Technical Papers
Jan 27, 2022

Sessile and Planktonic Microbial Taxonomy of a Methanogenic Cellulolytic Enrichment Reactor Sourced from the Organic Fraction of Municipal Solid Waste

Publication: Journal of Environmental Engineering
Volume 148, Issue 4

Abstract

The bacterial, archaeal, and fungal taxonomies of a semi-batch-fed, lab-scale cellulolytic enrichment reactor inoculated by the organic fraction of municipal solid waste were explored using 16SrRNA and internal transcribed spacer (ITS) sequencing. Biomass samples were partitioned into total, planktonic, and sessile (biofilm) fractions using a centrifugation separation technique developed to quantify sessile biomass growth on cellulose particles during anaerobic digestion. The relative abundances of bacteria and archaea taxa were determined over a 1-day period. The sessile and planktonic biomass fractions showed significantly different relative abundances for 13 taxa, with the sessile biomass having 10 times lower relative abundance of Unclassified Firmicutes, nearly 20 times higher relative abundance of Methanothrix spp., double the relative abundance of Hydrogenispora spp., and 44.3% higher relative abundance of an uncultured Leptospira sp. than the planktonic biomass. This study shows how a relatively simple physical separation method can be employed to add another dimension to taxonomic studies. Better understanding the microbial communities in these systems is a key first step toward achieving performance improvements such as enhanced cellulose solubilization rates and other microbial biotransformations through process, genetic, and/or other manipulations.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including FASTA, OTU profiling, rarefaction curves, alpha and beta diversities, and OTU with taxonomy.

Acknowledgments

Special thanks to Dr. Karen Wawrousek for use of laboratory equipment. This work was supported by the Environmental Research & Education Foundation, Raleigh, North Carolina. No organization was involved in conducting this study or preparing this publication.

