Technical Papers
Jan 23, 2017

Modeling Granular Materials: Century-Long Research across Scales

Publication: Journal of Engineering Mechanics
Volume 143, Issue 4

Abstract

Granular materials are the most recurrent form of solid-state matter on Earth. They challenge researchers and engineers in various fields not only because they occur with a broad variety of grain sizes, shapes and interactions in nature and industry, but also because they show a rich panoply of mechanical states. Despite this polymorphism, all these different types of soils, powders, granules, ores, pharmaceutical products, etc., are instances of the granular matter with the same least common denominator of being sandlike (psammoid in Greek), i.e., solid grains interacting via frictional contacts. This review describes milestone contributions to the field of granular materials since the early elastic-plastic models developed for soils in the 1950s. The research on granular materials has grown into a vast multidisciplinary field in the 1980s with increasing focus on the microstructure and owing to new experimental tools and discrete simulation methods. It turns out that the granular texture, particle-scale kinematics, and force transmission are far more complex than presumed in early micromechanical models of granular materials. Hence, constitutive relations cannot easily be derived from the particle-scale behavior although advanced continuum models have been developed to account for anisotropy, intermediate stress, and complex loading paths. The subtle elastic properties and origins of bulk friction will be discussed, as well as the effects of particle shape and size distributions. The review covers also recent developments in macroscopic modeling such as the thermomechanical approach, anisotropic critical state theory, nonlocal modeling approach, inertial flows, and material instabilities. Finally, a brief account is given of open issues and some new frontiers and challenges in the field.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank Mahdi Taeibat for fruitful discussions. Farhang Radjai would like to acknowledge the support of the ICoME2 Labex (ANR-11-LABX-0053) and the A*MIDEX projects (ANR-11-IDEX-0001-02) cofunded by the French program Investissements d’Avenir, managed by the French National Research Agency (ANR).

References

Agnolin, I., and Roux, J. N. (2007a). “Internal states of model isotropic granular packings. I: Assembling process, geometry, and contact networks.” Phys. Rev. E, 76(6-1), 061302.
Agnolin, I., and Roux, J. N. (2007b). “Internal states of model isotropic granular packings. II: Compression and pressure cycles.” Phys. Rev. E, 76(6-1), 061303.
Agnolin, I., and Roux, J. N. (2007c). “Internal states of model isotropic granular packings. III: Elastic properties.” Phys. Rev. E, 76(6-1), 061304.
Alonso-Marroquin, F., and Herrmann, H. J. (2002). “Calculation of the incremental stress-strain relation of a polygonal packing.” Phys. Rev. E, 66(2), 021301.
Alonso-Marroquin, F., Luding, S., Herrmann, H. J., and Vardoulakis, I. (2005). “Role of anisotropy in the elastoplastic response of a polygonal packing.” Phys. Rev. E, 71(5), 051304.
Andò, E., Hall, S. A., Viggiani, G., Desrues, J., and Bésuelle, P. (2012). “Experimental micromechanics: Grain-scale observation of sand deformation.” Géotech. Lett., 2(3), 107–112.
Andrade, J., Avila, C., Hall, S., Lenoir, N., and Viggiani, G. (2011). “Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics.” J. Mech. Phys. Solids, 59(2), 237–250.
Andrade, J. E., and Tu, X. (2009). “Multiscale framework for behavior prediction in granular media.” Mech. Mater., 41(6), 652–669.
Antony, S. J. (2001). “Evolution of force distribution in three-dimensional granular media.” Phys. Rev. E, 63, 011302.
Aste, T., and DiMatteo, T. (2008). “Emergence of gamma distributions in granular materials and packing models.” Phys. Rev. E, 77(2), 021309.
Aste, T., Saadatfar, M., and Senden, T. J. (2005). “The geometrical structure of disordered sphere packings.” Phys. Rev. E, 71(6), 061302.
Aste, T., and Weaire, D. (2000). The pursuit of perfect packing, Institute of Physics Publishing, Bristol, U.K.
Azéma, E., and Radjai, F. (2014). “Internal structure of inertial granular flows.” Phys. Rev. Lett., 112(7), 078001.
Azéma, E., Radjai, F., Peyroux, R., and Saussine, G. (2007). “Force transmission in a packing of pentagonal particles.” Phys. Rev. E, 76(1 Pt 1), 011301.
Azéma, E., Radjai, F., Saint-Cyr, B., Delenne, J. Y., and Sornay, P. (2013). “Rheology of 3D packings of aggregates: Microstructure and effects of nonconvexity.” Phys. Rev. E, 87(5), 052205.
Azéma, E., Radjaï, F., and Roux, J. N. (2015). “Internal friction and absence of dilatancy of packings of frictionless polygons.” Phys. Rev. E, 91(1), 010202.
Azéma, E., Saussine, G., and Radjai, F. (2009). “Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles.” Mech. Mater., 41(6), 729–741.
Bagi, K. (1997). “Analysis of micro-variables through entropy principle.” Powders and grains 1997, R. A. A. Behringer and J. T. Jenkins, eds., A. A. Balkema, Rotterdam, Netherlands.
Bagi, K. (2007). “On the concept of jammed configurations from a structural mechanics perspective.” Granular Matter, 9(1), 109–134.
Bagnold, R. A. (1954). “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proc. R. Soc. London, 225, 49–63.
Bak, P., Tang, C., and Wiesenfeld, K. (1987). “Self-organized criticality: An explanation of 1/f noise.” Phys. Rev. Lett., 59(4), 381–384.
