Technical Papers
Jan 24, 2022

Treatment of an Aerobic Digester Sidestream in a Microbial Fuel Cell: Nitrate Removal and Electricity Generation

Publication: Journal of Environmental Engineering
Volume 148, Issue 4

Abstract

Aerobic digestion of waste activated sludge is a common practice at water reclamation facilities. Dewatering of digester effluent produces a liquid stream, commonly referred to as a sidestream, that is rich in nitrogen and phosphorus. Removal of nitrogen from the sidestream improves mainstream treatment, but usually requires input of energy and/or chemicals. The purpose of this study was to evaluate the microbial fuel cell (MFC) as a candidate technology to remove nitrogen from the sidestream of aerobic digestion while simultaneously producing electricity, without requiring input of energy or chemicals. Toward this goal, a bench-scale MFC was constructed and operated for a period of 125 days to remove nitrogen (nitrate) from an aerobic digester sidestream from a treatment facility in Hillsborough County, Florida. The average removal rate of nitrogen was 14  mg/(L·day), the average power production was 0.38  mW/m2 of electrode surface area, and the apparent efficiency of electron transfer from anode to cathode was 41%. The nitrogen removal rate and apparent electron transfer efficiency are similar to those observed in previous MFC studies treating other nitrate-containing streams via cathodic denitrification. The low power generation may be due partly to the two-chamber configuration of the MFC employed, which was appropriate for the goals of this study but is not the most advanced MFC configuration. Therefore, we conclude that the MFC remains a promising candidate for nitrate removal from aerobic digester sidestreams, but that MFC configurations more advanced than the one employed here will be required for the technology to be viable at a larger scale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request (twice-weekly measurements of voltage, chemical oxygen demand, concentration of nitrate, and concentration of total nitrogen).

Acknowledgments

This paper is based upon work supported by Hillsborough County (Florida) Public Utilities, and by the United States Environmental Protection Agency (USEPA) under Grant No. 83556901. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of Hillsborough County or USEPA. Hillsborough County and USEPA do not endorse the purchase of any commercial products or services mentioned in this publication. The authors thank the staff of Hillsborough County Public Utilities for providing a research trailer, utilities, and access to wastewater samples at the Northwest Regional Water Reclamation Facility and at the Biosolids Management Facility. The authors thank Steve Youssef of the University of South Florida for his assistance with analysis of collected samples.

References

Abel-Denee, M., T. Abbott, and C. Eskicioglu. 2018. “Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate.” Water Res. 132 (Apr): 292–300. https://doi.org/10.1016/j.watres.2018.01.004.
APHA (American Public Health Association). 2012. Standard methods for the analysis of water and wastewater. 22nd ed. Washington, DC: APHA.
Battistoni, P., P. Pavan, M. Prisciandaro, and F. Cecchi. 2000. “Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants.” Water Res. 34 (11): 3033–3041. https://doi.org/10.1016/S0043-1354(00)00045-2.
Bauer, H., T. D. Johnson, B. R. Johnson, D. Oerke, and S. Graziano. 2016. “Comparison of sidestream treatment technologies: Post aerobic digestion and anammox.” Water Sci. Technol. 73 (11): 2789–2803. https://doi.org/10.2166/wst.2016.079.
Bhargavi, G., V. Venu, and S. Renganathan. 2018. “Microbial fuel cells: Recent developments in design and materials.” In Vol. 330 of Proc., IOP Conf. Series: Materials Science and Engineering, 012034. Bristol, UK: IOP Publishing. https://doi.org/10.1088/1757-899X/330/1/012034.
Castro, C. J., J. E. Goodwill, B. Rogers, M. Henderson, and C. S. Butler. 2014. “Deployment of the microbial fuel cell latrine in Ghana for decentralized sanitation.” J. Water Sanit. Hyg. Dev. 4 (4): 663–671. https://doi.org/10.2166/washdev.2014.020.
Choudhury, P., U. S. P. Uday, N. Mahata, O. N. Tiwari, R. N. Ray, T. K. Bandyopadhyay, and B. Bhunia. 2017. “Performance improvement of microbial fuel cells for wastewater treatment along with value addition: A review on past achievements and recent perspectives.” Renewable Sustainable Energy Rev. 79 (Nov): 372–389. https://doi.org/10.1016/j.rser.2017.05.098.
