Technical Papers
Mar 26, 2022

Multiwall Carbon Nanotubes–Coated Graphite-Felt Anode for Efficient Removal of Ciprofloxacin from Domestic Wastewater in Dual-Chambered Microbial Fuel Cells

Publication: Journal of Environmental Engineering
Volume 148, Issue 6

Abstract

Microbial fuel cells (MFCs) are potential bioelectrochemical devices that are now being researched for various emerging applications, such as treating wastewater with antibiotics removal. Ciprofloxacin (CIP) is a synthetic antibiotic that is commonly used to treat infections such as pneumonia and influenza. This work investigated the performance of dual-chambered MFCs with two different types of anodes to remove CIP and chemical oxygen demand (COD) and power production. The findings of the experiments revealed that the multiwall carbon nanotubes-coated graphite felt (MWCNT-GF) had a higher power density (1,512.9  mW/m2) and COD removal (95.4%) than the control graphite-felt anode (816.3  mW/m2, COD removal 93.2%) under the same circumstances. Further, MFCs were also tested for four different concentrations with average CIP removal rate with MWCNT-coated GF anode to 58.575% and GF anode of 54.25%. Higher CIP removal rate and power performance of MWCNT-GF anodes are due to its macroporous structure, which promotes microbial interaction on the electrode surface. Also, it shows an additional effect of increasing extracellular electron transport. The findings suggest that a dual-chambered MFC operating with a MWCNT-GF anode is a highly effective means of achieving high power performance and CIP removal, with a broad range of application possibilities in bioelectrochemical systems.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Song-Jeng Huang and Kavya Arun Dwivedi contributed equally to this manuscript.

