Technical Papers
Mar 26, 2022

Hydraulic Properties of Selected Materials and Their Effects on Remediation of Cr(VI)-Contaminated Groundwater

Publication: Journal of Environmental Engineering
Volume 148, Issue 6

Abstract

To find an economically feasible and directly usable natural permeable reactive barrier (PRB) filler, sponge iron was selected from seven natural materials with excellent removal efficiencies of Cr(VI). The synergism of sponge iron and maifanite increased by 20.90% and showed the best removal effect of 40.187%. In the dynamic column experiment, sponge iron played a major role in the removal of Cr(VI), so increasing its proportion could improve the removal efficiencies, but the permeability of the reaction system would decline. Maifanite can effectively promote the fixation of Cr(III) and inhibit the reduction of permeability. Reducing Cr(VI) concentration and prolonging the hydraulic retention time were favorable for chromium removal. Thomas, Yoon-Nelson, and Adams-Bohart models can all well simulate the penetration curve under the high proportion of sponge iron. After adsorption, chromium in the reaction medium mainly existed as residue and oxidation rather than a water-soluble state, indicating that Cr(VI) in water was reduced to Cr(III) and fixed permanently. Comprehensively considering the saturated adsorption capacity and hydraulic properties, a ratio of sponge iron to maifanite of 51 is reasonable to apply in restoration Cr(VI) contaminated groundwater.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the Major Special Science and Technology Project of Henan Province (No. 181100310300) and the National Science and Technology Major Project (No. 2017ZX07602-003-002).

