Technical Papers
Feb 20, 2020

Mohr Envelope Elastoplasticity

Publication: Journal of Engineering Mechanics
Volume 146, Issue 5

Abstract

An often-used tool for describing the strength of geotechnical materials is the Mohr strength envelope, which has been used for more than 100 years. For simple problems, analytical bearing capacity solutions can be found and numerical methods exist for finding bearing capacities for more complicated geometries and nonlinear Mohr envelopes. Despite their long history, Mohr envelopes have never been used in elastoplastic calculations, meaning that displacement magnitudes cannot be found. This paper presents the implementation of nonlinear Mohr envelopes in an elastoplastic numerical framework. This allows the use of materials with plasticity behavior described by Mohr envelopes to be used on an equal basis with materials whose plasticity behavior is described by the traditional yield surfaces and plastic potentials. This opens up its use with both failure load calculation and displacement estimates. Mohr envelope elastoplasticity is particularly useful with the use of safety factors as in shear strength reduction methods, where no simple, consistent methods so far exist for nonlinear yield criteria formulated in Cartesian stresses. Several computational examples are given.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

A large part of the funding for this work was provided by Aalborg University, Denmark, for which the author is grateful.

References

Anyaegbunam, A. J. 2015. “Nonlinear power-type failure laws for geomaterials: Synthesis from triaxial data, properties, and applications.” Int. J. Geomech. 15 (1): 04014036. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000348.
Baker, R. 2004. “Nonlinear Mohr envelopes based on triaxial data.” J. Geotech. Geoenviron. Eng. 130 (5): 498–506. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(498).
Balmer, G. 1952. “A general analytic solution for Mohr’s envelope.” In Vol. 52 of Proc., American Society for Testing Material, 1260–1271. West Conshohocken, PA: ASTM.
Benz, T., R. Schwab, R. A. Kauther, and P. A. Vermeer. 2008. “A Hoek-Brown criterion with intrinsic strength factorization.” Int. J. Rock Mech. Min. Sci. 45 (2): 210–222. https://doi.org/10.1016/j.ijrmms.2007.05.003.
Bond, A., and A. Harris. 2008. Decoding Eurocode 7. London: Taylor & Francis.
CEN (European Committee for Standardization). 2007. Geotechnical design. Eurocode 7. Brussels, Belgium: CEN.
Clausen, J. 2007. “Efficient non-linear finite element implementation of elasto-plasticity for geotechnical problems.” Ph.D. thesis, Esbjerg Institute of Technology, Aalborg Univ.
Clausen, J. 2013. “Bearing capacity of circular footings on a Hoek-Brown material.” Int. J. Rock Mech. Min. Sci. 57 (Jan): 34–41. https://doi.org/10.1016/j.ijrmms.2012.08.004.
Clausen, J., and L. Damkilde. 2006. “Slope safety factor calculations with non-linear yield criterion using finite elements.” In Numerical methods in geotechnical engineering, edited by H. F. Schweiger, 491–496. London: Taylor & Francis.
Clausen, J., and L. Damkilde. 2008. “An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations.” Int. J. Rock Mech. Min. Sci. 45 (6): 831–847. https://doi.org/10.1016/j.ijrmms.2007.10.004.
Clausen, J., L. Damkilde, and L. Andersen. 2006. “Efficient return algorithms for associated plasticity with multiple yield planes.” Int. J. Numer. Methods Eng. 66 (6): 1036–1059. https://doi.org/10.1002/nme.1595.
Clausen, J., L. Damkilde, and L. Andersen. 2007. “An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space.” Comput. Struct. 85 (23–24): 1795–1807. https://doi.org/10.1016/j.compstruc.2007.04.002.
Clausen, J., L. Damkilde, and L. V. Andersen. 2015. “Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations.” Eng. Computations 32 (6): 1722–1752. https://doi.org/10.1108/EC-01-2014-0008.
Clausing, D. 1959. “Comparison of Griffith’s theory with Mohr’s failure criteria.” Q. Colo. Sch. Mines 54 (3): 287–296.
Comanici, A. M., and P. D. Barsanescu. 2018. “Modificaton of Mohr’s criterion in order to consider the effect of the intermediate principal stress.” Int. J. Plast. 108 (Sep): 40–54. https://doi.org/10.1016/j.ijplas.2018.04.010.
Cook, R. D., D. S. Malkus, M. E. Plesha, and R. E. Witt. 2002. Concepts and applications of finite element analysis. Hoboken, NJ: Wiley.
Crisfield, M. A. 1997. “Non-linear finite element analysis of solids and structures.” In Advanced topics. Hoboken, NJ: Wiley.
Culmann, C. 1866. Die graphische Statik. Zürich, Switzerland: Meyer & Zeller.
Davis, E. H. 1968. “Theories of plasticity and failure of soil masses.” In Soil mechanics: Selected topics, edited by I. K. Lee, 341–354. Amsterdam, Netherlands: Elsevier.
de Souza Neto, E. A., D. Perić, and D. J. R. Owen. 2008. Computational methods for plasticity—Theory and applications. Hoboken, NJ: Wiley.
Fu, W., and Y. Liao. 2010. “Non-linear shear strength reduction technique in slope stability calculation.” Comput. Geotech. 37 (3): 288–298. https://doi.org/10.1016/j.compgeo.2009.11.002.