References

Almatouq, A., and A. Babatunde. 2016. “Concurrent phosphorus recovery and energy generation in mediator-less dual chamber microbial fuel cells: Mechanisms and influencing factors.” Int. J. Environ. Res. Public Health 13 (4): 375. https://doi.org/10.3390/ijerph13040375.
Bhandari, A., L. I. Close, W. Kim, R. P. Hunter, D. E. Koch, and R. Y. Surampalli. 2008. “Occurrence of ciprofloxacin, sulfamethoxazole, and azithromycin in municipal wastewater treatment plants.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 12 (4): 275–281. https://doi.org/10.1061/(ASCE)1090-025X(2008)12:4(275).
Cao, X., H. Song, C. Yu, and X. Li. 2015. “Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell.” Bioresour. Technol. 189 (Aug): 87–93. https://doi.org/10.1016/j.biortech.2015.03.148.
Chen, C., J. Hu, D. Shao, J. Li, and X. Wang. 2009. “Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II).” J. Hazard. Mater. 164 (2–3): 923–928. https://doi.org/10.1016/j.jhazmat.2008.08.089.
Chen, M.-L., and W.-C. Oh. 2011. “Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution.” Nanoscale Res. Lett. 6 (1): 398. https://doi.org/10.1186/1556-276X-6-398.
Cheng, D., H. H. Ngo, W. Guo, D. Lee, D. L. Nghiem, J. Zhang, S. Liang, S. Varjani, and J. Wang. 2020. “Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics.” Bioresour. Technol. 311 (Sep): 123588. https://doi.org/10.1016/j.biortech.2020.123588.
Cheng, D., H. H. Ngo, W. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, J. Zhou, and B. Ni. 2018. “Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues.” Bioresour. Technol. 267 (Nov): 714–724. https://doi.org/10.1016/j.biortech.2018.07.133.
Cui, H.-F., L. Du, P.-B. Guo, B. Zhu, and J. H. T. Luong. 2015. “Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode.” J. Power Sources 283 (Jun): 46–53. https://doi.org/10.1016/j.jpowsour.2015.02.088.
Dantas, R. F., S. Contreras, C. Sans, and S. Esplugas. 2008. “Sulfamethoxazole abatement by means of ozonation.” J. Hazard. Mater. 150 (3): 790–794. https://doi.org/10.1016/j.jhazmat.2007.05.034.
Deeke, A., T. H. J. A. Sleutels, H. V. M. Hamelers, and C. J. N. Buisman. 2012. “Capacitive bioanodes enable renewable energy storage in microbial fuel cells.” Environ. Sci. Technol. 46 (6): 3554–3560. https://doi.org/10.1021/es204126r.
Do, M. H., H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, P. Sharma, A. Pandey, X. T. Bui, and X. Zhang. 2021. “Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater.” Sci. Total Environ. 795 (Nov): 148755. https://doi.org/10.1016/j.scitotenv.2021.148755.
Do, M. H., H. H. Ngo, W. S. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, and B. J. Ni. 2018. “Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review.” Sci. Total Environ. 639 (Oct): 910–920. https://doi.org/10.1016/j.scitotenv.2018.05.136.
Feng, L., E. D. vanHullebusch, M. A. Rodrigo, G. Esposito, and M. A. Oturan. 2013. “Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review.” Chem. Eng. J. 228 (Jul): 944–964. https://doi.org/10.1016/j.cej.2013.05.061.
Fick, J., H. Söderström, R. H. Lindberg, C. Phan, M. Tysklind, and D. G. J. Larsson. 2009. “Contamination of surface, ground, and drinking water from pharmaceutical production.” Environ. Toxicol. Chem. 28 (12): 2522. https://doi.org/10.1897/09-073.1.
Gonzalez Ronquillo, M., and J. C. Angeles Hernandez. 2017. “Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods.” Food Control 72 (Feb): 255–267. https://doi.org/10.1016/j.foodcont.2016.03.001.
Gu, T., et al. 2009. “Graphene sheets from worm-like exfoliated graphite.” J. Mater. Chem. 19: 3367–3369. https://doi.org/10.1039/B904093P.
Gupta, V. K., S. Agarwal, and T. A. Saleh. 2011. “Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal.” J. Hazard. Mater. 185 (1): 17–23. https://doi.org/10.1016/j.jhazmat.2010.08.053.
He, Y., S. Nurul, H. Schmitt, N. B. Sutton, T. A. J. Murk, M. H. Blokland, H. H. M. Rijnaarts, and A. A. M. Langenhoff. 2018. “Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents.” Sci. Total Environ. 631–632 (Aug): 1572–1581. https://doi.org/10.1016/j.scitotenv.2018.03.083.
He, Z., J. Liu, Y. Qiao, C. M. Li, and T. T. Y. Tan. 2012. “Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell.” Nano Lett. 12 (9): 4738–4741. https://doi.org/10.1021/nl302175j.
Hou, C.-H., N.-L. Liu, H.-L. Hsu, and W. Den. 2014. “Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization.” Sep. Purif. Technol. 130 (Jun): 7–14. https://doi.org/10.1016/j.seppur.2014.04.004.
Hua, T., S. Li, F. Li, B. S. Ondon, Y. Liu, and H. Wang. 2019. “Degradation performance and microbial community analysis of microbial electrolysis cells for erythromycin wastewater treatment.” Biochem. Eng. J. 146 (Jun): 1–9. https://doi.org/10.1016/j.bej.2019.02.008.
