Granular Matter 20 (2): 26. https://doi.org/10.1007/s10035-018-0795-0.
Liu, C.-H. 1994. “Spatial patterns of sound propagation in sand.” Phys. Rev. B 50 (2): 782. https://doi.org/10.1103/PhysRevB.50.782.
Lobo-Guerrero, S., and L. E. Vallejo. 2005. “Analysis of crushing of granular material under isotropic and biaxial stress conditions.” Soils Found. 45 (4): 79–87. https://doi.org/10.3208/sandf.45.4_79.
Lu, Y., and D. Frost. 2010. “Three-dimensional DEM modeling of triaxial compression of sands.” In Soil behavior and geo-micromechanics, 220–226. Reston, VA: ASCE.
Mahabadi, N., and J. Jang. 2017. “The impact of fluid flow on force chains in granular media.” Appl. Phys. Lett. 110 (4): 041907. https://doi.org/10.1063/1.4975065.
Majmudar, T. S., and R. P. Behringer. 2005. “Contact force measurements and stress-induced anisotropy in granular materials.” Nature 435 (7045): 1079. https://doi.org/10.1038/nature03805.
McDowell, G. R., and J. P. de Bono. 2013. “On the micro mechanics of one-dimensional normal compression.” Géotechnique 63 (11): 895–908. https://doi.org/10.1680/geot.12.P.041.
Nakata, Y., Y. Kato, M. Hyodo, A. F. Hyde, and H. Murata. 2001. “One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength.” Soils Found. 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
Nicksiar, M., and C. Martin. 2014. “Factors affecting crack initiation in low porosity crystalline rocks.” Rock Mech. Rock Eng. 47 (4): 1165–1181. https://doi.org/10.1007/s00603-013-0451-2.
Oda, M., and K. Iwashita. 2000. “Study on couple stress and shear band development in granular media based on numerical simulation analyses.” Int. J. Eng. Sci. 38 (15): 1713–1740. https://doi.org/10.1016/S0020-7225(99)00132-9.
Oron, G., and H. Herrmann. 1998. “Exact calculation of force networks in granular piles.” Phys. Rev. E 58 (2): 2079. https://doi.org/10.1103/PhysRevE.58.2079.
O’Sullivan, C., and L. Cui. 2009. “Micromechanics of granular material response during load reversals: Combined DEM and experimental study.” Powder Technol. 193 (3): 289–302. https://doi.org/10.1016/j.powtec.2009.03.003.
Owens, E. T., and K. E. Daniels. 2011. “Sound propagation and force chains in granular materials.” EPL (Europhysics Letters) 94 (5): 54005. https://doi.org/10.1209/0295-5075/94/54005.
Pena, A., R. Garcia-Rojo, and H. J. Herrmann. 2007. “Influence of particle shape on sheared dense granular media.” Granular Matter 9 (3–4): 279–291. https://doi.org/10.1007/s10035-007-0038-2.
Peters, J., M. Muthuswamy, J. Wibowo, and A. Tordesillas. 2005. “Characterization of force chains in granular material.” Phys. Rev. E 72 (4): 041307. https://doi.org/10.1103/PhysRevE.72.041307.
Potyondy, D. O., and P. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Radjai, F. 2015. “Modeling force transmission in granular materials.” C.R. Phys. 16 (1): 3–9. https://doi.org/10.1016/j.crhy.2015.01.003.
Radjai, F., M. Jean, J.-J. Moreau, and S. Roux. 1996. “Force distributions in dense two-dimensional granular systems.” Phys. Rev. Lett. 77 (2): 274. https://doi.org/10.1103/PhysRevLett.77.274.
Radjai, F., S. Roux, and J. J. Moreau. 1999. “Contact forces in a granular packing.” Chaos: An Interdiscip. J. Nonlinear Sci. 9 (3): 544–550. https://doi.org/10.1063/1.166428.
Radjai, F., D. E. Wolf, M. Jean, and J.-J. Moreau. 1998. “Bimodal character of stress transmission in granular packings.” Phys. Rev. Lett. 80 (1): 61. https://doi.org/10.1103/PhysRevLett.80.61.
Santamarina, J., and G.-C. Cho. 2004. “Soil behaviour: The role of particle shape.” In Proc., Advances in geotechnical engineering: The skempton conference, 604–617. Princeton, NJ: Citeseer.
Sen, S., J. Hong, J. Bang, E. Avalos, and R. Doney. 2008. “Solitary waves in the granular chain.” Phys. Rep. 462 (2): 21–66. https://doi.org/10.1016/j.physrep.2007.10.007.