Ciudad, G., O. Rubilar, P. Muñoz, G. Ruiz, R. Chamy, C. Vergara, and D. Jeison. 2005. “Partial nitrification of high-ammonia-concentration wastewater as a part of a shortcut biological nitrogen removal process.” Process Biochem. 40 (5): 1715–1719. https://doi.org/10.1016/j.procbio.2004.06.058.
Clauwaert, P., K. Rabaey, P. Aelterman, L. De Shamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete. 2007. “Biological denitrification in microbial fuel cells.” Environ. Sci. Technol. 41 (9): 3354–3360. https://doi.org/10.1021/es062580r.
Cunningham, J. A., S. Ergas, M. Balaguer-Barbosa, H. Kassouf, N. Zalivina, and A. García-Parra. 2018. Management of nitrogen and phosphorus at Hillsborough County’s treatment facilities: Falkenburg Road Advanced Wastewater Treatment Facility, Northwest Regional Water Reclamation Facility, Northwest Regional Biosolids Management Facility. Tampa, FL: Univ. of South Florida.
Di Capua, F., S. Papirio, P. N. L. Lens, and G. Esposito. 2015. “Chemolithotrophic denitrification in biofilm reactors.” Chem. Eng. J. 280 (Nov): 643–657. https://doi.org/10.1016/j.cej.2015.05.131.
Du, Z., H. Li, and T. Gu. 2007. “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.” Biotechnol. Adv. 25 (5): 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004.
Fang, C., B. Min, and I. Angelidaki. 2011. “Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes.” Appl. Biochem. Biotechnol. 164 (4): 464–474. https://doi.org/10.1007/s12010-010-9148-0.
Flimban, S. G. A., S. H. A. Hassan, M. M. Rahman, and S. E. Oh. 2020. “The effect of Nafion membrane fouling on the power generation of a microbial fuel cell.” Int. J. Hydrogen Energy 45 (25): 13643–13651. https://doi.org/10.1016/j.ijhydene.2018.02.097.
Fux, C., M. Boehler, P. Huber, I. Brunner, and H. Siegrist. 2002. “Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant.” J. Biotechnol. 99 (3): 295–306. https://doi.org/10.1016/S0168-1656(02)00220-1.
Galí, A., J. Dosta, and J. Mata-Alvarez. 2007. “Optimisation of nitrification-denitrification process in a SBR for the treatment of reject water via nitrite.” Environ. Technol. 28 (5): 565–571. https://doi.org/10.1080/09593332808618817.
Haavisto, J., P. Dessi, P. Chatterjee, M. Honkanen, M. T. Noori, M. Kokko, A.-M. Lakaniemi, P. N. L. Lens, and J. A. Puhakka. 2019. “Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell.” Chem. Eng. J. 372 (Sep): 141–150. https://doi.org/10.1016/j.cej.2019.04.090.
Holloway, R. W., A. E. Childress, K. E. Dennett, and T. Y. Cath. 2007. “Forward osmosis for concentration of anaerobic digester centrate.” Water Res. 41 (17): 4005–4014. https://doi.org/10.1016/j.watres.2007.05.054.
Huang, S., Y. Lu, G. Zhu, and Y. Kong. 2020. “Effect of organic concentration in the anode and cathode on bioelectricity generation and denitrification in a single-cathode three-anode microbial fuel cell.” J. Environ. Eng. 146 (8): 04020086. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001769.
Janicek, A., Y. Fan, and H. Liu. 2014. “Design of microbial fuel cells for practical application: A review and analysis of scale-up studies.” Biofuels 5 (1): 79–92. https://doi.org/10.4155/bfs.13.69.
Jardin, N., and H. J. Pöpel. 1994. “Phosphate release of sludges from enhanced P-removal during digestion.” Water Sci. Technol. 30 (6): 281–292. https://doi.org/10.2166/wst.1994.0279.
Jenni, S., S. E. Vlaeminck, E. Morgenroth, and K. M. Udert. 2014. “Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios.” Water Res. 49 (Feb): 316–326. https://doi.org/10.1016/j.watres.2013.10.073.