References

Abdul Nurul, A., S. Abdul Talib, and A. Amir. 2020. “Removal kinetics of chromium by nano-magnetite in different environments of groundwater.” J. Environ. Eng. 146 (2): 04019111 https://doi.org/10.1061/(ASCE)EE.1943-7870.0001630.
Bai, L., Y. Wang, Y. Guo, Y. Zhou, L. Liu, Z. Yan, F. Li, and X. Xie. 2016. “Health risk assessment research on heavy metals ingestion through groundwater drinking pathway for the residents in Baotou, China.” J. Environ. Health 78 (6): 84–90.
Baig, S. A., Q. Wang, X. Lv, and X. Xu. 2013. “Removal of hexavalent chromium by limonite in aqueous solutions.” Hydrometallurgy 138 (Jun): 33–39. https://doi.org/10.1016/j.hydromet.2013.05.014.
Bektenov, N. A., N. C. Murzakassymova, M. A. Gavrilenko, and A. N. Nurlybayeva. 2020. “Production of sulfocationite by modification of natural coal with concentrated sulfuric acid.” Ser. Chem. Technol. 3 (441): 104–109. https://doi.org/10.32014/2020.2518-1491.50.
Bhaumik, M., A. Maity, V. V. Srinivasu, and M. S. Onyango. 2011. “Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite.” J. Hazard. Mater. 190 (1): 381–390. https://doi.org/10.1016/j.jhazmat.2011.03.062.
Bilardi, S., P. S. Calabro, and N. Moraci. 2019. “The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu(2+), Ni(2+) and Zn(2).” Sci. Total Environ. 675 (Jul): 490–500. https://doi.org/10.1016/j.scitotenv.2019.04.260.
Cai, W. Q., M. M. Gu, W. Jin, and J. B. Zhou. 2019. “CTAB-functionalized C@SiO2 double-shelled hollow microspheres with enhanced and selective adsorption performance for Cr(VI).” J. Alloys Compd. 777 (Mar): 1304–1312. https://doi.org/10.1016/j.jallcom.2018.11.070.
Chiang, Y. W., K. Ghyselbrecht, R. M. Santos, J. A. Martens, R. Swennen, V. Cappuyns, and B. Meesschaert. 2012. “Adsorption of multi-heavy metals onto water treatment residuals: Sorption capacities and applications.” Chem. Eng. J. 200–202 (Aug): 405–415. https://doi.org/10.1016/j.cej.2012.06.070.
Cissoko, N., Z. Zhang, J. Zhang, and X. Xu. 2009. “Removal of Cr(VI) from simulative contaminated groundwater by iron metal.” Process Saf. Environ. Protect. 87 (6): 395–400. https://doi.org/10.1016/j.psep.2009.07.001.
Fu, F., D. D. Dionysiou, and H. Liu. 2014. “The use of zero-valent iron for groundwater remediation and wastewater treatment: A review.” J. Hazard. Mater. 267 (Feb): 194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062.
Galdames, A., L. Ruiz-Rubio, M. Orueta, M. Sánchez-Arzalluz, and J. L. Vilas-Vilela. 2020. “Zero-valent iron nanoparticles for soil and groundwater remediation.” Int. J. Environ. Res. Public Health 17 (16): 5817. https://doi.org/10.3390/ijerph17165817.
Gao, J., X. Zhang, J. Yu, Y. Lei, S. Zhao, Y. Jiang, Z. Xu, and J. Cheng. 2020. “Cr(VI) removal performance and the characteristics of microbial communities influenced by the core-shell maifanite/ZnAl-layered double hydroxides (LDHs) substrates for chromium-containing surface water.” Biochem. Eng. J. 160 (Aug): 107625. https://doi.org/10.1016/j.bej.2020.107625.
Gomez, L. M., F. Colpas-Castillo, and R. Fernandez-Maestre. 2014. “Cation exchange for mercury and cadmium of xanthated, sulfonated, activated and non-treated subbituminous coal, commercial activated carbon and commercial synthetic resin: Effect of pre-oxidation on xanthation of subbituminous coal.” Int. J. Coal Sci. Technol. 1 (2): 235–240. https://doi.org/10.1007/s40789-014-0033-2.
Gorelick, S. M., and C. Zheng. 2015. “Global change and the groundwater management challenge.” Water Resour. Res. 51 (5): 3031–3051. https://doi.org/10.1002/2014WR016825.
Graham, A. M., and E. J. Bouwer. 2012. “Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal.” Geochim. Cosmochim. Acta 83 (Apr): 379–396. https://doi.org/10.1016/j.gca.2012.01.006.
Gupta, N., and T. C. Fox. 1999. “Hydrogeologic modeling for permeable reactive barriers.” J. Hazard. Mater. 68 (1): 19–39. https://doi.org/10.1016/S0304-3894(99)00030-8.
He, P., J. Zhu, Y. Chen, F. Chen, J. Zhu, M. Liu, K. Zhang, and M. Gan. 2021. “Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction.” Chem. Eng. J. 406 (Feb): 126758. https://doi.org/10.1016/j.cej.2020.126758.
Huo, Y., et al. 2021. “Conversion of Fe-bearing minerals in sludge to nanorod erdite for real electroplating wastewater treatment: Comparative study between ferrihydrite, hematite, magnetite, and troilite.” J. Cleaner Prod. 298 (May): 126826. https://doi.org/10.1016/j.jclepro.2021.126826.
Jiménez-Reyes, M., and M. Solache-Ríos. 2010. “Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite.” J. Hazard. Mater. 180 (1): 297–302. https://doi.org/10.1016/j.jhazmat.2010.04.030.
Jin, W., H. Du, S. Zheng, and Y. Zhang. 2016. “Electrochemical processes for the environmental remediation of toxic Cr(VI): A review.” Electrochim. Acta 191 (Feb): 1044–1055. https://doi.org/10.1016/j.electacta.2016.01.130.