Shin, H., and J. Santamarina. 2012. “Role of particle angularity on the mechanical behavior of granular mixtures.” J. Geotech. Geoenviron. Eng. 139 (2): 353–355. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000768.
Taghavi, R. 2011. “Automatic clump generation based on mid-surface.” In Proc., 2nd Int. FLAC/DEM Symp., 791–797. Minneapolis: Itasca International.
Turner, A. K., F. H. Kim, D. Penumadu, and E. B. Herbold. 2016. “Meso-scale framework for modeling granular material using computed tomography.” Comput. Geotech. 76 (4): 140–146. https://doi.org/10.1016/j.compgeo.2016.02.019.
Turner, A. K., A. Sharma, D. Penumadu, and E. B. Herbold. 2019. “Finite element analyses of single particle crushing tests incorporating computed tomography imaging and damage mechanics.” Comput. Geotech. 115 (Nov): 103158. https://doi.org/10.1016/j.compgeo.2019.103158.
Vangla, P., and M. L. Gali. 2016. “Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour.” Geotext. Geomembr. 44 (3): 254–268. https://doi.org/10.1016/j.geotexmem.2015.11.002.
Vangla, P., and G. M. Latha. 2015. “Influence of particle size on the friction and interfacial shear strength of sands of similar morphology.” Int. J. Geosynth. Ground Eng. 1 (1): 6. https://doi.org/10.1007/s40891-014-0008-9.
Wakabayashi, T. 1957. “Photoelastic method for determination of stress in powdered mass.” J. Phy. Soc. Japan 5: 383–385. https://doi.org/10.1143/JPSJ.5.383.
Wang, W., and M. Coop. 2016. “An investigation of breakage behaviour of single sand particles using a high-speed microscope camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
Wei, D., B. Zhao, D. Dias-da-Costa, and Y. Gan. 2019. “An FDEM study of particle breakage under rotational point loading.” Eng. Fract. Mech. 212 (2): 221–237. https://doi.org/10.1016/j.engfracmech.2019.03.036.
Yan, B., R. A. Regueiro, and S. Sture. 2010. “Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets.” Eng. Comput. 27 (4): 519–550. https://doi.org/10.1108/02644401011044603.
Yousuff, M., and N. Page. 1993. “Particle material, morphology and load effects on internal friction in powders.” Powder Technol. 76 (2): 155–164. https://doi.org/10.1016/S0032-5910(05)80023-3.
Zadeh, A. A., J. Barés, T. A. Brzinski, K. E. Daniels, J. Dijksman, N. Docquier, H. O. Everitt, J. E. Kollmer, O. Lantsoght, and D. Wang. 2019. “Enlightening force chains: A review of photoelasticimetry in granular matter.” Granular Matter 21 (4): 83. https://doi.org/10.1007/s10035-019-0942-2.
Zhang, B., R. Regueiro, A. Druckrey, and K. Alshibli. 2018. “Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm.” Eng. Comput. 35 (2): 733–771. https://doi.org/10.1108/EC-01-2017-0026.
Zhang, L., S. Cai, Z. Hu, and J. Zhang. 2014. “A comparison between bridges and force-chains in photoelastic disk packing.” Soft Matter 10 (1): 109–114. https://doi.org/10.1039/C3SM52056K.
Zhou, B., D. Wei, Q. Ku, J. Wang, and A. Zhang. 2020. “Study on the effect of particle morphology on single particle breakage using a combined finite-discrete element method.” Comput. Geotech. 122 (Dec): 103532. https://doi.org/10.1016/j.compgeo.2020.103532.
Zhou, W., L. Yang, G. Ma, X. Chang, Z. Lai, and K. Xu. 2016. “DEM analysis of the size effects on the behavior of crushable granular materials.” Granular Matter 18 (3): 64. https://doi.org/10.1007/s10035-016-0656-7.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 147Issue 10October 2021

History

Received: Jan 26, 2021
Accepted: May 2, 2021
Published online: Aug 16, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Associate, Dept. of Civil and Environmental Engineering, 325 John D. Tickle Bldg., Univ. of Tennessee, Knoxville, TN 37996. ORCID: https://orcid.org/0000-0002-8210-8191. Email: [email protected]
Zaher A. Jarrar, Ph.D., M.ASCE [email protected]
Research Associate, Dept. of Civil and Environmental Engineering, 325 John D. Tickle Bldg., Univ. of Tennessee, Knoxville, TN 37996. Email: [email protected]
P.E.
Professor, Dept. of Civil and Environmental Engineering, 325 John D. Tickle Bldg., Univ. of Tennessee, Knoxville, TN 37996 (corresponding author). ORCID: https://orcid.org/0000-0001-5351-1670. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share