References

Barlaz, M. A., R. K. Ham, and D. M. Schaefer. 1989. “Mass-balance analysis of anaerobically decomposed refuse.” J. Environ. Eng. 115 (6): 1088–1102. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:6(1088).
Bengelsdorf, F. R., U. Gerischer, S. Langer, M. Zak, and M. Kazda. 2013. “Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.” FEMS Microbiol. Ecol. 84 (1): 201–212. https://doi.org/10.1111/1574-6941.12055.
Burrell, P. C., C. O’Sullivan, H. Song, W. P. Clarke, and L. L. Blackall. 2004. “Identification, detection, and spatial resolution of clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor.” Appl. Environ. Microbiol. 70 (4): 2414–2419. https://doi.org/10.1128/AEM.70.4.2414-2419.2004.
Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. “Ribosomal database project: Data and tools for high throughput rRNA analysis.” Nucl. Acids Res. 42 (D1): D633–D642. https://doi.org/10.1093/nar/gkt1244.
Cruz, F. B. D. L., and M. A. Barlaz. 2010. “Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data.” Environ. Sci. Technol. 44 (12): 4722–4728. https://doi.org/10.1021/es100240r.
de Vienne, D. M. 2016. “Lifemap: Exploring the entire tree of life.” PLoS Biol. 14 (12): e2001624. https://doi.org/10.1371/journal.pbio.2001624.
Dollhofer, V., T. M. Callaghan, G. W. Griffith, M. Lebuhn, and J. Bauer. 2017. “Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.” Bioresour. Technol. 235 (Jul): 131–139. https://doi.org/10.1016/j.biortech.2017.03.116.
Fredriksson, N. J., M. Hermansson, and B.-M. Wilén. 2013. “The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant.” PLoS One 8 (10): e76431. https://doi.org/10.1371/journal.pone.0076431.
GenBank. 2019. “Bethesda (MD): National library of medicine, national center for biotechnology information; 1982.” Accessed September 13, 2019. https://www.ncbi.nlm.nih.gov/nucleotide/.
Jensen, P. D., M. T. Hardin, and W. P. Clarke. 2008. “Measurement and quantification of sessile and planktonic microbial populations during the anaerobic digestion of cellulose.” Water Sci. Technol. 57 (4): 465–469. https://doi.org/10.2166/wst.2008.106.
Jensen, P. D., M. T. Hardin, and W. P. Clarke. 2009. “Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization.” Bioresour. Technol. 100 (21): 5219–5225. https://doi.org/10.1016/j.biortech.2009.05.018.
Langer, S. G., C. Gabris, D. Einfalt, B. Wemheuer, M. Kazda, and F. R. Bengelsdorf. 2019. “Different response of bacteria, archaea and fungi to process parameters in nine full-scale anaerobic digesters.” Microb. Biotechnol. 12 (6): 1210–1225. https://doi.org/10.1111/1751-7915.13409.
Lifemap. 2019. “Bethesda (MD): National library of medicine, national center for biotechnology information; 1982.” Accessed April 23, 2020. http://lifemap-ncbi.univ-lyon1.fr/.
Liu, Y., J.-T. Qiao, X.-Z. Yuan, R.-B. Guo, and Y.-L. Qiu. 2014. “Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge.” Int. J. Syst. Evol. Microbiol. 64 (Part 5): 1756–1762. https://doi.org/10.1099/ijs.0.060186-0.
Maki, L. R. 1954. “Experiments on the microbiology of cellulose decomposition in a municipal sewage plant.” Antonie van Leeuwenhoek 20 (1): 185–200. https://doi.org/10.1007/BF02543721.
Mattila, H. K., M. Mäkinen, and T. Lundell. 2020. “Hypoxia is regulating enzymatic wood decomposition and intracellular carbohydrate metabolism in filamentous white rot fungus.” Biotechnol. Biofuels 13 (1): 26. https://doi.org/10.1186/s13068-020-01677-0.
McAllister, T., H. Bae, G. A. Jones, and K. J. Cheng. 1994. “Microbial attachment and feed digestion in the rumen.” J. Anim. Sci. 72 (11): 3004–3018. https://doi.org/10.2527/1994.72113004x.
McIlroy, S. J., R. H. Kirkegaard, M. S. Dueholm, E. Fernando, S. M. Karst, M. Albertsen, and P. H. Nielsen. 2017. “Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge.” Front. Microbiol. 8 (Jun): 1134. https://doi.org/10.3389/fmicb.2017.01134.
Mielczarek, A. T., C. Kragelund, P. S. Eriksen, and P. H. Nielsen. 2012. “Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal.” Water Res. 46 (12): 3781–3795. https://doi.org/10.1016/j.watres.2012.04.009.
Nunoura, T., M. Hirai, M. Miyazaki, H. Kazama, H. Makita, H. Hirayama, Y. Furushima, H. Yamamoto, H. Imachi, and K. Takai. 2013. “Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov.” Microbes Environ. 28 (2): 228–235. https://doi.org/10.1264/jsme2.ME12193.