Bak, P., Tang, C., and Wiesenfeld, K. (1988). “Self-organized criticality.” Phys. Rev. A, 38(1), 364–374.
Bardet, J. P. (1994). “Observations on the effects of particle rotations on the failure of idealized granular materials.” Mech. Mater., 18(2), 159–182.
Bathurst, R. J., and Rothenburg, L. (1988). “Micromechanical aspects of isotropic granular assemblies with linear contact interactions.” J. Appl. Mech., 55(1), 17–23.
Bauer, E. (1996). “Calibration of a comprehensive constitutive equation for granular material.” Soils Found., 36(1), 13–26.
Been, K., and Jefferies, M. (1985). “A state parameter for sands.” Géotechnique, 35(2), 99–112.
Bernal, J. D. (1960). “Geometry and the structure of monatomic liquids.” Nature, 185(4706), 68–70.
Berryman, J. G. (1983). “Random close packing of hard spheres and disks.” Phys. Rev. A, 27(2), 1053–1061.
Biarez, J. (1962). “Contribution à l’étude des propriétés mécaniques des sols et des matériaux pulvérulents.” Ph.D. thesis, Univ. of Grenoble, France.
Bolton, M. D. (1986). “The strength and dilatancy of sands.” Géotechnique, 36(1), 65–78.
Boyer, F., Guazzelli, E., and Pouliquen, O. (2011). “Unifying suspension and granular rheology.” Phys. Rev. Lett., 107(18), 188301.
Brodu, N., Dijksman, J. A., and Behringer, R. P. (2015). “Spanning the scales of granular materials through microscopic force imaging.” Nat. Commun., 6, 6361.
Cambou, B. (1993). “From global to local variables in granular materials.” Powders and grains 93, C. Thornton, ed., A. A. Balkema, Amsterdam, Netherlands.
Campbell, C. S. (1990). “Rapid granular flows.” Annu. Rev. Fluid Mech., 22(1), 57–90.
Casagrande, A. (1936). “Characteristics of cohesionless soils affecting the stability of slopes and earth fills.” J. Boston Soc. Civ. Eng., 23(1), 13–32.
Cates, M. E., Wittmer, J. P., Bouchaud, J. P., and Claudin, P. (1998). “Jamming, force chains, and fragile matter.” Phys. Rev. Lett., 81(9), 1841–1844.
Chang, C. S., and Bennett, K. (2015). “Micromechanical modeling for the deformation of sand with noncoaxiality between the stress and material axes.” J. Eng. Mech., .
Chang, C. S., and Hicher, P. Y. (2005). “An elasto-plastic model for granular materials with microstructural consideration.” Int. J. Solids Struct., 42(14), 4258–4277.
Chang, C. S., Hicher, P. Y., and Daouadji, A. (2009). “Investigating instability in granular materials by means of a micro-structural model.” Eur. J. Environ. Civ. Eng., 13(2), 167–186.
Chang, C. S., and Misra, A. (1990). “Application of uniform strain theory to heterogeneous granular solids.” J. Eng. Mech., 2310–2328.
Chang, C. S., Yin, Z. Y., and Hicher, P. Y. (2011). “Micromechanical analysis for interparticle and assembly instability of sand.” J. Eng. Mech., 155–168.
Chaudhuri, P., Berthier, L., and Sastry, S. (2010). “Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions.” Phys. Rev. Lett., 104(16), 165701.
Christoffersen, J., Mehrabadi, M. M., and Nemat-Nasser, S. (1981). “A micromechanical description of granular material behavior.” J. Appl. Mech., 48(2), 339–344.
Collins, I. F. (1997). “The use of Legendre transformations in developing the constitutive laws of geomechanics from thermodynamic principles.” IUTAM Symp. on Mechanics of Granular and Porous Materials, N. A. Fleck and A. C. E. Cocks, eds., Kluwer Academic Publishers, Netherlands.
Collins, I. F. (2005). “Elastic/plastic models for soils and sands.” Int. J. Mech. Sci., 47(4-5), 493–508.
Collins, I. F., and Hilder, T. (2002). “A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests.” Int. J. Numer. Anal. Methods Geomech., 26(13), 1313–1347.
Combe, G., Richefeu, V., and Stasiak, M. (2015). “Experimental validation of a nonextensive scaling law in confined granular media.” Phys. Rev. Lett., 115(23), 238301.
Combe, G., and Roux, J. N. (2000). “Strain versus stress in a model granular material: A devil’s staircase.” Phys. Rev. Lett., 85(17), 3628–3631.
Coppersmith, S. N., Liu, C., Majumdar, S., Narayan, O., and Witten, T. A. (1996). “Model for force fluctuations in bead packs.” Phys. Rev. E, 53(5), 4673–4685.
Coulomb, C. A. (1773). “Essai sur un application de règles de maximis et minimis à quelques poblèmes de staique relatifs à l’architcture.” Acad. R. Sci. Mem. Math. Phys. Acad. R. Sci., Paris, 7, 343–382 (in French).
Coulomb, C. A. (1781). “Théorie des machines simples.” Acad. Sci., 10, 166–331 (in French).
Coumoulos, D. G. (1967). A radiographic study of soils, Ph.D. dissertation, Cambridge Univ., Cambridge, U.K.
Cundall, P. A., and Strack, O. D. L. (1979). “A discrete numerical model for granular assemblies.” Géotechnique, 29(1), 47–65.
Cundall, P. A., and Strack, O. D. L. (1983). “Modeling of microscopic mechanisms in granular materials.” Mechanics of granular materials: New models and constitutive relations, J. T. Jenkins and M. Satake, eds., Elsevier, Amsterdam, Netherlands.
da Cruz, F., Emam, S., Prochnow, M., Roux, J. N., and cois Chevoir, F. (2005). “Rheophysics of dense granular materials: Discrete simulation of plane shear flows.” Phys. Rev. E, 72(2 Pt 1), 021309.