Huang, J., N. Zhu, T. Yang, T. Zhang, P. Wu, and Z. Dang. 2015. “Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.” Biosens. Bioelectron. 72 (Oct): 332–339. https://doi.org/10.1016/j.bios.2015.05.035.
JCPDS (Joint Committee on Powder Diffraction Standards). 2021. “Crystallography open database.” Accessed September 1, 2021. http://www.crystallography.net/cod/index.php.
Kim, S., K. H. Chu, Y. A. J. Al-Hamadani, C. M. Park, M. Jang, D.-H. Kim, M. Yu, J. Heo, and Y. Yoon. 2018. “Removal of contaminants of emerging concern by membranes in water and wastewater: A review.” Chem. Eng. J. 335 (Mar): 896–914. https://doi.org/10.1016/j.cej.2017.11.044.
Larsson, D. G. J., C. dePedro, and N. Paxeus. 2007. “Effluent from drug manufactures contains extremely high levels of pharmaceuticals.” J. Hazard. Mater. 148 (3): 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008.
Li, F., Y. Li, L. Sun, X. Chen, X. An, C. Yin, Y. Cao, H. Wu, and H. Song. 2018. “Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of shewanella oneidensis MR-1.” ACS Synth. Biol. 7 (3): 885–895. https://doi.org/10.1021/acssynbio.7b00390.
Li, R., T. Li, Y. Wan, X. Zhang, X. Liu, R. Li, H. Pu, T. Gao, X. Wang, and Q. Zhou. 2022. “Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems.” J. Hazard. Mater. 421 (Jan): 126740. https://doi.org/10.1016/j.jhazmat.2021.126740.
Liu, R., L. Chen, X. Song, D. Wei, W. Zheng, S. Qiu, and Y. Zhao. 2016. “Treatment of digested piggery wastewater with a membrane bioreactor.” Environ. Eng. Manag. J. 15 (10): 2181–2188. https://doi.org/10.30638/eemj.2016.236.
Liu, X.-W., X.-F. Sun, Y.-X. Huang, G.-P. Sheng, S.-G. Wang, and H.-Q. Yu. 2011. “Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell.” Energy Environ. Sci. 4 (4): 1422. https://doi.org/10.1039/c0ee00447b.
Mansour, F., M. Al-Hindi, R. Yahfoufi, G. M. Ayoub, and M. N. Ahmad. 2018. “The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: A review.” Rev. Environ. Sci. Bio/Technol. 17 (1): 109–145. https://doi.org/10.1007/s11157-017-9456-8.
Marshall, C. W., and H. D. May. 2009. “Electrochemical evidence of direct electrode reduction by a thermophilic gram-positive bacterium, Thermincola ferriacetical.” Energy Environ. Sci. 2 (6): 699. https://doi.org/10.1039/b823237g.
Michaelidou, U., ter, A. Heijne, G. J. W. Euverink, H. V. Hamelers, A. J. Stams, and J. S. Geelhoed. 2011. “Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell.” Appl. Environ. Microbiol. 77 (3): 1069–1075. https://doi.org/10.1128/AEM.02912-09.
Naseer, M. N., et al. 2021. “Mapping the field of microbial fuel cell: A quantitative literature review (1970–2020).” Energy Rep. 7 (Nov): 4126–4138. https://doi.org/10.1016/j.egyr.2021.06.082.
Ondon, B. S., S. Li, Q. Zhou, and F. Li. 2020. “Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification.” Bioresour. Technol. 304 (May): 122984. https://doi.org/10.1016/j.biortech.2020.122984.
Rahmanian, S., A. R. Suraya, M. A. Shazed, R. Zahari, and E. S. Zainudin. 2014. “Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers.” Mater. Des. 60 (Aug): 34–40. https://doi.org/10.1016/j.matdes.2014.03.039.
Rodriguez-Narvaez, O. M., J. M. Peralta-Hernandez, A. Goonetilleke, and E. R. Bandala. 2017. “Treatment technologies for emerging contaminants in water: A review.” Chem. Eng. J. 323 (Sep): 361–380. https://doi.org/10.1016/j.cej.2017.04.106.
Salunkhe, R. R., J. Lin, V. Malgras, S. X. Dou, J. H. Kim, and Y. Yamauchi. 2015. “Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application.” Nano Energy 11 (Jan): 211–218. https://doi.org/10.1016/j.nanoen.2014.09.030.
Shi, X., K. Y. Leong, and H. Y. Ng. 2017. “Anaerobic treatment of pharmaceutical wastewater: A critical review.” Bioresour. Technol. 245 (Dec): 1238–1244. https://doi.org/10.1016/j.biortech.2017.08.150.
Singh, R., A. P. Singh, S. Kumar, B. S. Giri, and K.-H. Kim. 2019. “Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies.” J. Clean. Prod. 234 (Oct): 1484–1505. https://doi.org/10.1016/j.jclepro.2019.06.243.
Sun, J., et al. 2019. “Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell.” Chemosphere 221 (Apr): 21–29. https://doi.org/10.1016/j.chemosphere.2018.12.152.
Tiwari, B., B. Sellamuthu, Y. Ouarda, P. Drogui, R. D. Tyagi, and G. Buelna. 2017. “Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach.” Bioresour. Technol. 224 (Jan): 1–12. https://doi.org/10.1016/j.biortech.2016.11.042.
Tsai, H.-Y., C.-C. Wu, C.-Y. Lee, and E. P. Shih. 2009. “Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes.” J. Power Sources 194 (1): 199–205. https://doi.org/10.1016/j.jpowsour.2009.05.018.
Umar, M. F., M. Rafatullah, S. Z. Abbas, M. N. M. Ibrahim, and N. Ismail. 2021. “Bioelectricity production and xylene biodegradation through double chamber benthic microbial fuel cells fed with sugarcane waste as a substrate.” J. Hazard. Mater. 419 (Oct): 126469. https://doi.org/10.1016/j.jhazmat.2021.126469.
