Technical Papers
Sep 26, 2022

Biomonitoring and Phytoremediation of Cr (VI) Contaminated Water: Study on Bioaccumulation and Morphological Responses in Eichhornia crassipes

Publication: Journal of Environmental Engineering
Volume 148, Issue 12

Abstract

This study examined the potential of the aquatic macrophyte Eichhornia crassipes for bioaccumulating hexavalent chromium and its effects on the plant’s morphology. The macrophytes were exposed to different concentrations of Cr (VI) (0100  mgL1) in 20% full-strength Hoagland nutrient solution for 10 days. Changes in the Cr (VI) concentrations were measured in the media and in specific plant tissues, i.e., roots, shoots, and leaves. The bioconcentration factor (BCF) in all plant parts and the translocation factor (TF) within plant tissues were calculated twice during the experiment. Results demonstrated that E. crassipes accumulated high concentrations of Cr (VI) in all plant tissues examined in a dose-specific manner. High BCF was observed in the plant roots for concentrations up to 60  mgL1, after which the accumulation in shoots and leaves was greater than in roots. The results from E. crassipes survivorship indicated that 40  mgL1 is the threshold concentration for their survival under Cr (VI) stress. Morphological changes in the plants were examined by monitoring the change in the number of leaves and plant height under varying Cr (VI) concentrations. Impeded growth was observed due to increasing Cr (VI) concentration with maximum growth in the control group with no Cr (VI). Evapotranspiration losses were monitored and found to be minimal in experimental groups with high concentrations, displaying a negative correlation with Cr (VI) contamination. Physicochemical parameters including pH, electrical conductivity, oxidation-reduction potential, and color were also found to be significantly correlated with Cr (VI) concentration and time. The results demonstrated significant Cr (VI) accumulation in E. crassipes as well as noticeable morphological changes, making E. crassipes a suitable organism for biomonitoring and remediating Cr-contaminated sites over a relatively short time period.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated or used during the study appear in the published article.

Acknowledgments

The authors are thankful to the Department of Science and Technology, India and British Council, UK for joint support and funding of the work through a UK-India Education and Research Initiative (UKIERI) project titled “In-situ bioremediation of non-aqueous phase liquids (NAPLs) pollution within the Baddi-Barotiwala-Nalagarh (BBN) Industrial Area in Himachal Pradesh (India).” The first author is also thankful to the University Grants Commission (UGC) of India for providing support through a research fellowship for her Ph.D. work and the research facilities provided by the Department of Hydrology, Indian Institute of Technology Roorkee.

