Technical Papers
Jul 2, 2020

A Three-Node Triangular Finite Element for Static Limit Analysis

Publication: Journal of Engineering Mechanics
Volume 146, Issue 9

Abstract

A three-node triangular finite element is developed for the static theorem of limit analysis to discretize plane strain and stress problems. The element does not provide rigorous lower-bound solutions because the equilibrium equations and mechanical boundary conditions are satisfied on average, but exhibits a remarkable performance as illustrated by standard benchmark tests. Nowhere does the generated stress field violate the traction continuity across the element interfaces and the yield criterion. The stated nonlinear convex optimization problem is cast as second-order cone programming before its solution by a robust interior-point algorithm implemented in the dedicated solver MOSEK.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Andersen, E. D., C. Roos, and T. Terlaky. 2003. “On implementing a primal-dual interior-point method for conic quadratic optimization.” Math. Program. Series B 95 (2): 249–277. https://doi.org/10.1007/s10107-002-0349-3.
Andersen, K. D., and E. Christiansen. 1995. “Limit analysis with the dual affine scaling algorithm.” J. Comput. Appl. Math. 59 (2): 233–243. https://doi.org/10.1016/0377-0427(94)00031-U.
Andersen, K. D., E. Christiansen, A. R. Conn, and M. L. Overton. 2000. “An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms.” SIAM J. Sci. Comput. 22 (1): 243–262. https://doi.org/10.1137/S1064827598343954.
Basudhar, P. K., A. J. Valsangkar, and M. R. Madhav. 1979. “Optimal lower bound of passive earth pressure using finite elements and non-linear programming.” Int. J. Numer. Anal. Methods Geomech. 3 (4): 367–379. https://doi.org/10.1002/nag.1610030405.
Belytschko, T. 1972. “Plane stress shakedown analysis by finite elements.” Int. J. Mech. Sci. 14 (9): 619–625. https://doi.org/10.1016/0020-7403(72)90061-6.
Belytschko, T., and P. G. Hodge. 1970. “Plane stress limit analysis by finite elements.” J. Eng. Mech. Div. 96 (6): 931–944.
Bottero, A., R. Negre, J. Pastor, and S. Turgeman. 1980. “Finite element method and limit analysis theory for soil mechanics problems.” Comput. Methods Appl. Mech. Eng. 22 (1): 131–149. https://doi.org/10.1016/0045-7825(80)90055-9.
Chen, S., Y. Liu, and Z. Cen. 2008. “Lower-bound limit analysis by using the EFG method and non-linear programming.” Int. J. Numer. Methods Eng. 74 (3): 391–415. https://doi.org/10.1002/nme.2177.
Chen, W. F., and X. L. Liu. 1990. Limit analysis in soil mechanics. Amsterdam, Netherlands: Elsevier.
Christiansen, E., and K. O. Kortanek. 1991. “Computation of the collapse state in limit analysis using the LP primal affine scaling algorithm.” J. Comput. Appl. Math. 34 (1): 47–63. https://doi.org/10.1016/0377-0427(91)90147-C.
Ciria, H., J. Peraire, and J. Bonet. 2008. “Mesh adaptive computation of upper and lower bounds in limit analysis.” Int. J. Numer. Methods Eng. 75 (8): 899–944. https://doi.org/10.1002/nme.2275.
Cook, R. D. 1974. “Improved two-dimensional finite element.” J. Struct. Div. ASCE 100 (9): 1851–1863.
Corradi, L., and A. Zavelani. 1974. “A linear programming approach to shakedown analysis of structures.” Comput. Methods Appl. Mech. Eng. 3 (1): 37–53. https://doi.org/10.1016/0045-7825(74)90041-3.
Drucker, D. C., W. Prager, and H. J. Greenberg. 1952. “Extended limit design theorems for continuous media.” Q. Appl. Math. 9 (4): 381–389. https://doi.org/10.1090/qam/45573.