Wang, C. T., Y. S. Huang, T. Sangeetha, and W. M. Yan. 2018a. “Assessment of recirculation batch mode operation in bufferless bio-cathode microbial fuel cells (MFCs).” Appl. Energy 209 (Jan): 120–126. https://doi.org/10.1016/j.apenergy.2017.10.074.
Wang, K., T. Zhuang, Z. Su, M. Chi, and H. Wang. 2021. “Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts.” Sci. Total Environ. 788 (Sep): 147811. https://doi.org/10.1016/j.scitotenv.2021.147811.
Wang, L., L. You, J. Zhang, T. Yang, W. Zhang, Z. Zhang, P. Liu, S. Wu, F. Zhao, and J. Ma. 2018b. “Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes.” J. Hazard. Mater. 360 (Oct): 402–411. https://doi.org/10.1016/j.jhazmat.2018.08.021.
Wen, Q., F. Kong, H. Zheng, J. Yin, D. Cao, Y. Ren, and G. Wang. 2011. “Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell.” J. Power Sources 196 (5): 2567–2572. https://doi.org/10.1016/j.jpowsour.2010.10.085.
WHO (World Health Organization). 1998. Use of quinolones in food animals and potential impact on human health. Geneva: WHO.
Wu, D., F. Sun, F. J. D. Chua, and Y. Zhou. 2020a. “Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilmSulfamethoxazole.” Chem. Eng. J. 384 (Mar): 123238. https://doi.org/10.1016/j.cej.2019.123238.
Wu, Q., S. Jiao, M. Ma, and S. Peng. 2020b. “Microbial fuel cell system: A promising technology for pollutant removal and environmental remediation.” Environ. Sci. Pollut. Res. 27 (7): 6749–6764. https://doi.org/10.1007/s11356-020-07745-0.
Xie, X., M. Ye, L. Hu, N. Liu, J. R. McDonough, W. Chen, H. N. Alshareef, C. S. Criddle, and Y. Cui. 2012. “Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes.” Energy Environ. Sci. 5 (1): 5265–5270. https://doi.org/10.1039/C1EE02122B.
Xu, H., H.-L. Song, R. P. Singh, Y.-L. Yang, J.-Y. Xu, and X.-L. Yang. 2021. “Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell.” Bioresour. Technol. 320 (Jan): 124285. https://doi.org/10.1016/j.biortech.2020.124285.
Xu, J., X. Lv, J. Li, Y. Li, L. Shen, H. Zhou, and X. Xu. 2012. “Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support.” J. Hazard. Mater. 225–226 (Jul): 36–45. https://doi.org/10.1016/j.jhazmat.2012.04.061.
Yan, W., Y. Xiao, W. Yan, R. Ding, S. Wang, and F. Zhao. 2019. “The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review.” Chem. Eng. J. 358 (Feb): 1421–1437. https://doi.org/10.1016/j.cej.2018.10.128.
Yu, F., S. Sun, S. Han, J. Zheng, and J. Ma. 2016. “Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions.” Chem. Eng. J. 285 (Feb): 588–595. https://doi.org/10.1016/j.cej.2015.10.039.
Yuan, Y., S. Zhou, Y. Liu, and J. Tang. 2013. “Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells.” Environ. Sci. Technol. 47 (24): 14525–14532. https://doi.org/10.1021/es404163g.
Zhang, S., H.-L. Song, X.-L. Yang, H. Li, and Y.-W. Wang. 2018. “A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes.” Bioresour. Technol. 256 (May): 224–231. https://doi.org/10.1016/j.biortech.2018.02.023.
Zhou, Y., N. Zhu, W. Guo, Y. Wang, X. Huang, P. Wu, Z. Dang, X. Zhang, and J. Xian. 2018. “Simultaneous electricity production and antibiotics removal by microbial fuel cells.” J. Environ. Manage. 217 (Jul): 565–572. https://doi.org/10.1016/j.jenvman.2018.04.013.
Zhu, T., Z. Su, W. Lai, Y. Zhang, and Y. Liu. 2021. “Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology.” Sci. Total Environ. 776 (Jul): 145906. https://doi.org/10.1016/j.scitotenv.2021.145906.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 6June 2022

History

Received: Sep 26, 2021
Accepted: Dec 20, 2021
Published online: Mar 26, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Mechanical Engineering, National Taiwan Univ. of Science and Technology, Taipei 10607, Taiwan. ORCID: https://orcid.org/0000-0002-6582-0339
Kavya Arun Dwivedi
Graduate Student, Dept. of Mechanical Engineering, National Taiwan Univ. of Science and Technology, Taipei 10607, Taiwan.
Sunil Kumar [email protected]
Professor, Council of Scientific and Industrial Research–National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India (corresponding author). Email: [email protected]
Chin-Tsan Wang [email protected]
Professor, Dept. of Mechanical and Electromechanical Engineering, National I Lan Univ., I Lan 26047, Taiwan; Dept. of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Progress on anodic modification materials and future development directions in microbial fuel cells, Journal of Power Sources, 10.1016/j.jpowsour.2022.232486, 556, (232486), (2023).
  • Binder-free NiO/MnO2 coated carbon based anodes for simultaneous norfloxacin removal, wastewater treatment and power generation in dual-chamber microbial fuel cell, Environmental Pollution, 10.1016/j.envpol.2022.120578, 317, (120578), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share