O’Sullivan, C. A., P. C. Burrell, W. P. Clarke, and L. L. Blackall. 2005. “Structure of a cellulose degrading bacterial community during anaerobic digestion.” Biotechnol. Bioeng. 92 (7): 871–878. https://doi.org/10.1002/bit.20669.
Pavlostathis, S. G., and E. Giraldo-Gomez. 1991. “Kinetics of anaerobic treatment: A critical review.” Crit. Rev. Environ. Control. 21 (5–6): 411–490. https://doi.org/10.1080/10643389109388424.
Podosokorskaya, O. A., E. A. Bonch-Osmolovskaya, A. A. Novikov, T. V. Kolganova, and I. V. Kublanov. 2013. “Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae.” Int. J. Syst. Evol. Microbiol. 63 (Part 1): 86–92. https://doi.org/10.1099/ijs.0.041012-0.
Raibley, T., A. Ramirez, and P. Ursillo. 2017. Anaerobic digestion feasibility study. HDR, King County solid waste division, 113. Washington, DC: King County.
Rivière, D., V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, T. Li, P. Camacho, and A. Sghir. 2009. “Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge.” ISME. J. 3 (6): 700–714. https://doi.org/10.1038/ismej.2009.2.
Shannon, C. E. 1948. “A mathematical theory of communication.” Bell Syst. Tech. J. 27 (3): 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
Song, H., W. P. Clarke, and L. L. Blackall. 2005. “Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose.” Biotechnol. Bioeng. 91 (3): 369–378. https://doi.org/10.1002/bit.20517.
Staley, B. F., F. L. de los Reyes, and M. A. Barlaz. 2012. “Comparison of Bacteria and Archaea communities in municipal solid waste, individual refuse components, and leachate.” FEMS Microbiol. Ecol. 79 (2): 465–473. https://doi.org/10.1111/j.1574-6941.2011.01239.x.
Sun, L., M. Toyonaga, A. Ohashi, N. Matsuura, D. M. Tourlousse, X.-Y. Meng, H. Tamaki, S. Hanada, R. Cruz, T. Yamaguchi, and Y. Sekiguchi. 2016. “Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi.” Int. J. Syst. Evol. Microbiol. 66 (2): 988–996. https://doi.org/10.1099/ijsem.0.000822.
Toerien, D. F. 1967. “Enrichment culture studies on aerobic and facultative anaerobic bacteria found in anaerobic digesters.” Water Res. 1 (2): 147–155. https://doi.org/10.1016/0043-1354(67)90081-4.
Universal Protein Resource. 2020. “Taxonomy.” Accessed June 8, 2020. https://www.uniprot.org/taxonomy/.
USEPA. 2014. Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2012. Washington, DC: USEPA.
Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. “Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.” Appl. Environ. Microbiol. 73 (16): 5261–5267. https://doi.org/10.1128/AEM.00062-07.
Wang, Y.-S., C. S. Byrd, and M. A. Barlaz. 1994. “Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay.” J. Ind. Microbiol. 13 (3): 147–153. https://doi.org/10.1007/BF01583999.
Wang, Z., T. Wang, B. Si, J. Watson, and Y. Zhang. 2021. “Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer.” Renewable Sustainable Energy Rev. 145 (Jul): 111069. https://doi.org/10.1016/j.rser.2021.111069.
Xia, Y., Y. Wang, Y. Wang, F. Y. L. Chin, and T. Zhang. 2016. “Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation.” Biotechnol. Biofuels 9 (1): 111. https://doi.org/10.1186/s13068-016-0524-z.
Yamada, T., Y. Sekiguchi, H. Imachi, Y. Kamagata, A. Ohashi, and H. Harada. 2005. “Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules.” Appl. Environ. Microbiol. 71 (11): 7493–7503. https://doi.org/10.1128/AEM.71.11.7493-7503.2005.
Zamri, M. F. M. A., S. Hasmady, A. Akhiar, F. Ideris, A. H. Shamsuddin, M. Mofijur, I. M. R. Fattah, and T. M. I. Mahlia. 2021. “A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste.” Renewable Sustainable Energy Rev. 137 (Mar): 110637. https://doi.org/10.1016/j.rser.2020.110637.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 4April 2022

History

Received: Jul 22, 2021
Accepted: Nov 7, 2021
Published online: Jan 27, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Chemical and Environmental Engineer, Center for Environmental Health, Risk, and Sustainability, RTI International, 3040 East Cornwallis Rd., P.O. Box 12194, Research Triangle Park, NC 27709 (corresponding author). ORCID: https://orcid.org/0000-0002-4900-3988. Email: [email protected]
David Michael Bagley, Ph.D., M.ASCE [email protected]
P.E.
Professor, Dept. of Chemical Engineering, Univ. of Wyoming, 1000 E. University Ave., Laramie, WY 82071. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share