Dafalias, Y. (2016). “Must critical state theory be revisited to include fabric effects?” Acta Geotech., 11(3), 479–491.
Dafalias, Y. F., and Manzari, M. T. (2004). “Simple plasticity sand model accounting for fabric change effects.” J. Eng. Mech., 622–634.
Dantu, P. (1957). “Contribution à l’étude mécanique et géométrique des milieux pulvérulents.” Proc., 4th Int. Conf. on Soil Mechanics and Foundation Engineering, Butterworth Scientific, London.
Daouadji, A., et al. (2011). “Diffuse failure in geomaterials: Experiments, theory and modelling.” Int. J. Numer. Anal. Methods Geomech., 35(16), 1731–1773.
Daouadji, A., and Hicher, P. Y. (2010). “An enhanced constitutive model for crushable granular materials.” Int. J. Num. Anal. Methods in Geomechanics, 34(6), 555–580.
Daouadji, A., Hicher, P. Y., and Rahma, A. (2001). “Modelling grain breakage influence on mechanical behaviour of granular media.” Eur. J. Mech. A. Solids, 20(1), 113–137.
Darve, F., and Laouafa, F. (1999). “Plane strain instabilities in soil: Application to slopes instability.” Numerical models in geomaterials, A. A. Balkema, Rotterdam, Netherlands.
Darwin, G. H. (1883). “On the horizontal thrust of a mass of sand.” Minutes of the Proc. Instituation of Civil Engineering, Vol. 71, Institution of Civil Engineering (ICE), London, 350–378.
Desrues, J., Chambon, R., Mokni, M., and Mazerolles, F. (1996). “Void ratio evolution inside shear band in triaxial sand specimens studied by computed tomography.” Géotechnique, 46(3), 529–546.
Desrues, J., Lanier, J., and Stutz, P. (1985). “Localization of deformation in tests on sand samples.” Eng. Fracture Mechanics, 21(4), 909–921.
Donev, A., et al. (2004). “Improving the density of jammed disordered packings using ellipsoids.” Science, 303(5660), 990–993.
Donev, A., Torquato, S., and Stillinger, F. H. (2005). “Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings.” Phys. Rev. E, 71(1 Pt 1), 011105.
Drescher, A., and de Josselin de Jong, G. (1972). “Photoelastic verification of a mechanical model for the flow of a granular material.” J. Mech. Phys. Solids, 20(5), 337–340.
Duttine, A., Di Benedetto, H., Pham Van Bang, D., and Ezaoui, A. (2007). “Anisotropic small strain elastic properties of sands and mixture of sand-clay measured by dynamic and static methods.” Soils Found., 47(3), 457–472.
Edwards, S. F., and Oakeshott, R. B. S. (1989). “Theory of powders.” Physica A, 157(3), 1080–1090.
Einav, I. (2007). “Breakage mechanics. Part I: Theory.” J. Mech. Phys. Solids, 55(6), 1274–1297.
Einav, I. (2012). “The unification of hypo-plastic and elasto-plastic theories.” Int. J. Solids Struct., 49(11–12), 1305–1315.
Estrada, N., Taboada, A., and Radjai, F. (2008). “Shear strength and force transmission in granular media with rolling resistance.” Phys. Rev. E, 78(2), 021301.
Franklin, S. V. (2012). “Geometric cohesion in granular materials.” Phys. Today, 65(9), 70.
Fuentes, W., Triantafyllidis, T., and Lizcano, A. (2012). “Hypoplastic model for sands with loading surface.” Acta Geotech., 7(3), 177–192.
Gao, Z., Zhao, J., Li, X. S., and Dafalias, Y. F. (2014). “A critical state sand plasticity model accounting for fabric evolution.” Int. J. Numer. Anal. Meth. Geomech., 38(4), 370–390.
GDR-MiDi (Groupement de Recherche-Milieux Divisés). (2004). “On dense granular flows.” Eur. Phys. J. E, 14(4), 341–365.
Geoffroy, H., di Benedetto, H., Duttine, A., and Sauzéat, C. (2003). “Dynamic and cyclic loadings on sands: Results and modelling for general stress-strain conditions.” Deformation characteristics of geomaterials, H. di Benedetto, T. Doanh, H. Geoffroy, and C. Sauzéat, eds., Swets and Zeitlinger, Lisse, Netherlands.
Goddard, J. (2004). “On entropy estimates of contact forces in static granular assemblies.” Int. J. Solids Struct., 41(21), 5851–5861.
Goddard, J. (2014). “Continuum modeling of granular media.” Appl. Mech. Rev., 66(5), 050801.
Goddard, J. D. (1990). “Nonlinear elasticity and pressure-dependent wave speeds in granular media.” Proc. R. Soc. London. A, 430, 105–131.
Goldhirsch, I., and Zanetti, G. (1993). “Clustering instability in dissipative gases.” Phys. Rev. Lett., 70(11), 1619–1622.
Grammenoudis, P., and Tsakmakis, C. (2005). “Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects.” Numer. Methods Eng., 62(12), 1691–1720.
Gudehus, G. S. F. (1996). “A comprehensive constitutive equation for granular materials.” Soils Found., 36(1), 1–12.
Guo, N., and Zhao, J. (2016). “Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils.” Comput. Methods Appl. Mech. Eng., 305, 37–61.