Jia, Y.-H., H.-T. Tran, D.-H. Kim, S.-J. Oh, D.-H. Park, R.-H. Zhang, and D.-H. Ahn. 2008. “Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells.” Bioprocess. Biosyst. Eng. 31 (4) 315–321. https://doi.org/10.1007/s00449-007-0164-6.
Joss, A., D. Salzgeber, J. Eugster, R. König, K. Rottermann, S. Burger, P. Fabijan, S. Leumann, J. Mohn, and H. Siegrist. 2009. “Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR.” Environ. Sci. Technol. 43 (14): 5301–5306. https://doi.org/10.1021/es900107w.
Ju, L.-K., H. K. Shah, and J. Porteous. 2005. “Phosphorus release in aerobic sludge digestion.” Water Environ. Res. 77 (5): 553–559. https://doi.org/10.2175/106143005X67476.
Kassouf, H., A. García-Parra, L. Mulford, G. Iranipour, S. J. Ergas, and J. A. Cunningham. 2020. “Mass fluxes of nitrogen and phosphorus through water reclamation facilities: Case study of biological nutrient removal, aerobic sludge digestion, and sidestream recycle.” Water Environ. Res. 92 (3): 478–489. https://doi.org/10.1002/wer.1239.
Kelly, P. T., and Z. He. 2014. “Nutrients removal and recovery in bioelectrochemical systems: A review.” Bioresour. Technol. 153 (Feb): 351–360. https://doi.org/10.1016/j.biortech.2013.12.046.
Kim, K.-Y., E. Yang, M.-Y. Lee, K.-J. Chae, C.-M. Kim, and I. S. Kim. 2014. “Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs).” Water Res. 54 (May): 62–68. https://doi.org/10.1016/j.watres.2014.01.045.
Kim, S. H., W. J. Kim, and T. H. Chung. 2002. “Release characteristics of nitrogen and phosphorus in aerobic and intermittent aerobic sludge digestion.” Korean J. Chem. Eng. 19 (3): 439–444. https://doi.org/10.1007/BF02697154.
Koók, L., et al. 2019. “Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods, and mitigation strategies.” Bioresour. Technol. 279 (May): 327–338. https://doi.org/10.1016/j.biortech.2019.02.001.
Kuwayama, Y., and S. M. Olmstead. 2020. “Hydroeconomic modeling of resource recovery from wastewater: Implications for water quality and quantity management.” J. Environ. Qual. 49 (3): 593–602. https://doi.org/10.1002/jeq2.20050.
Lackner, S., E. M. Gilbert, S. E. Vlaeminck, A. Joss, J. Horn, and M. C. M. van Loosdrecht. 2014. “Full-scale partial nitritation/annamox experiences—An application survey.” Water Res. 55 (May): 292–303. https://doi.org/10.1016/j.watres.2014.02.032.
la Cour Jansen, J., U. Nyberg, H. Aspegren, and B. Andersson. 1993. “Handling of anaerobic digester supernatant combined with full nitrogen removal.” Water Sci. Technol. 27 (5–6): 391–403. https://doi.org/10.2166/wst.1993.0517.
Latimer, R., J. Rohrbacher, V. Nguyen, W. O. Khunjar, and S. Jeynayagam. 2015. Towards a renewable future: Assessing resource recovery as a viable treatment alternative. Alexandria, VA: Water Environment Research Foundation.
Le Corre, K. S., E. Valsami-Jones, P. Hobbs, and S. A. Parsons. 2009. “Phosphorus recovery from wastewater by struvite crystallization: A review.” Crit. Rev. Environ. Sci. Technol. 39 (6): 433–477. https://doi.org/10.1080/10643380701640573.
Lee, Y., L. Martin, P. Grasel, K. Tawfiq, and G. Chen. 2013. “Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology.” Environ. Technol. 34 (19): 2727–2736. https://doi.org/10.1080/09593330.2013.788040.
Logan, B. E. 2010. “Scaling up microbial fuel cells and other bioelectrochemical systems.” Appl. Microbiol. Biotechnol. 85 (6): 1665–1671. https://doi.org/10.1007/s00253-009-2378-9.