Hammah, R., T. Yacoub, B. Corkum, and J. Curran. 2005. “The shear strength reduction method for the generalized Hoek-Brown criterion.” In Proc., 40th US Symp. on Rock Mechanics (USRMS). Alexandria, VA: American Rock Mechanics Association.
Heyman, J. 1997. Coulomb’s memoir on statics—An essay in the history of civil engineering. London: Imperial College Press.
Hoek, E. 1968. “Brittle fracture of rock.” In Rock mechanics in engineering practice, edited by G. Stagg and O. C. Zienkiewicz, 99–124. Hoboken, NJ: Wiley.
Hoek, E. 1983. “Twenty-third Rankine lecture—Strength of jointed rock masses.” Géotechnique 33 (3): 187–224. https://doi.org/10.1680/geot.1983.33.3.187.
Hoek, E., and E. T. Brown. 1997. “Practical estimates of rock mass strength.” Int. J. Rock Mech. Min. Sci. 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
Hoek, E., C. Carranza-Torres, and B. Corkum. 2002. “Hoek-Brown failure criterion–2002 edition.” In Proc., North American Rock Mechanics Society Meeting. Toronto: University of Toronto Press.
Jaeger, C. 1979. Rock mechanics and engineering. Cambridge, UK: Cambridge University Press.
Jiang, J. C., R. Baker, and T. Yamagami. 2003. “The effect of strength envelope nonlinearity on slope stability computations.” Can. Geotech. J. 40 (2): 308–325. https://doi.org/10.1139/t02-111.
Keshavarz, A., and J. Kumar. 2018. “Bearing capacity of foundations on rock mass using the method of characteristics.” Int. J. Numer. Anal. Methods Geomech. 42 (3): 542–557. https://doi.org/10.1002/nag.2754.
Krabbenhøft, K., M. R. Karim, A. V. Lyamin, and S. W. Sloan. 2012a. “Associated computational plasticity schemes for nonassociated frictional materials.” Int. J. Numer. Methods Eng. 90 (9): 1089–1117. https://doi.org/10.1002/nme.3358.
Krabbenhøft, K., A. Lyamin, and J. Krabbenhøft. 2016. OptumG2: Materials. Copenhagen, Denmark: Optum Computational Engineering.
Krabbenhøft, S., J. Clausen, and L. Damkilde. 2012b. “The bearing capacity of circular footings in sand: Comparison between model tests and numerical simulations based on a nonlinear Mohr failure envelope.” Adv. Civ. Eng. 2012: 947276. https://doi.org/10.1155/2012/947276.
Mahmoud, M. H., and M. F. Mansour. 2017. “Limit states design of weak rock slopes: Proposal for Eurocode partial factors.” Procedia Eng. 191 (Jan): 1161–1168. https://doi.org/10.1016/j.proeng.2017.05.291.
Martin, C. M. 2004. User guide for ABC—analysis of bearing capacity, version 1.0. Oxford, UK: Univ. of Oxford.
Martin, C. M. 2005. “Exact bearing capacity calculations using the method of characteristics.” In Vol. 4 of Proc., Int. Conf. of IACMAG, 441–450. Turin, Italy: International Association for Computer Methods and Advances in Geomechanics.
Mašín, D. 2019. Modelling of soil behaviour with hypoplasticity. Berlin: Springer.
Mohr, C. O. 1882. “Über die Darstellung des Spannungszustandes und des Deformationszustandes eines Körperelementes und über die Anwendung derselben in der Festigkeitslehre.” Civilingenieur 28 (2): 113–156.
Mohr, C. O. 1900. “Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materiales?” Z. Ver. Dtsch. Ing., 44 (45): 1524–1530.
Ottosen, N. S., and M. Ristinmaa. 2005. The mechanics of constitutive modelling. Amsterdam, Netherlands: Elsevier.
Parry, R. H. G. 2004. Mohr circles, stress paths and geotechnics. London: Taylor & Francis.
Prandtl, L. 1921. “Über die Eindringungsfestigkeit (Harte) plastischer Baustoffe un die Festigkeit von Schneiden.” Z. für angewändte Math. Mech. 1 (1): 15–20. https://doi.org/10.1002/zamm.19210010102.
Reissner, H. 1924. “Zum Erddruckproblem.” In Proc., 1st Int. Congress for Applied Mechanics, edited by C. Biezeno and J. Burgers, 295–311. Delft, Netherlands: J. Waltman, Jr.
Simo, J. C., and R. L. Taylor. 1985. “Consistent tangent operators for rate-independent elastoplasticity.” Comput. Methods Appl. Mech. Eng. 48 (1): 101–118. https://doi.org/10.1016/0045-7825(85)90070-2.
Sloan, S. W. 2013. “Geeotechnical stability analysis.” Géotechnique 63 (7): 531–571. https://doi.org/10.1680/geot.12.RL.001.
Smith, I., D. Griffiths, and L. Margetts. 2013. Programming the finite element method. Hoboken, NJ: Wiley.
von Mises, R. 1913. “Mechanik der festen Körper im plastisch deformablen Zustand.” Göttin. Nachr. Math. Phys. 1: 582–592.
Yu, H.-S. 2006. Plasticity and geotechnics. Berlin: Springer.
Zhang, R., and X. L. Yang. 2019. “Limit analysis of anchor trapdoor embedded in nonhomogeneous and nonlinear soils.” Int. J. Geomech. 19 (8): 04019089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001476.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 146Issue 5May 2020

History

Received: Mar 14, 2019
Accepted: Aug 30, 2019
Published online: Feb 20, 2020
Published in print: May 1, 2020
Discussion open until: Jul 20, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Engineering, Aarhus Univ., 8000 Aarhus C, Denmark. ORCID: https://orcid.org/0000-0002-9257-0013. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share