Technical Papers
Aug 11, 2023

Capacity of Schoenoplectus californicus to Remove and Tolerate Copper, Lead, and Zinc in Constructed Wetland Systems Using Simulated Wastewater

Publication: Journal of Environmental Engineering
Volume 149, Issue 10

Abstract

The development of industry has caused metal pollution of aquatic ecosystems and water deterioration worldwide. Therefore, environmentally friendly strategies for industrial wastewater treatment are needed. In this study, constructed wetlands (CWs) were planted with Schoenoplectus californicus in a culture medium with different concentrations of Cu, Pb, and Zn. The aims of this work were to evaluate the ability of S. californicus to accumulate Cu, Pb, and Zn and its physiological response to metal exposure, and assess the wastewater treatment performance of the CW systems. The accumulation of Cu, Pb, and Zn in the shoot and root of the emergent aquatic plant depended on the metal concentration during the 28 days of exposure, except for Pb in shoots. The bioconcentration factors of Cu (46.7±10.8) and Zn (896±317) were highest in the treatment with moderate levels of metals (T-2), whereas for Pb (57.4±15.9), the maximum bioconcentration factor was recorded in the treatment with the highest metal levels (T-3). Metal translocation from root to shoot reached values greater than 1 for Cu, but were lower for Pb and Zn because accumulation occurred predominantly in the root. In general, the removal efficiency of the CW systems was higher than 90% for Pb and Zn, and higher than 80% for Cu. Furthermore, Cu, Pb, and Zn bioaccumulation in S. californicus did not reflect toxicological damage to physiological parameters, such as the formation of products of lipid membrane peroxidation. The results showed that the exposure to relatively high metal concentrations in the CWs did not affect the survival of the species. Considering the capacity of S. californicus to tolerate and accumulate Pb, Zn, and Cu, this species can be used as a phytoextractor in wastewater treatment in CW systems.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data are available upon request from the corresponding author.

Acknowledgments

This work was partially supported by the Agencia Nacional de Promoción Científica y Tecnológica (FONCyT PICT-2014-3474). The authors wish to acknowledge the assistance of the IMBIV of the Consejo Nacional de Investigación Científica y Técnicas (CONICET), and Universidad Nacional de Córdoba (UNC) for supporting the facilities used in this investigation. The authors thank Jorgelina Brasca (certified English translator) for language revision.