Hashiguchi, K. (1979). “A derivation of the associated flow rule.” J. Faculty Agric. Kyushu Univ., 24(2–3), 75–80.
Hashiguchi, K., and Chen, Z. P. (1998). “Elastoplastic constitutive equation of soils with the subloading surface.” Int. J. Numer. Anal. Methods Geomech., 22(3), 197–227.
He, Q. C. (2014). “On the micromechanical definition of macroscopic strain and strain-rate tensors for granular materials.” Comput. Mater. Sci., 94, 51–57.
Hicher, P. Y. (1996). “Elastic properties of soils.” ASCE J. Geotech. Eng., 641–648.
Hoque, E., and Tatsuoka, F. (1998). “Anisotropy in elastic deformation of granular materials.” Soils Found., 38(1), 163–179.
Huang, W., Sloan, S., and Fityus, S. (2008). “Incorporating a predefined limit condition in a hypoplastic model by means of stress transformation.” Mech. Mater., 40(10), 796–802.
Huang, W. X., Wu, W., Sun, D. A., and Sloan, S. (2006). “A simple hypoplastic model for normally consolidated clay.” Acta Geotech., 1(1), 15–27.
Hutter, K., and Scheiwiller, T. (1983). “Rapid plane flow of granular materials down a chute.” Mechanics of granular media—New models and constitutive relations, Elsevier, Amsterdam, Netherlands.
Jaeger, H., and Nagel, S. (1996). “Granular solids, liquids and gases.” Rev. Mod. Phys., 68(4), 1259–1273.
Jaeger, H. M. (2015). “Celebrating soft matter’s 10th anniversary: Toward jamming by design.” Soft Matter, 11(1), 12–27.
Jaeger, H. M., Liu, C., Nagel, S. R., and Witten, T. A. (1990). “Flow in granular materials: Self-organized non-critical behavior.” Relaxation and related topics in complex systems, A. Campbell and C. Giovannella, eds., Plenum Press, London.
Jefferies, M. G. (1993). “Nor-sand: A simple critical state model for sand.” Géotechnique, 43(1), 91–103.
Jefferies, M. G., and Been, K. (2006). Soil liquefaction: A critical state approach, Taylor and Francis, London.
Jenkins, J. T., and Richman, M. W. (1985). “Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks.” Phys. Fluids, 28(12), 3485–3494.
Jenkins, J. T., and Savage, S. B. (1983). “A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles.” J. Fluid Mech., 130, 187–202.
Jia, X., Caroli, C., and Velický, B. (1999). “Ultrasound propagation in externally stressed granular media.” Phys. Rev. Lett., 82(9), 1863–1866.
Johnson, K. L. (1985). Contact mechanics, Cambridge University Press, Cambridge, U.K.
Jop, P., Forterre, Y., and Pouliquen, O. (2006). “A constitutive law for dense granular flows.” Nature, 441(7094), 727–730.
Jullien, R., Meakin, P., and Pavlovitch, A. (1992). “Random packings of spheres built with sequential models.” J. Phys. A, 25(15), 4103–4113.
Kamrin, K., and Henann, D. L. (2015). “Nonlocal modeling of granular flows down inclines.” Soft Matter, 11(1), 179–185.
Kamrin, K., and Koval, G. (2012). “Nonlocal constitutive relation for steady granular flow.” Phys. Rev. Lett., 108(17), 178301.
Kaneko, K., Terada, K., Kyoya, T., and Kishino, Y. (2003). “Global-local analysis of granular media in quasi-static equilibrium.” Int. J. Solids Struct., 40(15), 4043–4069.
Katagiri, J., Matsushima, T., and Yamada, Y. (2010). “Simple shear simulation of 3D irregularly-shaped particles by image-based DEM.” Granular Matter, 12(5), 491–497.
Kolymbas, D. (1991). “An outline of hypoplasticity.” Arch. Appl. Mech., 61(3), 143–151.
Kolymbas, D., Herle, I., and von Wolffersdorff, P. A. (1995). “Hypoplastic constitutive equation with internal variables.” Int. J. Numer. Anal. Methods Geomech., 19(6), 415–436.
Kruyt, N. P., and Rothenburg, L. (1996). “Micromechanical definition of strain tensor for granular materials.” ASME J. Appl. Mech., 63(3), 706–711.
Kruyt, N. P., and Rothenburg, L. (2002a). “Micromechanical bounds for the effective elastic moduli of granular materials.” Int. J. Solids Struct., 39(2), 311–324.
Kruyt, N. P., and Rothenburg, L. (2002b). “Probability density functions of contact forces for cohesionless frictional granular materials.” Int. J. Solids Struct., 39(3), 571–583.
Kruyt, N. P., and Rothenburg, L. (2004). “Kinematic and static assumptions for homogenization in micromechanics of granular materials.” Mech. Mater., 36(12), 1157–1173.
Kuhn, M. R. (1999). “Structured deformation in granular materials.” Mech. Mater., 31(6), 407–429.
Kuhn, M. R. (2005). “Are granular materials simple? An experimental study of strain gradient effects and localization.” Mech. Mater., 37(5), 607–627.
Kuhn, M. R. (2014). “Dense granular flow at the critical state: Maximum entropy and topological disorder.” Granular Matter, 16(4), 499–508.
Kuhn, M. R., and Bagi, K. (2004). “Contact rolling and deformation in granular media.” Int. J. Solids Struct., 41(21), 5793–5820.
Kuwano, R., and Jardine, R. J. (2002). “On the applicability of cross-anisotropic elasticity to granular materials at very small strains.” Géotechnique, 52(10), 727–749.