Gaydon, F. A., and A. W. McCrum. 1954. “A theoretical investigation of the yield point loading of a square plate with a central circular hole.” J. Mech. Phys. Solids 2 (3): 156–169. https://doi.org/10.1016/0022-5096(54)90022-8.
Hayes, D. J., and P. V. Marçal. 1967. “Determination of upper bounds for problems in plane stress using finite element techniques.” Int. J. Mech. Sci. 9 (5): 245–251. https://doi.org/10.1016/0020-7403(67)90019-7.
Krabbenhoft, K., and L. Damkilde. 2003. “A general non-linear optimization algorithm for lower bound limit analysis.” Int. J. Numer. Methods Eng. 56 (2): 165–184. https://doi.org/10.1002/nme.551.
Le, C. V., H. Nguyen-Xuan, H. Askes, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Vinh. 2010. “A cell-based smoothed finite element method for kinematic limit analysis.” Int. J. Numer. Methods Eng. 83 (12): 1651–1674. https://doi.org/10.1002/nme.2897.
Li, C., C. Sun, C. Li, and H. Zheng. 2017. “Lower bound limit analysis by quadrilateral elements.” J. Comput. Appl. Math. 315: 319–326.
Lobo, M. S., L. Vandenberghe, S. Boyd, and H. Lebret. 1998. “Applications of second-order cone programming.” Linear Algebra Appl. 284 (1–3): 193–228. https://doi.org/10.1016/S0024-3795(98)10032-0.
Löfberg, J. 2004. “YALMIP: A toolbox for modeling and optimization in MATLAB.” In Proc., Int. Symp. on Computer Aided Control Systems Design, 284–289. New York: IEEE.
Lyamin, A. V., and S. W. Sloan. 2002. “Lower bound limit analysis using non-linear programming.” Int. J. Numer. Methods Eng. 55 (5): 573–611. https://doi.org/10.1002/nme.511.
Lyamin, A. V., and S. W. Sloan. 2003. “Mesh generation for lower bound limit analysis.” Adv. Eng. Software 34 (6): 321–338. https://doi.org/10.1016/S0965-9978(03)00032-2.
Lysmer, J. 1970. “Limit analysis of plane problems in soil mechanics.” J. Soil Mech. Found. Div. 96 (4): 1311–1334.
Makrodimopoulos, A., and C. M. Martin. 2006. “Lower bound limit analysis of cohesive-frictional materials using second-order cone programming.” Int. J. Numer. Methods Eng. 66 (4): 604–634. https://doi.org/10.1002/nme.1567.
Martin, C. M., and A. Makrodimopoulos. 2008. “Finite-element limit analysis of Mohr–Coulomb materials in 3D using semidefinite programming.” J. Eng. Mech. 134 (4): 339–347. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:4(339).
MATLAB. 2018. The MathWorks. Natick, MA: MATLAB.
MOSEK ApS. 2018. “Modeling cookbook.” Accessed December 15, 2018. http://docs.mosek.com/modeling-cookbook/index.html.
Muñoz, J. J., J. Bonet, A. Huerta, and J. Peraire. 2009. “Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading.” Int. J. Numer. Methods Eng. 77 (4): 471–501. https://doi.org/10.1002/nme.2421.
Nguyen-Xuan, H., T. Rabczuk, T. Nguyen-Thoi, T. N. Tran, and N. Nguyen-Thanh. 2012. “Computation of limit and shakedown loads using a node-based smoothed finite element method.” Int. J. Numer. Methods Eng. 90 (3): 287–310. https://doi.org/10.1002/nme.3317.
Pastor, F., and E. Loute. 2005. “Solving limit analysis problems: An interior-point method.” Int. J. Numer. Methods Bio. Eng. 21 (11): 631–642. https://doi.org/10.1002/cnm.779.
Pastor, F., E. Loute, and J. Pastor. 2009a. “Limit analysis and convex programming: A decomposition approach of the kinematic mixed method.” Int. J. Numer. Methods Eng. 78 (3): 254–274. https://doi.org/10.1002/nme.2483.
Pastor, F., E. Loute, J. Pastor, and M. Trillat. 2009b. “Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: A kinematical approach.” Eur. J. Mechanics A. Solids 28 (1): 25–35. https://doi.org/10.1016/j.euromechsol.2008.02.008.
Pastor, J. 1978. “Analyse limite: Détermination numérique de solutions statistiques complètes. Application au talus vertical.” J. Mec. Appl. 2 (2): 167–196.