References

Abdallah, M. A. M. 2012. “Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.” Environ. Technol. (United Kingdom) 33 (14): 1609–1614. https://doi.org/10.1080/09593330.2011.640354.
Ahmad, A., R. Ghufran, and A. W. Zularisam. 2011. “Phytosequestration of metals in selected plants growing on a contaminated Okhla Industrial Areas, Okhla, New Delhi, India.” Water Air Soil Pollut. 217 (1–4): 255–266. https://doi.org/10.1007/s11270-010-0584-9.
Ahmad, A., F. Hadi, N. Ali, and A. U. Jan. 2016a. “Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum.” Environ. Sci. Pollut. Res. 23 (17): 17715–17729. https://doi.org/10.1007/s11356-016-6960-2.
Ahmad, S. S., Z. A. Reshi, M. A. Shah, I. Rashid, R. Ara, and S. M. A. Andrabi. 2016b. “Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: Management implications.” Wetlands Ecol. Manage. 24 (4): 469–475. https://doi.org/10.1007/s11273-015-9472-9.
Al-Abbawy, D. A. H., B. M. Hubain Al-Thahaibawi, I. K. A. Al-Mayaly, and K. H. Younis. 2021. “Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq.” Biodiversitas 22 (1): 338–345. https://doi.org/10.13057/biodiv/d220141.
Al-Homaidan, A. A., T. G. Al-Otaibi, M. A. El-Sheikh, A. A. Al-Ghanayem, and F. Ameen. 2020. “Accumulation of heavy metals in a macrophyte Phragmites australis: Implications to phytoremediation in the Arabian Peninsula wadis.” Environ. Monit. Assess. 192 (3), https://doi.org/10.1007/s10661-020-8177-6.
Altenburger, R., et al. 2019. “Future water quality monitoring: Improving the balance between exposure and toxicity assessments of real-world pollutant mixtures.” Environ. Sci. Eur. 31 (1): 1–17. https://doi.org/10.1186/s12302-019-0193-1.
Arora, A., S. Saxena, and D. K. Sharma. 2006. “Tolerance and phytoaccumulation of Chromium by three Azolla species.” World J. Microbiol. Biotechnol. 22 (2): 97–100. https://doi.org/10.1007/s11274-005-9000-9.
Balkhair, K. S., and M. A. Ashraf. 2016. “Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia.” Supplement, Saudi J. Biol. Sci. 23 (S1): S32–S44. https://doi.org/10.1016/j.sjbs.2015.09.023.
Bedabati Chanu, L., and A. Gupta. 2016. “Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution.” Chemosphere 156 (Aug): 407–411. https://doi.org/10.1016/j.chemosphere.2016.05.001.
Beeby, A. 2001. “What do sentinels stand for?” Environ. Pollut. 112 (2): 285–298. https://doi.org/10.1016/S0269-7491(00)00038-5.
Chaudhary, E., and P. Sharma. 2019. “Chromium and cadmium removal from wastewater using duckweed—Lemna gibba L. and ultrastructural deformation due to metal toxicity.” Int. J. Phytorem. 21 (3): 279–286. https://doi.org/10.1080/15226514.2018.1522614.
Chirakkara, R. A., C. Cameselle, and K. R. Reddy. 2016. “Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants.” Rev. Environ. Sci. Biotechnol. 15 (2): 299–326. https://doi.org/10.1007/s11157-016-9391-0.
Choo, T. P., C. K. Lee, K. S. Low, and O. Hishamuddin. 2006. “Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea).” Chemosphere 62 (6): 961–967. https://doi.org/10.1016/j.chemosphere.2005.05.052.
Costa, M. B., F. V. Tavares, C. B. Martinez, I. G. Colares, and C. M. G. Martins. 2018. “Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.” Ecotoxicol. Environ. Saf. 155 (Jan): 117–124. https://doi.org/10.1016/j.ecoenv.2018.01.062.
Das, S., S. Goswami, and A. Das Talukdar. 2016. “Physiological responses of water hyacinth, eichhornia crassipes (Mart.) solms, to cadmium and its phytoremediation potential.” Turk. J. Biol. 40 (1): 84–94. https://doi.org/10.3906/biy-1411-86.
de Sousa, R. D. N., A. A. Mozeto, R. L. Carneiro, and P. S. Sergio. 2014. “Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater.” Sci. Total Environ. 484 (Jun): 19–26. https://doi.org/10.1016/j.scitotenv.2014.02.135.
Dhal, B., H. N. Thatoi, N. N. Das, and B. D. Pandey. 2013. “Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review.” J. Hazard. Mater. 250 (Apr): 272–291. https://doi.org/10.1016/j.jhazmat.2013.01.048.
Eid, E. M., et al. 2020a. “Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus.” Sci. Total Environ. 714 (Jan): 136603. https://doi.org/10.1016/j.scitotenv.2020.136603.
Eid, E. M., T. M. Galal, N. A. Sewelam, N. I. Talha, and S. M. Abdallah. 2020b. “Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment.” Environ. Sci. Pollut. Res. 27 (11): 12138–12151. https://doi.org/10.1007/s11356-020-07839-9.