References

Abid Maktoof, A., and M. S. Al-Enazi. 2020. “Use of two plants to remove pollutants in wastewater in constructed wetlands in southern Iraq.” Egypt. J. Aquat. Res. 46 (3): 227–233. https://doi.org/1wp0.1016/j.ejar.2020.06.002.
Abril, G. A., E. D. Wannaz, A. C. Mateos, and M. L. Pignata. 2014. “Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results.” Atmos. Environ. 82 (Jan): 154–163. https://doi.org/10.1016/j.atmosenv.2013.10.020.
Ahmed, M. J. K., and M. Ahmaruzzaman. 2016. “A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions.” J. Water Process Eng. 10 (Apr): 39–47. https://doi.org/10.1016/j.jwpe.2016.01.014.
Ali, H., and E. Khan. 2019. “Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health.” Hum. Ecol. Risk Assess.: Int. J. 25 (6): 1353–1376. https://doi.org/10.1080/10807039.2018.1469398.
APHA (American Public Health Association). 1999. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Arán, D. S., M. Deza, M. V. Monferrán, M. L. Pignata, and C. A. Harguinteguy. 2022. “Use of local waste for biochar production: Influence of feedstock and pyrolysis temperature on chromium removal from aqueous solutions.” Integr. Environ. Assess. Manage. 19 (3): 717–725. https://doi.org/10.1002/ieam.4643.
Arán, D. S., C. A. Harguinteguy, A. Fernandez-Cirelli, and M. L. Pignata. 2017. “Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.” Environ. Sci. Pollut. Res. 24 (22): 18295–18308. https://doi.org/10.1007/s11356-017-9464-9.
Arreghini, S., L. de Cabo, R. Serafini, and A. F. de Iorio. 2017. “Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus.” Environ. Sci. Pollut. Res. 24 (9): 8098–8107. https://doi.org/10.1007/s11356-017-8478-7.
Arreghini, S., L. de Cabo, R. J. M. Serafini, and A. Fabrizio de Iorio. 2018. “Shoot litter breakdown and zinc dynamics of an aquatic plant, Schoenoplectus californicus.” Int. J. Phytorem. 20 (8): 780–788. https://doi.org/10.1080/15226514.2018.1425667.
Arroyo, P., G. Ansola, and E. De Luis. 2010. “Effectiveness of a full-scale constructed wetland for the removal of metals from domestic wastewater.” Water Air Soil Pollut. 210 (Jul): 473–481. https://doi.org/10.1007/s11270-009-0272-9.
Balafrej, H., D. Bogusz, Z. E. A. Triqui, A. Guedira, N. Bendaou, A. Smouni, and M. Fahr. 2020. “Zinc hyperaccumulation in plants: A review.” Plants 9 (5): 562. https://doi.org/10.3390/plants9050562.
Basílico, G., L. de Cabo, A. Faggi, and S. Miguel. 2016. “Low-tech alternatives for the rehabilitation of aquatic and riparian environments.” In Phytoremediation, 349–364. Berlin: Springer.
Bertrand, L., M. V. Monferrán, M. E. Valdés, and M. V. Amé. 2019. “Usefulness of a freshwater macrophyte (Potamogeton pusillus) for an environmental risk assessment in a multi-source contaminated basin.” Chemosphere 222 (May): 1003–1016. https://doi.org/10.1016/j.chemosphere.2019.02.018.
Carolin, C. F., P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad. 2017. “Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review.” J. Environ. Chem. Eng. 5 (3): 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029.
Chiodi Boudet, L., A. Escalante, G. Von Haeften, V. Moreno, and M. Gerpe. 2011. “Assessment of heavy metal accumulation in two aquatic macrophytes: A field study.” J. Braz. Soc. Ecotoxicol. 6 (1): 57–64. https://doi.org/10.5132/jbse.2011.01.009.
Cuadrado, W., M. Custodio, C. Espinoza, C. Vicuña, and M. Uribe. 2019. “Capacity of absorption and removal of heavy metals from Scirpus californicus and its potential use in the remediation of polluted aquatic environment.” Open J. Mar. Sci. 9 (2): 74–85. https://doi.org/10.4236/ojms.2019.92006.
de Cabo, L., R. Serafini, S. Arreghini, and A. F. de Iorio. 2015. “On-site and full-scale applications of phytoremediation to repair aquatic ecosystems with metal excess.” In Phytoremediation, 27–40. Berlin: Springer.
de Lange, P. J., R. O. Gardner, P. D. Champion, and C. C. Tanner. 1998. “Schoenoplectus californicus (Cyperaceae) in New Zealand.” N. Z. J. Botan. 36 (3): 319–327. https://doi.org/10.1080/0028825X.1998.9512573.
Dorman, L., J. W. Castle, and J. H. Rodgers. 2009. “Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.” Chemosphere 75 (7): 939–947. https://doi.org/10.1016/j.chemosphere.2009.01.012.
Ebrahimpour, M., and I. Mushrifah. 2008. “Heavy metal concentrations (Cd, Cu and Pb) in five aquatic plant species in Tasik Chini, Malaysia.” Environ. Geol. 54 (Apr): 689–698. https://doi.org/10.1007/s00254-007-0838-z.
Falleh, H., I. Jalleli, R. Ksouri, M. Boulaaba, S. Guyot, C. Magné, and C. Abdelly. 2012. “Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances.” Plant Physiol. Biochem. 52 (Mar): 1–8. https://doi.org/10.1016/j.plaphy.2011.11.001.
FAO (Food and Agriculture Organization of the United Nations). 2018. “Aquastat.” Accessed January 11, 2023. www.fao.org/aquastat/statistics/query.
Franzaring, J., A. Klumpp, and A. Fangmeier. 2007. “Active biomonitoring of airborne fluoride near an HF producing factory using standardised grass cultures.” Atmos. Environ. 41 (Mar): 4828–4840. https://doi.org/10.1016/j.atmosenv.2007.02.010.
Gagneten, A. M., and J. C. Paggi. 2009. “Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina).” Water Air Soil Pollut. 198 (Mar): 317–334. https://doi.org/10.1007/s11270-008-9848-z.