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. “Microbial fuel cells: Methodology and technology.” Environ. Sci. Technol. 40 (17): 5181–5192. https://doi.org/10.1021/es0605016.
Martí, N., L. Pastor, A. Bouzas, J. Ferrer, and A. Seco. 2010. “Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation.” Water Res. 44 (7): 2371–2379. https://doi.org/10.1016/j.watres.2009.12.043.
Mavinic, D. S., and D. A. Koers. 1982. “Fate of nitrogen in aerobic sludge digestion.” J. Water Pollut. Control Fed. 54 (4): 352–360.
Metcalf & Eddy, Inc. 1991. Wastewater engineering: Treatment, disposal, reuse. 3rd ed. New York: McGraw-Hill.
Min, B., S. Cheng, and B. E. Logan. 2005. “Electricity generation using membrane and salt bridge microbial fuel cells.” Water Res. 39 (9): 1675–1686. https://doi.org/10.1016/j.watres.2005.02.002.
Miskan, M., M. Ismail, M. Ghasemi, J. M. Jahim, D. Nordin, and M. H. Abu Bakar. 2016. “Characterization of membrane biofouling and its effect on the performance of microbial fuel cell.” Int. J. Hydrogen Energy 41 (1): 543–552. https://doi.org/10.1016/j.ijhydene.2015.09.037.
Mosquera-Corral, A., F. González, J. L. Campos, and R. Méndez. 2005. “Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds.” Process Biochem. 40 (9): 3109–3118. https://doi.org/10.1016/j.procbio.2005.03.042.
Münch, E. V., and K. Barr. 2001. “Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams.” Water Res. 35 (1): 151–159. https://doi.org/10.1016/S0043-1354(00)00236-0.
Murakami, T., S. Koike, N. Taniguchi, and H. Esumi. 1987. “Influence of return flow phosphorus load on performance of the biological phosphorus removal process.” In Proc., IAWPRC Specialized Conf. Biological Phosphate Removal from Wastewaters. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-08-035592-4.50026-2.
NEBRA (North East Biosolids and Residuals Association). 2007. “A national biosolids regulation, quality, end use & disposal survey. Tamworth, NH: NEBRA.
Orner, K., C. Cools, M. Balaguer, N. Zalivina, J. R. Mihelcic, G. Chen, and J. A. Cunningham. 2019. “Energy recovery and nitrogen management from struvite precipitation effluent via microbial fuel cells.” J. Environ. Eng. 145 (3): 04018145. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001500.
Peng, Y., and G. Zhu. 2006. “Biological nitrogen removal with nitrification and denitrification via nitrite pathway.” Appl. Microbiol. Biotechnol. 73 (1): 15–26. https://doi.org/10.1007/s00253-006-0534-z.
Phillips, H. M., E. Kobylinski, J. Barnard, and C. Wallis-Lage. 2006. “Nitrogen- and phosphorus-rich sidestreams: Managing the nutrient merry-go-round.” In Proc., 2006 Water Environment Federation Technical Exhibition and Conf. (WEFTEC06). Dallas: Water Environment Federation.
Pitman, A. R. 1999. “Management of biological nutrient removal plant sludges—Change the paradigms?” Water Res. 33 (5): 1141–1146. https://doi.org/10.1016/S0043-1354(98)00316-9.
Pu, J., C. Feng, Y. Liu, R. Li, Z. Kong, N. Chen, S. Tong, C. Hao, and Y. Liu. 2014. “Pyrite-based autotrophic denitrification for remediation of nitrate-contaminated groundwater.” Bioresour. Technol. 173 (Dec): 117–123. https://doi.org/10.1016/j.biortech.2014.09.092.
Puig, S., M. Coma, J. Desloover, N. Boon, J. Colprim, and M. D. Balaguer. 2012. “Autotrophic denitrification in microbial fuel cells treating low ionic strength waters.” Environ. Sci. Technol. 46 (4): 2309–2315. https://doi.org/10.1021/es2030609.
Rozendal, R. A., H. V. M. Hamelers, K. Rabaey, J. Keller, and C. J. N. Buisman. 2008. “Towards practical implementation of bioelectrochemical wastewater treatment.” Trends Biotechnol. 26 (8): 450–459. https://doi.org/10.1016/j.tibtech.2008.04.008.