Eid, E. M., K. H. Shaltout, A. H. Almuqrin, D. A. Aloraini, K. M. Khedher, M. A. Taher, A. H. Alfarhan, Y. Picó, and D. Barcelo. 2021. “Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach.” Sci. Total Environ. 782 (Aug): 146887. https://doi.org/10.1016/j.scitotenv.2021.146887.
Fawzy, M. A., N. E. S. Badr, A. El-Khatib, and A. Abo-El-Kassem. 2012. “Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.” Environ. Monit. Assess. 184 (3): 1753–1771. https://doi.org/10.1007/s10661-011-2076-9.
Gadallah, M. A. A. 1996. “Phytotoxic effects of industrial and sewage waste waters on growth, chlorophyll content, transpiration rate and relative water content of potted sunflower plants.” Water Air Soil Pollut. 89 (1): 33–47. https://doi.org/10.1007/BF00300420.
Garg, A., B. K. Yadav, D. B. Das, and P. J. Wood. 2022. “Improving the assessment of polluted sites using an integrated bio-physico-chemical monitoring framework.” Chemosphere 290 (Mar): 1–14. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133344.
Gil-Cardeza, M. L., A. Ferri, P. Cornejo, and E. Gomez. 2014. “Distribution of chromium species in a Cr-polluted soil: Presence of Cr(III) in glomalin related protein fraction.” Sci. Total Environ. 493 (Sep): 828–833. https://doi.org/10.1016/j.scitotenv.2014.06.080.
Giri, A. K., and R. K. Patel. 2011. “Toxicity and bioaccumulation potential of Cr (VI) and Hg (II) on differential concentration by Eichhornia crassipes in hydroponic culture.” Water Sci. Technol. 63 (5): 899–907. https://doi.org/10.2166/wst.2011.268.
Gitet, H., M. Hilawie, M. Muuz, Y. Weldegebriel, D. Gebremichael, and D. Gebremedhin. 2016. “Bioaccumulation of heavy metals in crop plants grown near Almeda Textile Factory, Adwa, Ethiopia.” Environ. Monit. Assess. 188 (9): 1–8. https://doi.org/10.1007/s10661-016-5511-0.
Guo, H., J. Jiang, J. Gao, J. Zhang, L. Zeng, M. Cai, and J. Zhang. 2020. “Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum.” Ecotoxicol. Environ. Saf. 195 (Mar): 110502. https://doi.org/10.1016/j.ecoenv.2020.110502.
He, X., and P. Li. 2020. “Surface water pollution in the middle Chinese loess plateau with special focus on hexavalent chromium (Cr6+): Occurrence, sources and health risks.” Expo. Heal. 12 (3): 385–401. https://doi.org/10.1007/s12403-020-00344-x.
Hoagland, D. R., and D. I. Arnon. 1950. “Preparing the nutrient solution.” Water-Cult. Method Grow. Plants Soil 347: 29–31.
Ibrahim, H. S., N. S. Ammar, M. Soylak, and M. Ibrahim. 2021. “Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent.” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 96: 413–420. https://doi.org/10.1016/j.saa.2012.05.039.
Islam, M. A., M. J. Angove, D. W. Morton, B. K. Pramanik, and M. R. Awual. 2020. “A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite.” J. Environ. Chem. Eng. 8 (2): 103515. https://doi.org/10.1016/j.jece.2019.103515.
Jobby, R., P. Jha, A. K. Yadav, and N. Desai. 2018. “Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review.” Chemosphere 207 (Sep): 255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050.
Kabir, M. M., M. M. Akter, S. Khandaker, B. H. Gilroyed, M. Didar-ul-Alam, M. Hakim, and M. R. Awual. 2022. “Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater.” J. Mol. Liq. 347 (Feb): 118327. https://doi.org/10.1016/j.molliq.2021.118327.
Kleiman, I. D., and D. H. Cogliatti. 1998. “Chromium removal from aqueous solutions by different plant species.” Environ. Technol. (United Kingdom) 19 (11): 1127–1132. https://doi.org/10.1080/09593331908616771.
Krayem, M., S. El Khatib, Y. Hassan, V. Deluchat, and P. Labrousse. 2021. “In search for potential biomarkers of copper stress in aquatic plants.” Aquat. Toxicol. 239 (Oct): 105952. https://doi.org/10.1016/j.aquatox.2021.105952.
Lima, H. D. P., and Y. J. O. Asencios. 2021. “Eichhornia crassipes (Mart.) Solms (natural or carbonized) as biosorbent to remove pollutants in water.” SN Appl. Sci. 3 (8): 750. https://doi.org/10.1007/s42452-021-04736-9.
Lytle, C. M., P. W. Lytle, N. Yang, J. H. Qian, D. Hansen, A. Zayed, and N. Terry. 1998. “Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification.” Environ. Sci. Technol. 32 (20): 3087–3093. https://doi.org/10.1021/es980089x.