Lade, P. V. (1994). “Instability and liquefaction of granular materials.” Comput. Geotech., 16(2), 123–151.
Lade, P. V. (2002). “Instability, shear banding, and failure in granular materials.” Int. J. Solids Struct., 39(13), 3337–3357.
Lanier, J., Caillerie, D., Chambonn, R., Viggiani, G., B!esuelle, P., and Desrues, J. (2004). “A general formulation of hypoplasticity.” Int. J. Numer. Anal. Meth. Geomech., 28(15), 1461–1478.
La Ragione, L., and Jenkins, J. T. (2007). “The initial response of an idealised granular material.” Proc. R. Soc. A, 463(2079), 735–758.
La Ragione, L., and Magnanimo, V. (2012a). “Contact anisotropy and coordination number for a granular assembly: A comparison of distinct-element-method simulations and theory.” Phys. Rev. E, 85(3), 031304.
La Ragione, L., and Magnanimo, V. (2012b). “Evolution of the effective moduli of an anisotropic, dense, granular material.” Granular Matter, 14(6), 749–757.
Lesniewska, D., and Wood, D. M. (2009). “Observations of stresses and strains in a granular material.” J. Eng. Mech., 1038–1054.
Li, X., and Dafalias, Y. (2000). “Dilatancy for cohesionless soils.” Geotechnique, 50(4), 449–460.
Li, X., and Dafalias, Y. (2015). “Dissipation consistent fabric tensor definition from DEM to continuum for granular media.” J. Mech. Phys. Solids, 78, 141–153.
Li, X. S., and Dafalias, Y. F. (2012). “Anisotropic critical state theory: Role of fabric.” J. Eng. Mech., 263–275.
Liu, A. J., and Nagel, S. R. (1998). “Jamming is not just cool any more.” Nature, 396(6706), 21–22.
Liu, C. (1994). “Spatial patterns of sound propagation in sand.” Phys. Rev. B, 50(2), 782–794.
Liu, C., et al. (1995). “Force fluctuations in bead packs.” Science, 269(5223), 513–515.
Liu, C., and Nagel, S. R. (1992). “Sound in sand.” Phys. Rev. Lett., 68(15), 2301–2304.
Liu, C., and Nagel, S. R. (1994). “Sound and vibration in granular materials.” J. Phys. Condens. Matter, 6(23A), A433–A436.
Liu, Y., Sun, W., Yuan, Z., and Fish, J. (2016). “A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials.” Int. J. Numer. Meth. Eng., 106(2), 129–160.
Love, A. (1929). A treatise of the mathematical theory of elasticity, Cambridge University Press, Cambridge, U.K.
Magnanimo, V., La Ragione, L., Jenkins, J. T., Wang, P., and Makse, H. A. (2008). “Characterizing the shear and bulk moduli of an idealized granular material.” Europ. Phys. Lett., 81(3), 34006.
Majmudar, T., and Behringer, R. (2005). “Contact force measurements and stress-induced anisotropy in granular materials.” Nature, 435(1079), 1079–1082.
Makse, H. A., Gland, N., Johnson, D., and Schwartz, L. (1999). “Why effective medium theory fails in granular materials.” Phys. Rev. Lett., 83(24), 5070–5073.
Makse, H. A., Johnson, D. L., and Schwartz, L. M. (2000). “Packing of compressible granular materials.” Phys. Rev. Lett., 84(18), 4160–4163.
Manzari, M. T., and Dafalias, Y. F. (1997). “A critical state two-surface plasticity model for sands.” Géotechnique, 47(2), 255–272.
Masin, D. (2012). “Hypoplastic cam-clay model.” Géotechnique, 62(6), 549–553.
Maugin, G. A. (1992). The thermomechanics of plasticity and fracture, Cambridge University Press, Cambridge, U.K.
McNamara, S., and Young, W. R. (1992). “Inelastic collapse and clumping in a one-dimensional granular medium.” Phys. Fluids A, 4(3), 496–504.
McNamara, S., and Young, W. R. (1994). “Inelastic collapse in two dimensions.” Phys. Rev. E, 50(1), R28–R31.
Mehrabadi, M. M., and Cowin, S. C. (1978). “Initial planar deformation of dilatant granular materials.” J. Mech. Phys. Solids, 26(4), 269–284.
Metzger, P. T. (2004a). “Comment on “Mechanical analog of temperature for the description of force distribution in static granular packings”.” Phys. Rev. E, 69(5 Pt 1), 053301.
Metzger, P. T. (2004b). “Granular contact force density of states and entropy in a modified Edwards ensemble.” Phys. Rev. E, 70(5 Pt 1), 051303.
Miller, B., O’Hern, C., and Behringer, R. P. (1996). “Stress fluctuations for continously sheared granular materials.” Phys. Rev. Lett., 77(15), 3110–3113.
Miller, T., Rognon, P., Metzger, B., and Einav, I. (2013). “Eddy viscosity in dense granular flows.” Phys. Rev. Lett., 111(5), 058002.
Mitchell, J. K., and Soga, K. (2005). Fundamentals of soil behavior, 3rd Ed., Wiley, Hoboken, NJ.
Moreau, J. J. (1993). “New computation methods in granular dynamics.” Powders and grains 93, A. A. Balkema, Rotterdam, Netherlands.
Mroz, Z., Norris, V. A., and Zienkiewicz, O. C. (1978). “An anisotropic hardening model for soils and its application to cyclic loading.” Int. J. Numer. Anal. Methods Geomech., 2(3), 203–221.
Mueth, D. M., Jaeger, H. M., and Nagel, S. R. (1998). “Force distribution in a granular medium.” Phys. Rev. E, 57(3), 3164–3169.