Sahinkaya, E., and N. Dursun. 2012. “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement.” Chemosphere 89 (2): 144–149. https://doi.org/10.1016/j.chemosphere.2012.05.029.
Sander, E. M., B. Virdis, and S. Freguia. 2015. “Dissimilatory nitrate reduction to ammonium as an electron sink during cathodic denitrification.” RSC Adv. 5 (105): 86572. https://doi.org/10.1039/C5RA19241B.
Savla, N., S. Suman, J. Pandit, P. Verma, A. K. Awasthi, S. S. Sana, and R. Prasad. 2021. “Techno-economical evaluation and life cycle assessment of microbial electrochemical systems: A review.” Curr. Res. Green Sustainable Chem. 4 (May): 100111. https://doi.org/10.1016/j.crgsc.2021.100111.
Seviour, R. J., T. Mino, and M. Onuki. 2003. “The microbiology of biological phosphorus removal in activated sludge systems.” FEMS Microbiol. Rev. 27 (1): 99–127. https://doi.org/10.1016/S0168-6445(03)00021-4.
Shao, M. F., T. Zhang, and H. H. P. Fang. 2010. “Sulfur-driven autotrophic denitrification: Diversity, biochemistry, and engineering applications.” Appl. Microbiol. Biotechnol. 88 (5): 1027–1042. https://doi.org/10.1007/s00253-010-2847-1.
Shin, K.-H., and D. K. Cha. 2008. “Microbial reduction of nitrate in the presence of nanoscale zero-valent iron.” Chemosphere 72 (2): 257–262. https://doi.org/10.1016/j.chemosphere.2008.01.043.
Shu, L., P. Schneider, V. Jegatheesan, and J. Johnson. 2006. “An economic evaluation of phosphorus recovery as struvite from digester supernatant.” Bioresour. Technol. 97 (17): 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005.
Siegrist, H. 1996. “Nitrogen removal from digester supernatant—Comparison of chemical and biological methods.” Water Sci. Technol. 34 (1–2): 399–406. https://doi.org/10.2166/wst.1996.0397.
Soares, M. I. M. 2002. “Denitrification of groundwater with elemental sulfur.” Water Res. 36 (5): 1392–1395. https://doi.org/10.1016/S0043-1354(01)00326-8.
Tan, W. H., S. Chong, H.-W. Fang, K.-L. Pan, M. Mohamad, J. W. Lim, T. J. Tiong, Y. J. Chan, C.-M. Huang, and T. C.-K. Yang. 2021. “Microbial fuel cell technology: A critical review on scale-up issues.” Processes 9 (6): 985. https://doi.org/10.3390/pr9060985.
Tang, J., C. Zhang, X. Shi, J. Sun, and J. A. Cunningham. 2019. “Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency.” J. Environ. Manage. 234 (Mar): 396–403. https://doi.org/10.1016/j.jenvman.2018.12.097.
Till, B. A., L. J. Weathers, and P. J. J. Alvarez. 1998. “Fe(0)-supported autotrophic denitrification.” Environ. Sci. Technol. 32 (5): 634–639. https://doi.org/10.1021/es9707769.
Tonkovic, Z. 1999. “Aerobic stabilisation criteria for BNR biosolids.” Water Sci. Technol. 39 (6): 167–174. https://doi.org/10.2166/wst.1999.0290.
Ucar, D., Y. Zhang, and I. Angelidaki. 2017. “An overview of electron acceptors in microbial fuel cells.” Front. Microbiol. 8 (643): 1–14. https://doi.org/10.3389/fmicb.2017.00643.
UN-Habitat (United Nations Human Settlements Programme). 2008. “Global atlas of excreta, wastewater sludge and biosolids management: Moving forward the sustainable and welcome uses of a global source.” Accessed January 3, 2021. https://unhabitat.org/global-atlas-of-excreta-wastewater-sludge-and-biosolids-management.
van Dongen, U., M. S. M. Jetten, and M. C. M. van Loosdrecht. 2001. “The SHARON®-Anammox® process for treatment of ammonium-rich wastewater.” Water Sci. Technol. 44 (1): 153–160. https://doi.org/10.2166/wst.2001.0037.