Maine, M. A., N. L. Suñé, and S. C. Lagger. 2004. “Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes.” Water Res. 38 (6): 1494–1501. https://doi.org/10.1016/j.watres.2003.12.025.
Malaviya, P., and A. Singh. 2011. “Physicochemical technologies for remediation of chromium-containing waters and wastewaters.” Crit. Rev. Environ. Sci. Technol. 41 (12): 1111–1172. https://doi.org/10.1080/10643380903392817.
Malaviya, P., A. Singh, and T. A. Anderson. 2020. “Aquatic phytoremediation strategies for chromium removal.” Rev. Environ. Sci. Biotechnol. 19 (4): 897–944. https://doi.org/10.1007/s11157-020-09552-y.
Mangabeira, P. A., et al. 2006. “Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS).” Appl. Surf. Sci. 252 (10): 3488–3501. https://doi.org/10.1016/j.apsusc.2005.05.015.
Mishra, S., and A. Maiti. 2017. “The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review.” Environ. Sci. Pollut. Res. 24 (9): 7921–7937. https://doi.org/10.1007/s11356-016-8357-7.
Mishra, V. K., and B. D. Tripathi. 2009. “Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).” J. Hazard. Mater. 164 (2–3): 1059–1063. https://doi.org/10.1016/j.jhazmat.2008.09.020.
Mishra, V. K., A. R. Upadhyay, V. Pathak, and B. D. Tripathi. 2008. “Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes.” Water Air Soil Pollut. 192 (1–4): 303–314. https://doi.org/10.1007/s11270-008-9657-4.
Mittal, A., R. Singh, S. Chakma, G. Goel, and V. Birke. 2021. “An integrated permeable reactive barrier and photobioreactor approach for simultaneous removal of nitrate, phosphate and hexavalent chromium: A combined batch and continuous flow study.” Bioresour. Technol. 333 (Mar): 125201. https://doi.org/10.1016/j.biortech.2021.125201.
Monferrán, M. V., M. L. Pignata, and D. A. Wunderlin. 2012. “Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper.” Environ. Pollut. 161 (Feb): 15–22. https://doi.org/10.1016/j.envpol.2011.09.032.
Newete, S. W., B. F. N. Erasmus, I. M. Weiersbye, and M. J. Byrne. 2016. “Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes).” Environ. Sci. Pollut. Res. 23 (20): 20805–20818. https://doi.org/10.1007/s11356-016-7292-y.
Norouznia, H., and A. H. Hamidian. 2014. “Phytoremediation efficiency of pondweed (Potamogeton crispus) in removing heavy metals (Cu, Cr, Pb, As and Cd) from water of Anzali wetland.” Int. J. Aquat. Biol. 2 (4): 206–214. https://doi.org/10.22034/ijab.v2i4.87.
Odjegba, V. J., and I. O. Fasidi. 2007. “Phytoremediation of heavy metals by Eichhornia crassipes.” Environmentalist 27 (3): 349–355. https://doi.org/10.1007/s10669-007-9047-2.
Oliveira, H. 2012. “Chromium as an environmental pollutant: Insights on induced plant toxicity.” J. Bot. 2012: 1–8. https://doi.org/10.1155/2012/375843.
Peng, K., C. Luo, L. Lou, X. Li, and Z. Shen. 2008. “Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment.” Sci. Total Environ. 392 (1): 22–29. https://doi.org/10.1016/j.scitotenv.2007.11.032.
Prasad, S., K. K. Yadav, S. Kumar, N. Gupta, M. M. S. Cabral-Pinto, S. Rezania, N. Radwan, and J. Alam. 2021. “Chromium contamination and effect on environmental health and its remediation: A sustainable approaches.” J. Environ. Manage. 285 (Dec): 112174. https://doi.org/10.1016/j.jenvman.2021.112174.
Rajput, V., T. Minkina, A. Fedorenko, S. Sushkova, S. Mandzhieva, V. Lysenko, N. Duplii, G. Fedorenko, K. Dvadnenko, and K. Ghazaryan. 2018. “Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum).” Sci. Total Environ. 645: 1103–1113. https://doi.org/10.1016/j.scitotenv.2018.07.211.
Romanova, T. E., O. V. Shuvaeva, and L. A. Belchenko. 2016. “Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing.” Int. J. Phytorem. 18 (2): 190–194. https://doi.org/10.1080/15226514.2015.1073674.
Saber, A., M. Tafazzoli, S. Mortazavian, and D. E. James. 2018. “Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.” J. Environ. Manage. 207 (Feb): 276–291. https://doi.org/10.1016/j.jenvman.2017.11.039.
Shanker, A. K., C. Cervantes, H. Loza-Tavera, and S. Avudainayagam. 2005. “Chromium toxicity in plants.” Environ. Int. 31 (5): 739–753. https://doi.org/10.1016/j.envint.2005.02.003.
Singh, S., J. Karwadiya, S. Srivastava, P. K. Patra, and V. P. Venugopalan. 2022. “Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil.” Ecol. Eng. 175 (Feb): 106476. https://doi.org/10.1016/j.ecoleng.2021.106476.