Mulhaus, H. B., and Vardoulakis, I. (1987). “The thickness of shear bands in granular materials.” Géotechnique, 37(3), 271–283.
Nemat-Nasser, S., Mehrabadi, M. M., and Iwakuma, T. (1981). “On certain macroscopic and microscopic aspects of plastic flow of ductile materials.” Three-dimensional constitutive relations and ductile fracture, North-Halland, Amsterdam, Netherlands, 157–172.
Newland, P. L., and Allely, B. H. (1957). “Volume changes in drained taixial tests on granular materials.” Géotechnique, 7(1), 17–34.
Nezamabadi, S., Radjai, F., Averseng, J., and Delenne, J. Y. (2015). “Implicit frictional contact model for soft particle systems.” J. Mech. Phys. Solids, 83, 72–87.
Nguyen, D. H., Azéma, E., Radjai, F., and Sornay, P. (2014). “Effect of size polydispersity versus particle shape in dense granular media.” Phys. Rev. E, 90(1), 012202.
Nichol, K., Zanin, A., Bastien, R., Wandersman, E., and van Hecke, M. (2010). “Flow-induced agitations create a granular fluid.” Phys. Rev. Lett., 104(7), 078302.
Nicot, F., and Darve, F. (2007). “A micro-mechanical investigation of bifurcation.” Int. J. Solids Struct., 44(20), 6630–6652.
Nicot, F., Darve, F., and Khoa, H. (2007). “Bifurcation, second order-work in granular materials.” Int. J. Numer. Anal. Methods Geomech., 31(8), 1007–1032.
Nitka, M., Combe, G., Dascalu, C., and Desrues, J. (2011). “Two-scale modeling of granular materials: A DEM-FEM approach.” Granular Matter, 13(3), 277–281.
Noll, W. (1955). “Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik.” J. Ration. Mech. Anal., 4, 627–646 (in German).
Noll, W. (1958). “A mathematical theory of the mechanical behavior of continuous media.” Arch. Ration. Mech. Anal, 2(1), 197–226.
Nova, R. (1982). “A constitutive model for soil under monotonic and cyclic loading.” Soil mechanics—Transient cyclic loads: Constitutive relations and numerical treatment, G. N. Pande and O. C. Zienkiewicz, eds., Wiley, Chichester, U.K.
Nova, R. (1994). “Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes.” J. Mech. Behav. Mater., 5(2), 193–201.
Oda, M. (1972). “Initial fabrics and their relations to mechanical properties of granular material.” Soils Found., 12(1), 17–36.
Oda, M., Iwashita, K., and Kakiuchi, T. (1997). “Importance of particle rotation in the mechanics of granular materials.” Powders and grains 1997, R. P. Behringer and J. T. Jenkins, eds., A. A. Balkema, Rotterdam, Netherlands.
Oda, M., Konishi, J., and Nemat-Nasser, S. (1982). “Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling.” Mech. Mater., 1(4), 269–283.
Oda, M., Koshini, J., and Nemat-Nasser, S. (1980). “Some experimentally based fundamental results on the mechanical behavior of granular materials.” Geotechnique, 30(4), 479–495.
O’Hern, C., Langer, S., Liu, A., and Nagel, S. (2001). “Force distributions near jamming and glass transitions.” Phys. Rev. Lett., 86(1), 111–114.
O’Hern, C., Silbert, L. E., Liu, A. J., and Nagel, S. R. (2003). “Jamming at zero temperature and zero applied stress: The epitome of disorder.” Physical Review E, 68(1), 011306.
Oquendo, W. F., Munoz, J. D., and Radjai, F. (2016). “An equation of state for granular media at the limit state of isotropic compression.” Europhys. Lett., 114(1), 14004.
Ouadfel, H., and Rothenburg, L. (2001). “Stress-force-fabric relationship for assemblies of ellipsoids.” Mech. Mater., 33(4), 201–221.
Pavlovitch, A., Jullien, R., and Meakin, P. (1991). “Geometrical properties of a random packing of hard spheres.” Physica A, 176(2), 206–219.
Peters, J., and Walizer, L. (2013). “Patterned nonaffine motion in granular media.” J. Eng. Mech., 1479–1490.
Peyneau, P. E., and Roux, J. N. (2008a). “Frictionless bead packs have macroscopic friction, but no dilatancy.” Phys. Rev. E, 78(1), 011307.
Peyneau, P. E., and Roux, J. N. (2008b). “Solidlike behavior and anisotropy in rigid frictionless bead assemblies.” Phys. Rev. E, 78(4), 041307.
Pouliquen, O. (1999). “Scaling laws in granular flows down rough inclined planes.” Phys. Fluids, 11(3), 542–548.
Pouragha, M., and Wan, R. (2016). “Strain in granular media: Probabilistic approach to Dirichlet tesselation.” J. Eng. Mech., .
Radjai, F. (2009). “Force and fabric states in granular media.” Powders and grains 2009, N. Masami, and S. Luding, eds., AIP, New York.
Radjai, F. (2015). “Modeling force transmission in granular materials.” C. R. Phys., 16(1), 3–9.
Radjai, F., Delenne, J. Y., Azema, É., and Roux, S. (2012). “Fabric evolution and accessible geometrical states in granular materials.” Granular Matter, 14(2), 259–264.
Radjai, F., Jean, M., Moreau, J. J., and Roux, S. (1996). “Force distributions in dense two-dimensional granular systems.” Phys. Rev. Lett., 77(2), 274–277.