Garg, A., B. K. Yadav, D. B. Das, and P. J. Wood. 2022. “Biomonitoring and phytoremediation of Cr (VI) contaminated water: Study on bioaccumulation and morphological responses in Eichhornia crassipes.” J. Environ. Eng. 148 (12): 04022075. https://doi.org/10.1061/(ASCE)EE.1943-7870.0002074.
González, C. I., M. A. Maine, H. R. Hadad, G. C. Sanchez, M. P. Benavides, and M. A. Campagnoli. 2018. “Effects on Eichhornia crassipes under Zn stress.” Environ. Sci. Pollut. Res. 25 (Mar): 26957–26964. https://doi.org/10.1007/s11356-018-2741-4.
Griboff, J., M. Horacek, D. A. Wunderlin, and M. V. Monferran. 2018. “Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by antrophic pollution in Córdoba, Argentina.” Ecotoxicol. Environ. Saf. 148 (Feb): 275–284. https://doi.org/10.1016/j.ecoenv.2017.10.028.
Guzman, M., M. B. Romero Arribasplata, M. I. Flores Obispo, and S. C. Bravo Thais. 2022. “Removal of heavy metals using a wetland batch system with carrizo (phragmites australis (cav.) trin. ex steud.): A laboratory assessment.” Acta Ecol. Sin. 42 (1): 102–109. https://doi.org/10.1016/j.chnaes.2021.08.001.
Hadad, H. R., M. D. L. M. Mufarrege, G. A. Di Luca, A. C. Denaro, E. Nocetti, and M. A. Maine. 2022. “Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes.” Ecol. Eng. 182 (Sep): 106734. https://doi.org/10.1016/j.ecoleng.2022.106734.
Harguinteguy, C. A., A. F. Cirelli, and M. L. Pignata. 2014. “Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina).” Microchem. J. 114 (Apr): 111–118. https://doi.org/10.1016/j.microc.2013.12.010.
Harguinteguy, C. A., G. L. Gudiño, D. S. Arán, M. L. Pignata, and A. Fernández-Cirelli. 2019. “Comparison between two submerged macrophytes as biomonitors of trace elements related to anthropogenic activities in the Ctalamochita River, Argentina.” Bull. Environ. Contam. Toxicol. 102 (Jan): 105–114. https://doi.org/10.1007/s00128-018-2499-x.
Harguinteguy, C. A., M. L. Pignata, and A. Fernández-Cirelli. 2015. “Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa.” Ecol. Eng. 82 (Jun): 512–516. https://doi.org/10.1016/j.ecoleng.2015.05.039.
Harguinteguy, C. A., R. Schreiber, and M. L. Pignata. 2013. “Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina).” Ecol. Indic. 27 (Apr): 8–16. https://doi.org/10.1016/j.ecolind.2012.11.018.
Henagamage, A. P., C. M. Peries, and G. Seneviratne. 2022. “Fungal-bacterial biofilm mediated heavy metal rhizo-remediation.” World J. Microbiol. Biotechnol. 38 (5): 85. https://doi.org/10.1007/s11274-022-03267-8.
Hernández-Crespo, C., N. Oliver, J. Bixquert, S. Gargallo, and M. Martín. 2016. “Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate.” Hydrobiologia 774 (1): 183–192. https://doi.org/10.1007/s10750-015-2493-9.
Kadlec, R. H., and S. D. Wallace. 2008. Treatment wetlands. Boca Raton, FL: CRC Press.
Khan, A. G., C. Kuek, T. M. Chaudhry, C. S. Khoo, and W. J. Hayes. 2000. “Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation.” Chemosphere 41 (1–2): 197–207. https://doi.org/10.1016/S0045-6535(99)00412-9.
Knox, A. S., M. H. Paller, J. C. Seaman, J. Mayer, and C. Nicholson. 2021. “Removal, distribution and retention of metals in a constructed wetland over 20 years.” Sci. Total Environ. 796 (Nov): 149062. https://doi.org/10.1016/j.scitotenv.2021.149062.
Kumar, V., S. Pandita, G. P. Sidhu, A. Sharma, K. Khanna, P. Kaur, A. S. Bali, and R. Setia. 2021. “Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review.” Chemosphere 262 (Jan): 127810. https://doi.org/10.1016/j.chemosphere.2020.127810.
Lafont, M. 2002. “A conceptual approach to the biomonitoring of freshwater: The ecological ambience system.” Supplement, J. Limnol. 60 (S1): 17–24. https://doi.org/10.4081/jlimnol.2001.s1.17.
Levin, A. G., and M. L. Pignata. 1995. “Ramalina ecklonii as a bioindicator of atmospheric pollution in Argentina.” Can. J. Bot. 73 (8): 1196–1202. https://doi.org/10.1139/b95-129.
Magni, L. F., L. N. Castro, and A. E. Rendina. 2021. “Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina.” Environ. Res. 197 (Jun): 110979. https://doi.org/10.1016/j.envres.2021.110979.
Mohanty, M. 2016. “Post-harvest management of phytoremediation technology.” J. Environ. Anal. Toxicol. 6 (5): 398. https://doi.org/10.4172/2161-0525.1000398.
Monferran, M. V., P. L. Garnero, D. A. Wunderlin, and M. A. Bistoni. 2016. “Potential human health risks from metals and as via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake.” Ecotoxicol. Environ. Saf. 129 (Jul): 302–310. https://doi.org/10.1016/j.ecoenv.2016.03.030.
Murray-Gulde, C. L., G. M. Huddleston, K. V. Garber, and J. H. Rodgers. 2005. “Contributions of Schoenoplectus californicus in a constructed wetland system receiving copper contaminated wastewater.” Water Air Soil Pollut. 163 (May): 355–378. https://doi.org/10.1007/s11270-005-1297-3.
Nabuyanda, M. M., P. Kelderman, J. van Bruggen, and K. Irvine. 2022. “Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. and Phragmites mauritianus in three Zambian wetlands.” J. Environ. Manage. 304 (Feb): 114133. https://doi.org/10.1016/j.jenvman.2021.114133.
National Congress of Argentina. 1991. “Law 24051.” Accessed January 12, 2023. http://www2.medioambiente.gov.ar/mlegal/residuos/ley24051.htm.