Pian, T. H. H., and C. C. Wu. 2006. Hybrid and incompatible finite element methods. Boca Raton, FL: Chapman.
Reddy, J. N. 2006. An introduction to the finite element method. 3rd ed. New York: McGraw-Hill.
Salençon, J. 1967. “Théorie des charges limites: Poinçonnement d’une plaque par deux poinçons symétriques en déformation plane.” C. R. Mec. 265: 869–872.
Silva, M. V., and A. N. Antão. 2012. “A novel augmented Lagrangian-based formulation for upper-bound limit analysis.” Int. J. Numer. Methods Eng. 89 (12): 1471–1496. https://doi.org/10.1002/nme.3294.
Sloan, S. W. 1988a. “A steepest edge active set algorithm for solving sparse linear programming problems.” Int. J. Numer. Methods Eng. 26 (12): 2671–2685. https://doi.org/10.1002/nme.1620261207.
Sloan, S. W. 1988b. “Lower bound limit analysis using finite elements and linear programming.” Int. J. Numer. Anal. Methods Geomech. 12 (1): 61–77. https://doi.org/10.1002/nag.1610120105.
Souza Neto, E. A., D. Perić, and D. R. J. Owen. 2008. Computational methods for plasticity: Theory and applications. Hoboken, NJ: Wiley.
Ukritchon, B., and S. Keawsawasvong. 2018. “Lower bound limit analysis of an anisotropic undrained strength criterion using second-order cone programming.” Int. J. Numer. Anal. Methods Geomech. 42 (8): 1016–1033. https://doi.org/10.1002/nag.2781.
Vial, J. P. 1994. “Computational experience with a primal-dual interior-point method for smooth convex programming.” Optim. Methods Software 3 (4): 285–310. https://doi.org/10.1080/10556789408805571.
Washizu, K. 1982. Variational methods in elasticity and plasticity. 3rd ed. Oxford, UK: Pergamon Press.
Yang, H., Z. Shen, and J. Wang. 2003. “3D lower bound bearing capacity of smooth rectangular surface footings.” Mech. Res. Commun. 30 (5): 481–492. https://doi.org/10.1016/S0093-6413(03)00047-8.
Yu, H. S. 1992. “Expansion of a thick cylinder of soils.” Comput. Geotech. 14 (1): 21–41. https://doi.org/10.1016/0266-352X(92)90022-L.
Yu, H. S., and S. W. Sloan. 1997. “Finite element limit analysis of reinforced soils.” Comput. Struct. 63 (3): 567–577. https://doi.org/10.1016/S0045-7949(96)00353-7.
Yu, X., and F. Tin-Loi. 2006. “A simple mixed finite element for static limit analysis.” Comput. Struct. 84 (29–30): 1906–1917. https://doi.org/10.1016/j.compstruc.2006.08.019.
Zhang, X., Y. Liu, Y. Zhao, and Z. Cen. 2002. “Lower bound limit analysis by the symmetric Galerkin boundary element method and the complex method.” Comput. Methods Appl. Mech. Eng. 191 (17–18): 1967–1982. https://doi.org/10.1016/S0045-7825(01)00363-2.
Zouain, N., J. Herskovits, L. A. Borges, and R. A. Feijóo. 1993. “An iterative algorithm for limit analysis with nonlinear yield functions.” Int. J. Solids Struct. 30 (10): 1397–1417. https://doi.org/10.1016/0020-7683(93)90220-2.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 146Issue 9September 2020

History

Received: Apr 6, 2019
Accepted: Apr 22, 2020
Published online: Jul 2, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 2, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Eric Luis Barroso Cavalcante, Ph.D., D.Sc. https://orcid.org/0000-0003-0052-5694 [email protected]
Auditor, Núcleo de Tratamento de Dados e Informações, Tribunal de Contas da União, Brasília, DF 70042-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-0052-5694. Email: [email protected]
Eliseu Lucena Neto, Ph.D.
Professor, Divisão de Engenharia Civil, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil.
Denilson José Ribeiro Sodré, D.Sc.
Professor, Faculdade de Engenharia Civil, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share