Sinha, S., R. Saxena, and S. Singh. 2002. “Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: Its toxic effects.” Environ. Monit. Assess. 80 (1): 17–31. https://doi.org/10.1023/A:1020357427074.
Soltan, M. E., and M. N. Rashed. 2003. “Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations.” Adv. Environ. Res. 7 (2): 321–334. https://doi.org/10.1016/S1093-0191(02)00002-3.
Tabinda, A. B., R. Irfan, A. Yasar, A. Iqbal, and A. Mahmood. 2020. “Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper.” Environ. Technol. (United Kingdom) 41 (12): 1514–1519. https://doi.org/10.1080/09593330.2018.1540662.
Tang, K. H. D., S. H. Awa, and T. Hadibarata. 2020. “Phytoremediation of copper-contaminated water with Pistia stratiotes in surface and distilled water.” Water Air Soil Pollut. 231 (12): 1–6. https://doi.org/10.1007/s11270-020-04937-9.
Tumolo, M., V. Ancona, D. De Paola, D. Losacco, C. Campanale, C. Massarelli, and V. F. Uricchio. 2020. “Chromium pollution in European water, sources, health risk, and remediation strategies: An overview.” Int. J. Environ. Res. Public Health 17 (15): 5438. https://doi.org/10.3390/ijerph17155438.
Victor, K. K., M. Ladji, A. O. Adjiri, Y. D. A. Cyrille, and T. A. Sanogo. 2016. “Bioaccumulation of heavy metals from wastewaters (Pb, Zn, Cd, Cu and Cr) in water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes).” Int. J. ChemTech Res. 9 (2): 189–195.
Yadav, A. K., B. Pathak, and M. H. Fulekar. 2015. “Rhizofiltration of heavy metals (Cadmium, Lead and Zinc) from fly ash leachates using water hyacinth (Eichhornia Crassipes).” Int. J. Environ. 4 (1): 179–196. https://doi.org/10.3126/ije.v4i1.12187.
Yadav, B. K., F. A. Ansari, S. Basu, and A. Mathur. 2014. “Remediation of LNAPL contaminated groundwater using plant-assisted biostimulation and bioaugmentation methods.” Water Air Soil Pollut. 225 (1): 1–9. https://doi.org/10.1007/s11270-013-1793-9.
Yadav, B. K., M. A. Siebel, and J. J. A. van Bruggen. 2011. “Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula.” Clean Soil Air Water 39 (5): 467–474. https://doi.org/10.1002/clen.201000385.
Yongpisanphop, J., S. Babel, M. Kruatrachue, and P. Pokethitiyook. 2017. “Phytoremediation potential of plants growing on the Pb-contaminated soil at the song Tho Pb Mine, Thailand.” Soil Sediment Contam. 26 (4): 426–437. https://doi.org/10.1080/15320383.2017.1348336.
Yoshinaga, M., et al. 2018. “A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution.” Chemosphere 201 (Jun): 667–675. https://doi.org/10.1016/j.chemosphere.2018.03.026.
Zhou, Q., J. Zhang, J. Fu, J. Shi, and G. Jiang. 2008. “Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem.” Anal. Chim. Acta 606 (2): 135–150. https://doi.org/10.1016/j.aca.2007.11.018.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 12December 2022

History

Received: Jun 2, 2022
Accepted: Jul 19, 2022
Published online: Sep 26, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 26, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Anuradha Garg, S.M.ASCE [email protected]
Research Scholar, Dept. of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India. Email: [email protected]
Professor, Dept. of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India (corresponding author). ORCID: https://orcid.org/0000-0002-1286-7934. Email: [email protected]
Diganta B. Das [email protected]
Reader, Dept. of Chemical Engineering, Loughborough Univ., Loughborough, Leicestershire LE11 3TU, UK. Email: [email protected]
Paul J. Wood [email protected]
Professor, Geography and Environment, Loughborough Univ., Loughborough, Leicestershire LE11 3TU, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Capacity of Schoenoplectus californicus to Remove and Tolerate Copper, Lead, and Zinc in Constructed Wetland Systems Using Simulated Wastewater, Journal of Environmental Engineering, 10.1061/JOEEDU.EEENG-7334, 149, 10, (2023).
  • Impact of Nonaqueous Phase Liquid on Cr(VI) Removal by Nano Zerovalent Iron Particles: Effects of Contact Time, Pollution Load, and pH, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/JHTRBP.HZENG-1183, 27, 2, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share