Karimi-Maleh, H., A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, L. Fu, and M. Sillanpää. 2021. “Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review.” J. Mol. Liq. 329 (May): 115062. https://doi.org/10.1016/j.molliq.2020.115062.
Kumari, M., C. U. Pittman, and D. Mohan. 2015. “Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres.” J. Colloid Interface Sci. 442 (Mar): 120–132. https://doi.org/10.1016/j.jcis.2014.09.012.
Lancia, M., C. Zheng, X. He, D. N. Lerner, and C. Andrews. 2020. “Groundwater complexity in urban catchments: Shenzhen, Southern China.” Ground Water 58 (3): 470–481. https://doi.org/10.1111/gwat.12935.
Lefevre, E., N. Bossa, M. R. Wiesner, and C. K. Gunsch. 2016. “A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.” Sci. Total Environ. 565 (Sep): 889–901. https://doi.org/10.1016/j.scitotenv.2016.02.003.
Li, X.-Q., J. Cao, and W.-X. Zhang. 2008. “Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI):  A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS).” Ind. Eng. Chem. Res. 47 (7): 2131–2139. https://doi.org/10.1021/ie061655x.
Li, Y., D. Han, Y. Arai, X. Fu, X. Li, and W. Huang. 2019. “Kinetics and mechanisms of debromination of tetrabromobisphenol A by Cu coated nano zerovalent iron.” Chem. Eng. J. 373 (Oct): 95–103. https://doi.org/10.1016/j.cej.2019.04.182.
Liu, H., G. Li, J. Qu, and H. Liu. 2007. “Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound.” J. Hazard. Mater. 144 (1–2): 180–186. https://doi.org/10.1016/j.jhazmat.2006.10.009.
Liu, W., J. Ma, S. Sun, and K. Chen. 2016. “Gram-grade Cr (VI) adsorption on porous Fe@SiO2 hierarchical microcapsules.” J. Water Process Eng. 12 (Aug): 111–119. https://doi.org/10.1016/j.jwpe.2016.07.003.
Liu, W., J. Zhang, C. Zhang, Y. Wang, and Y. Li. 2010. “Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk.” Chem. Eng. J. 162 (2): 677–684. https://doi.org/10.1016/j.cej.2010.06.020.
Liu, Y., H. Mou, L. Chen, Z. A. Mirza, and L. Liu. 2015. “Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.” J. Hazard. Mater. 298 (Nov): 83–90. https://doi.org/10.1016/j.jhazmat.2015.05.007.
Lu, A., S. Zhong, J. Chen, J. Shi, J. Tang, and X. Lu. 2006. “Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite.” Environ. Sci. Technol. 40 (9): 3064–3069. https://doi.org/10.1021/es052057x.
Lü, Y., J. Li, Y. Li, L. Liang, H. Dong, K. Chen, C. Yao, Z. Li, J. Li, and X. Guan. 2019. “The roles of pyrite for enhancing reductive removal of nitrobenzene by zero-valent iron.” Appl. Catal., B 242 (Mar): 9–18. https://doi.org/10.1016/j.apcatb.2018.09.086.
Mittal, A. K., and C. Venkobachar. 1996. “Uptake of cationic dyes by sulfonated coal: Sorption mechanism.” Ind. Eng. Chem. Res. 35 (4): 1472–1474. https://doi.org/10.1021/ie940436l.
Moraci, N., and P. S. Calabrò. 2010. “Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.” J. Environ. Manage. 91 (11): 2336–2341. https://doi.org/10.1016/j.jenvman.2010.06.019.
Nkhalambayausi-Chirwa, E. M., and Y.-T. Wang. 2001. “Simultaneous chromium(VI) reduction and phenol degradation in a fixed-film coculture bioreactor: Reactor performance.” Water Res. 35 (8): 1921–1932. https://doi.org/10.1016/S0043-1354(00)00472-3.
Obiri-Nyarko, F., S. J. Grajales-Mesa, and G. Malina. 2014. “An overview of permeable reactive barriers for in situ sustainable groundwater remediation.” Chemosphere 111 (Sep): 243–259. https://doi.org/10.1016/j.chemosphere.2014.03.112.
Painter, B. D. M. 2004. “Reactive barriers: Hydraulic performance and design enhancements.” Ground Water 42 (4): 609–617. https://doi.org/10.1111/j.1745-6584.2004.tb02629.x.
Pathirage, U., and B. Indraratna. 2014. “Assessment of optimum width and longevity of a permeable reactive barrier installed in an acid sulfate soil terrain.” Can. Geotech. J. 52 (7): 999–1004. https://doi.org/10.1139/cgj-2014-0310.
Qiao, J., Y. Zhu, X. Jia, M. Shao, X. Niu, and J. Liu. 2020. “Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China.” Environ. Res. 181 (Feb): 108957. https://doi.org/10.1016/j.envres.2019.108957.
Rauret, G., J. F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, and P. Quevauviller. 1999. “Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials.” J. Environ. Monit. 1 (1): 57–61. https://doi.org/10.1039/a807854h.
Reddy, K. R., T. Xie, and S. Dastgheibi. 2014. “Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.” J. Environ. Sci. Health Part A 49 (5): 524–539. https://doi.org/10.1080/10934529.2014.859030.
Ruhl, A. S., G. Franz, U. Gernert, and M. Jekel. 2014. “Corrosion product and precipitate distribution in two-component Fe(0) permeable reactive barriers.” Chem. Eng. J. 239 (Mar): 26–32. https://doi.org/10.1016/j.cej.2013.11.017.
Statham, T. M., S. C. Stark, I. Snape, G. W. Stevens, and K. A. Mumford. 2016. “A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at Casey Station, Antarctica.” Chemosphere 147 (Mar): 368–375. https://doi.org/10.1016/j.chemosphere.2015.12.133.