Radjai, F., and Richefeu, V. (2009). “Bond anisotropy and cohesion of wet granular materials.” Philos. Trans. R. Soc. A, 367(1909), 5123–5138.
Radjai, F., and Roux, S. (2002). “Turbulentlike fluctuations in quasistatic flow of granular media.” Phys. Rev. Lett., 89(6), 064302.
Radjai, F., and Roux, S. (2004). “Contact dynamics study of 2D granular media: Critical states and relevant internal variables.” The physics of granular media, H. Hinrichsen and D. E. Wolf, eds., Wiley, Weinheim, Germany.
Radjai, F., Roux, S., and Moreau, J. J. (1999). “Contact forces in a granular packing.” Chaos, 9(3), 544–550.
Radjai, F., Troadec, H., and Roux, S. (2004). “Key features of granular plasticity.” Granular materials: Fundamentals and applications, S. Antony, W. Hoyle, and Y. Ding, eds., Royal Society of Chemistry, London.
Radjai, F., and Wolf, D. E. (1998). “The origin of static pressure in dense granular media.” Granular Matter, 1(1), 3–8.
Radjai, F., Wolf, D. E., Jean, M., and Moreau, J. (1998). “Bimodal character of stress transmission in granular packings.” Phys. Rev. Letter, 80(1), 61–64.
Reis, P. M., Jaeger, H. M., and van Hecke, M. (2015). “Designer matter: A perspective.” Extreme Mech. Lett., 5, 25–29.
Reynolds, O. (1885). “On the dilatancy of media composed of rigid particles in contact.” Philos. Mag. Ser., 20(127), 469–481.
Roscoe, K. H. (1970). “Tenth Rankine lecture: The influence of strains in soil mechanics.” Géotechnique, 20(2), 129–170.
Roscoe, K. H., and Schofield, A. N. (1963). “Mechanical behaviour of an idealised wet clay.” Proc., European Conf. on Soil Mechanics and Foundation Engineering, Vol. 1, German Society of Soils and Foundations, Germany, 47–54.
Roscoe, K. H., Schofield, A. N., and Wroth, C. P. (1958). “On the yielding of soils.” Géotechnique, 8(1), 22–53.
Roth, L. K., and Jaeger, H. M. (2016). “Optimizing packing fraction in granular media composed of overlapping spheres.” Soft Matter, 12(4), 1107–1115.
Rothenburg, L., and Bathurst, R. J. (1989). “Analytical study of induced anisotropy in idealized granular materials.” Geotechnique, 39(4), 601–614.
Roux, J. N. (2000). “Geometric origin of mechanical properties of granular materials.” Phys. Rev. E., 61(6), 6802–6836.
Roux, J. N., and Combe, G. (2002). “Quasistatic rheology and the origins of strain.” C. R. Physique, 3(2), 131–140.
Roux, S., and Radjai, F. (2001). “Statistical approach to the mechanical behavior of granular media.” Mechanics for a new millennium, H. Aref and J. Philips, eds., Kluwer Academic Press, Kluwer, Netherlands.
Rowe, P. W. (1962). “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London A, 269(1339), 500–527.
Russell, A. R., Wood, D. M., and Kikumoto, M. (2009). “Crushing of particles in idealized granular assemblies.” J. Mech. Phys. Solids, 57(8), 1293–1313.
Saint-Cyr, B., Delenne, J. Y., Voivret, C., Radjai, F., and Sornay, P. (2011). “Rheology of granular materials composed of nonconvex particles.” Phys. Rev. E, 84(4), 041302.
Satake, M. (1982). “Fabric tensor in granular materials.” Proc., IUTAM Symp. on Deformation and Failure of Granular Materials, P. A. Vermeer and H. J. Luger, eds., A. A. Balkema, Amsterdam, Netherlands.
Schofield, A. N., and Wroth, P. (1968). Critical state soil mechanics, McGraw-Hill, London.
Shibuya, S., et al. (1992). “Elastic deformation properties of geomaterials.” Soils Found., 32(3), 26–46.
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., and Levine, D. (2002). “Geometry of frictionless and frictional sphere packings.” Phys; Rev. E, 65(3), 031304.
Snoeijer, J. H., Vlugt, T. J. H., van Hecke, M., and van Saarloos, W. (2004). “Force network ensemble: A new approach to static granular matter.” Phys. Rev. Lett., 92(5), 054302.
Somfai, E., Roux, J. N., Snoeijer, J. H., van Hecke, M., and van Saarloos, W. (2005). “Elastic wave propagation in confined granular systems.” Phys. Rev. E, 72(2), 021301.
Somfai, E., van Hecke, M., Ellenbroek, W. G., Shundyak, K., and van Saarloos, W. (2007). “Critical and noncritical jamming of frictional grains.” Phys. Rev. E, 75(2), 020301.
Staron, L., and Radjai, F. (2005). “Friction versus texture at the approach of a granular avalanche.” Phys. Rev. E, 72(4 Pt 1), 041308.
Staron, L., Radjai, F., and Vilotte, J. P. (2005). “Multi-scale analysis of the stress state in a granular slope in transition to failure.” Eur. Phys. J. E, 18(3), 311–320.
Staron, L., Vilotte, J. P., and Radjai, F. (2002). “Preavalanche instabilities in a granular pile.” Phys. Rev. Lett., 89(20), 204302.
Sun, J., and Sundaresan, S. (2011). “A constitutive model with microstructure evolution for flow of rate-independent granular materials.” J. Fluid Mech., 682, 590–616.
Taboada, A., Estrada, N., and Radjaï, F. (2006). “Additive decomposition of shear strength in cohesive granular media from grain-scale interactions.” Phys. Rev. Lett., 97(9), 098302.