Nelson, E. A., W. L. Specht, and A. S. Knox. 2006. “Metal removal from water discharges by a constructed treatment wetland.” Eng. Life Sci. 6 (1): 26–30. https://doi.org/10.1002/elsc.200620112.
Neubauer, M. E., C. Plaza De Los Reyes, G. Pozo, C. A. Villamar, and G. Vidal. 2012. “Growth and nutrient uptake by Schoenoplectus californicus (C. A. Méyer) Sójak in a constructed wetland fed with swine slurry.” J. Soil Sci. Plant Nutr. 12 (3): 421–430. https://doi.org/10.4067/S0718-95162012005000004.
Ogundola, A. F., E. A. Adebayo, and S. O. Ajao. 2022. “Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants.” In Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water. Amsterdam, Netherlands: Elsevier.
Olguín, E. J., and G. Sánchez-Galván. 2012. “Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation.” New Biotechnol. 30 (1): 3–8. https://doi.org/10.1016/j.nbt.2012.05.020.
Pineda Zapana, J. S., D. S. Arán, E. F. Bocardo, and C. A. Harguinteguy. 2022. “Correction to: Treatment of tannery wastewater in a pilot scale hybrid constructed wetland system in Arequipa, Peru.” Int. J. Environ. Sci. Technol. 17 (Nov): 4419–4430. https://doi.org/10.1007/s13762-020-03049-5.
Rehman, F., A. Pervez, B. N. Khattak, and R. Ahmad. 2017. “Constructed wetlands: Perspectives of the oxygen released in the rhizosphere of macrophytes.” CLEAN - Soil Air Water 45 (1): 1–9. https://doi.org/10.1002/clen.201600054.
Romero, M., M. Flores, S. Bravo-Thais, and M. Guzman. 2023. “Schoenoplectus californicus as potential remover of metal elements from mine effluents: A laboratory assessment.” CLEAN - Soil Air Water 51 (2): 2200029. https://doi.org/10.1002/clen.202200029.
Sabreena, H. S., S. A. Bhat, V. Kumar, B. A. Ganai, and F. Ameen. 2022. “Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology.” Plants 11 (9): 1255. https://doi.org/10.3390/plants11091255.
Salazar, M. J., J. H. Rodriguez, G. L. Nieto, and M. L. Pignata. 2012. “Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill].” J. Hazard. Mater. 233 (Sep): 244–253. https://doi.org/10.1016/j.jhazmat.2012.07.026.
Saleh, H. M., H. H. Mahmoud, R. F. Aglan, and T. A. Bayoumi. 2019. “Biological treatment of wastewater contaminated with Cu (II), Fe (II) and Mn (II) using Ludwigia stolonifera aquatic plant.” Environ. Eng. Manage. J. 18 (6): 1327–1336. https://doi.org/10.30638/eemj.2019.126.
Serafini, R. J. M., S. Arreghini, H. E. Troiani, and A. R. F. de Iorio. 2022. “Copper, zinc, and chromium accumulation in aquatic macrophytes from a highly polluted river of Argentina.” Environ. Sci. Pollut. Res. 30 (Mar): 1–14. https://doi.org/10.1007/s11356-022-24380-z.
Sharma, Y. C., V. Srivastava, V. K. Singh, S. N. Kaul, and C. H. Weng. 2009. “Nano-adsorbents for the removal of metallic pollutants from water and wastewater.” Environ. Technol. 30 (6): 583–609. https://doi.org/10.1080/09593330902838080.
Si, Z., Y. Wang, X. Song, X. Cao, X. Zhang, and W. Sand. 2019. “Mechanism and performance of trace metal removal by continuous-flow constructed wetlands coupled with a micro-electric field.” Water Res. 164 (Nov): 114937. https://doi.org/10.1016/j.watres.2019.114937.
UN (United Nations). 2018. Sustainable development goal 6 synthesis report on water and sanitation. New York: UN.
Valdés, M. E., L. H. Santos, M. C. R. Castro, A. Giorgi, D. Barceló, S. Rodríguez-Mozaz, and M. V. Amé. 2021. “Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA).” Environ. Pollut. 269 (Jan): 116133. https://doi.org/10.1016/j.envpol.2020.116133.
Villamar, C. A., M. E. Neubauer, and G. Vidal. 2014. “Distribution and availability of copper and zinc in a constructed wetland fed with treated swine slurry from an anaerobic lagoon.” Wetlands 34 (Jun): 583–591. https://doi.org/10.1007/s13157-014-0527-0.
Vymazal, J. 2011. “Constructed wetlands for wastewater treatment: Five decades of experience.” Environ. Sci. Technol. 45 (1): 61–69. https://doi.org/10.1021/es101403q.
Vymazal, J. 2013. “Emergent plants used in free water surface constructed wetlands: A review.” Ecol. Eng. 61 (Dec): 582–592. https://doi.org/10.1016/j.ecoleng.2013.06.023.
Vymazal, J. 2014. “Constructed wetlands for treatment of industrial wastewaters: A review.” Ecol. Eng. 73 (Dec): 724–751. https://doi.org/10.1016/j.ecoleng.2014.09.034.
Vymazal, J. 2019. “Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years?” Chem. Eng. J. 378 (Dec): 122117. https://doi.org/10.1016/j.cej.2019.122117.
Vymazal, J., and L. Kröpfelová. 2008. Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Dordrecht, Czech Republic: Springer.
Wang, W., J. Cui, J. Li, J. Du, Y. Chang, J. Cui, X. Liu, X. Fan, and D. Yao. 2021. “Removal effects of different emergent-aquatic-plant groups on Cu, Zn, and Cd compound pollution from simulated swine wastewater.” J. Environ. Manage. 296 (Oct): 113251. https://doi.org/10.1016/j.jenvman.2021.113251.
Wintermans, J. F. G. M., and A. De Mots. 1965. “Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol.” Biochim. Biophys. Acta, Biophys. Incl. Photsynth. 109 (2): 448–453. https://doi.org/10.1016/0926-6585(65)90170-6.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 10October 2023