Stefaniuk, M., P. Oleszczuk, and Y. S. Ok. 2016. “Review on nano zerovalent iron (nZVI): From synthesis to environmental applications.” Chem. Eng. J. 287 (Mar): 618–632. https://doi.org/10.1016/j.cej.2015.11.046.
Su, H., Z. Fang, P. E. Tsang, L. Zheng, W. Cheng, J. Fang, and D. Zhao. 2016. “Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.” J. Hazard. Mater. 318 (Nov): 533–540. https://doi.org/10.1016/j.jhazmat.2016.07.039.
Thiruvenkatachari, R., S. Vigneswaran, and R. Naidu. 2008. “Permeable reactive barrier for groundwater remediation.” J. Ind. Eng. Chem. 14 (2): 145–156. https://doi.org/10.1016/j.jiec.2007.10.001.
Villacís-García, M., M. Villalobos, and M. Gutiérrez-Ruiz. 2015. “Optimizing the use of natural and synthetic magnetites with very small amounts of coarse Fe(0) particles for reduction of aqueous Cr(VI).” J. Hazard. Mater. 281 (Jan): 77–86. https://doi.org/10.1016/j.jhazmat.2014.07.007.
Wilkin, R. T., S. D. Acree, R. R. Ross, D. G. Beak, and T. R. Lee. 2009. “Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.” J. Contam. Hydrol. 106 (1): 1–14. https://doi.org/10.1016/j.jconhyd.2008.12.002.
Wilkin, R. T., S. D. Acree, R. R. Ross, R. W. Puls, T. R. Lee, and L. L. Woods. 2014. “Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.” Sci. Total Environ. 468–469 (Jan): 186–194. https://doi.org/10.1016/j.scitotenv.2013.08.056.
Wilkin, R. T., C. Su, R. G. Ford, and C. J. Paul. 2005. “Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.” Environ. Sci. Technol. 39 (12): 4599–4605. https://doi.org/10.1021/es050157x.
Wu, L. M., L. B. Liao, G. C. Lv, F. X. Qin, Y. J. He, and X. Y. Wang. 2013. “Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.” J. Hazard. Mater. 254–255 (Jun): 277–283. https://doi.org/10.1016/j.jhazmat.2013.03.009.
Wu, Y., C. Y. Guan, N. Griswold, L. Y. Hou, X. Fang, A. Hu, Z. Q. Hu, and C. P. Yu. 2020. “Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives.” J. Cleaner Prod. 277 (Dec): 123478. https://doi.org/10.1016/j.jclepro.2020.123478.
Wu, Y., H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, and X. Wang. 2019. “Environmental remediation of heavy metal ions by novel-nanomaterials: A review.” Environ. Pollut. 246 (Mar): 608–620. https://doi.org/10.1016/j.envpol.2018.12.076.
Xie, B., C. Shan, Z. Xu, X. Li, X. Zhang, J. Chen, and B. Pan. 2017. “One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation.” Chem. Eng. J. 308 (Jan): 791–797. https://doi.org/10.1016/j.cej.2016.09.123.
Yuan, S., H. Long, W. Xie, P. Liao, and M. Tong. 2012. “Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil.” Geoderma 185–186 (Sep): 18–25. https://doi.org/10.1016/j.geoderma.2012.03.028.
Zafarani, H. R., M. E. Bahrololoom, M. Javidi, M. H. Shariat, and J. Tashkhourian. 2014. “Removal of chromate ion from aqueous solutions by sponge iron.” Desalin. Water Treat. 52 (37–39): 7154–7162. https://doi.org/10.1080/19443994.2013.822335.
Zhang, S., Z. Wang, H. Chen, C. Kai, M. Jiang, Q. Wang, and Z. Zhou. 2018. “Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal.” Appl. Surf. Sci. 440 (May): 1277–1285. https://doi.org/10.1016/j.apsusc.2018.01.191.
Zhang, Y., H. Deng, L. Zhu, J. Xie, L. Kang, W. Li, W. Liu, and Z. Meng. 2020. “Adsorption difference of Cu2+ on the compositely modified amphipathic maifanites.” Desalin. Water Treat. 178 (Feb): 203–210. https://doi.org/10.5004/dwt.2020.24968.
Zhang, Y., Y. Li, J. Li, G. Sheng, Y. Zhang, and X. Zheng. 2012. “Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron.” Chem. Eng. J. 185–186 (Mar): 243–249. https://doi.org/10.1016/j.cej.2012.01.095.
Zheng, Y., S. Liu, C. Dai, Y. Duan, A. N. Makhinov, L. K. Hon, and J. T. Araruna Júnior. 2020. “Study on the influence mechanism of underground mineral element Fe(II) on Cr(VI) transformation under subsurface and groundwater interaction zones.” Environ. Sci. Eur. 32 (1): 62. https://doi.org/10.1186/s12302-020-00332-7.
Zou, H., E. Hu, S. Yang, L. Gong, and F. He. 2019. “Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant.” Sci. Total Environ. 650 (Part 1): 419–426. https://doi.org/10.1016/j.scitotenv.2018.09.003.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 6June 2022

History

Received: Nov 17, 2021
Accepted: Jan 5, 2022
Published online: Mar 26, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Xiaobang Liu [email protected]
Graduate Student, School of Ecology and Environment, ZhengZhou Univ., Zhengzhou 45001, PR China. Email: [email protected]
Jingqing Gao [email protected]
Professor, School of Ecology and Environment, ZhengZhou Univ., Zhengzhou 45001, PR China (corresponding author). Email: [email protected]
Engineer, Dept. of Resources and Environmental Engineering, Henan Univ. of Engineering, Zhengzhou 451191, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share