Vilar-Sanz, A., S. Puig, A. García-Lledó, R. Trias, M. D. Balaguer, J. Colprim, and L. Bañeraset. 2013. “Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.” PLoS One 8 (5): e63460. https://doi.org/10.1371/journal.pone.0063460.
Virdis, B., K. Rabaey, R. A. Rozendal, Z. Yuan, and J. Keller. 2010. “Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells.” Water Res. 44 (9): 2970–2980. https://doi.org/10.1016/j.watres.2010.02.022.
Virdis, B., K. Rabaey, Z. Yuan, and J. Keller. 2008. “Microbial fuel cells for simultaneous carbon and nitrogen removal.” Water Res. 42 (12): 3013–3024. https://doi.org/10.1016/j.watres.2008.03.017.
WEF (Water Environment Federation)/ASCE. 2010. Design of municipal wastewater treatment plants. 5th ed. New York: McGraw-Hill Education.
Wild, D., A. Kisliakova, and H. Siegrist. 1997. “Prediction of recycle phosphorus loads from anaerobic digestion.” Water Res. 31 (9): 2300–2308. https://doi.org/10.1016/S0043-1354(97)00059-6.
Woods, N. C., S. M. Sock, and G. T. Daigger. 1999. “Phosphorus recovery technology modeling and feasibility evaluation for municipal wastewater treatment plants.” Environ. Technol. 20 (7): 663–679. https://doi.org/10.1080/09593332008616862.
Xie, S., P. Liang, Y. Chen, X. Xia, and X. Huang. 2011. “Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.” Bioresour. Technol. 102 (1): 348–354. https://doi.org/10.1016/j.biortech.2010.07.046.
Xu, F., Q. Yuan, L.-L. Zhou, Y.-J. Zhu, Y.-M. Li, Y.-D. Du, Q. Wang, and Q. Kong. 2018. “Economic benefit analysis of typical microbial fuel cells based on a cost-benefit analysis model.” Desalin. Water Treat. 135 (Dec): 59–93. https://doi.org/10.5004/dwt.2018.23149.
Xu, J., G.-P. Sheng, H.-W. Luo, W.-W. Li, L.-F. Wang, and H.-Q. Yu. 2012. “Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.” Water Res. 46 (6): 1817–1824. https://doi.org/10.1016/j.watres.2011.12.060.
Xu, L., Y. Zhao, L. Doherty, Y. Hu, and X. Hao. 2016. “The integrated process for wastewater treatment based on the principle of microbial fuel cells: A review.” Environ. Sci. Technol. 46 (1): 60–91. https://doi.org/10.1080/10643389.2015.1061884.
Yan, H., T. Saito, and J. M. Regan. 2012. “Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode.” Water Res. 46 (7): 2215–2224. https://doi.org/10.1016/j.watres.2012.01.050.
Zhang, F., and Z. He. 2012a. “Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell.” Process Biochem. 47 (12): 2146–2151. https://doi.org/10.1016/j.procbio.2012.08.002.
Zhang, F., and Z. He. 2012b. “Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells.” J. Chem. Technol. Biotechnol. 87 (1): 153–159. https://doi.org/10.1002/jctb.2700.
Zhu, G., T. Onodera, M. Tandukar, and S. G. Pavlostathis. 2013. “Simultaneous carbon removal, denitrification and power generation in a membrane-less microbial fuel cell.” Bioresour. Technol. 146 (Oct): 1–6. https://doi.org/10.1016/j.biortech.2013.07.032.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 4April 2022

History

Received: Jul 30, 2021
Accepted: Nov 10, 2021
Published online: Jan 24, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 24, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Hélène Kassouf [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620. Email: [email protected]
Assistant Professor, Wadsworth Dept. of Civil and Environmental Engineering, West Virginia Univ., Morgantown, WV 26506. ORCID: https://orcid.org/0000-0001-8090-7603. Email: [email protected]
Andrés García Parra [email protected]
Material Engineer, Kimberly-Clark, 1400 Holcomb Bridge Rd., Roswell, GA 30076. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620 (corresponding author). ORCID: https://orcid.org/0000-0001-9654-8262. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share