Taiebat, M., and Dafalias, Y. F. (2008). “Sanisand: Simple anisotropic sand plasticity model.” Int. J. Numer. Anal. Methods Geomech., 32(8), 915–948.
Taylor, D. W. (1948). Fundamentals of soil mechanics, Wiley, New York.
Tejchman, J., and Wu, W. (1993). “Numerical study on patterning of shear bands in a cosserat continuum.” Acta Mech., 99(1-4), 61–74.
Terzaghi, K. (1943). Theoretical soil mechanics, Wiley, New York.
Thomann, T. G., and Hryciw, R. D. (1990). “Laboratory measurement of small strain shear modulus under k0 conditions.” ASTM Geotech. Test. J., 13(2), 97–105.
Thornton, C. (1997). “Force transmission in granular media.” Kona Powder Part., 15(0), 81–90.
Thornton, C., and Randall, C. W. (1988). “Applications of theoretical contact mechanics to solid particle system simulation.” Micromechanics of granular media, Elsevier, Amsterdam, Netherlands.
Tordesillas, A. (2007). “Force chain buckling, unjamming transitions and shear banding in dense granular assemblies.” Philosophical Magazine, 87(32), 4987–5016.
Torquato, S. (2010). “Jammed hard-particle packings: From Kepler to Bernal and beyond.” Rev. Mod. Phys., 82(3), 2633–2672.
Troadec, H., Radjai, F., Roux, S., and Charmet, J. (2002). “Model for granular texture with steric exclusion.” Phys. Rev. E, 66(4), 041305.
Vardoulakis, I. (1979). “Bifurcation analysis of the triaxial test on sand samples.” Aeta Meehaniea, 32(1), 35–54.
Vardoulakis, I., and Aifantis, E. C. (1991). “A gradient flow theory of plasticity for granular materials.” Acta. Mech., 87(3-4), 197–217.
Vardoulakis, I., and Sulem, J. (1995). Bifurcation analysis in geomechanics, Chapman and Hall, London.
Verdugo, R., and Ishihara, K. (1996). “The steady state of sandy soils.” Soils Found., 36(2), 81–91.
Vermeer, P. A. (1998). “Non-associated plasticity for soils, concrete and rock.” Physics of dry granular media, H. J. Herrmann, J. P. Hovi, and S. Luding, eds., A. A. Balkema, Dordrecht, Netherlands.
Voivret, C., Radjai, F., Delenne, J. Y., and Youssoufi, M. E. (2009). “Force transmission in polydisperse granular media.” Phys. Rev. Lett., 102(17), 178001.
Walton, K. (1987). “The effective elastic moduli of a random packing of spheres.” J. Mech. Phys. Solids, 35(2), 213–226.
Walton, O. R., and Braun, R. L. (1986). “Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic, frictional disks.” J. Rheol., 30(5), 949–980.
Wan, R., and Guo, P. (2004). “Stress dilatancy and fabric dependencies on sand behavior.” J. Eng. Mech., 635–645.
Wood, D. (1990). Soil behaviour and critical state soil mechanics, Cambridge University Press, Cambridge, U.K.
Wu, W. (1998). “Rational approach to anisotropy of sand.” Int. J. Numer. Anal. Meth. Geomech., 22(11), 921–940.
Wu, W., and Niemunis, A. (1996). “Failure criterion, flow rule and dissipation function derived from hypoplasticit.” Mech. Cohesive-Frict. Mater., 1(2), 145–163.
Wyart, M. (2005). “On the rigidity of amorphous solids.” Annales de Physique Fr., 30(3), 1–96.
Wyart, M., Nagel, S. R., and Witten, T. A. (2005). “Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids.” Europhys. Lett., 72(3), 486–492.
Yoshimine, M., Ishihara, K., and Vargas, W. (1998). “Effects of principal stress direction and intermediate principal stress on undrained shear behavior of san.” Soils Found, 38(3), 179–188.
Zhao, J., and Guo, N. (2013). “Unique critical state characteristics in granular media considering fabric anisotropy.” Géotechnique, 63(8), 695–704.
Zhu, H., Mehrabadi, M. M., and Massoudi, M. (2006). “Incorporating the effects of fabric in the dilatant double shearing model for planar deformation of granular materials.” Int. J. Plast., 22(4), 628–653.
Ziegler, H., and Wehrli, C. (1987). “The derivation of constitutive relations from the free energy and the dissipation function.” Adv. Appl. Mech., 25, 183–238.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 143Issue 4April 2017

History

Received: Jun 7, 2016
Accepted: Sep 15, 2016
Published online: Jan 23, 2017
Published in print: Apr 1, 2017
Discussion open until: Jun 23, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Farhang Radjai [email protected]
Director, Laboratoire de Mécanique et Génie Civil, Univ. of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France; CNRS-MIT Energy Initiative, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA 02139 (corresponding author). E-mail: [email protected]; [email protected]
Jean-Noël Roux [email protected]
Director, Laboratoire Navier, Univ. Paris-Est, 2 Allée Kepler, Cité Descartes, 77420 Champs-sur-Marne, France. E-mail: [email protected]
Ali Daouadji [email protected]
Univ. Lyon, INSA Lyon, Laboratoire SMS ID, F-69621, Lyon, France; formerly, Professor, Laboratoire de Génie Civil-Sols-Matériaux-Structures Intégrité et Durabilité, Institut national des sciences appliquées de Lyon, J.C.A. Coulomb, 34 Ave. des Arts, 69621 Villeurbanne cedex, France. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share