History

Received: Feb 3, 2023
Accepted: Jun 13, 2023
Published online: Aug 11, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 11, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Multidisciplinary Institute of Plant Biology (IMBIV), CONICET and Faculty of Exact, Physical and Natural Sciences, National Univ. of Córdoba, Av. Velez Sarsfield 1611, Ciudad Universitaria, Cordoba X5016GCA, Argentina. ORCID: https://orcid.org/0000-0003-4324-5908. Email: [email protected]
Ph.D Student, Multidisciplinary Institute of Plant Biology (IMBIV), CONICET and Faculty of Exact, Physical and Natural Sciences, National Univ. of Córdoba, Av. Velez Sarsfield 1611, Ciudad Universitaria, Cordoba X5016GCA, Argentina (corresponding author). ORCID: https://orcid.org/0000-0002-7610-1137. Email: [email protected]
Gustavo L. Gudiño [email protected]
Multidisciplinary Institute of Plant Biology (IMBIV), CONICET and Faculty of Exact, Physical and Natural Sciences, National Univ. of Córdoba, Av. Velez Sarsfield 1611, Ciudad Universitaria, Cordoba X5016GCA, Argentina. Email: [email protected]
Matías Peñaflor [email protected]
Multidisciplinary Institute of Plant Biology (IMBIV), CONICET and Faculty of Exact, Physical and Natural Sciences, National Univ. of Córdoba, Av. Velez Sarsfield 1611, Ciudad Universitaria, Cordoba X5016GCA, Argentina. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share