Technical Papers
Sep 20, 2021

Adsorption of Chalcophile, Siderophile, and Lithophile Elements from Aqueous Solutions Using Syngenetically Modified Biochar

Publication: Journal of Environmental Engineering
Volume 147, Issue 12

Abstract

This study evaluates the adsorption capacity of syngenetically modified lignin-derived biochar for chalcophile (zinc, Zn), siderophile (copper, Cu) and lithophile (manganese, Mn) ions in single- and multicomponent solutions. Lignin, biochar feedstock, was chosen for the research. Lignin was pyrolyzed at 450°C for 2 h. The experiments studied how adsorption depends on adsorbent dose (0.100.30  g), pH (2–10), contact time (5180  min), temperature (25°C–45°C), and initial concentrations of elements in solution (25150  mg/L). The impact of contact time was also investigated using breakthrough curves. The adsorption of multicomponent, potentially toxic elements by lignin-derived biochar was lower than the adsorption for single-component, potentially toxic elements. In all cases, Cu(II) had the highest adsorption efficiency and capacity. The adsorption processes of Cu(II) were also the most spontaneous and thermodynamically favored. The ΔG° values of these processes were almost always negative and much lower than those during the adsorption of the other elements studied. The adsorption process in single-component and multicomponent Zn(II) and Cu(II) solutions and in the multicomponent Mn(II) solution was endothermic and physical in nature. The adsorption of elements in the single-component Cu(II) solution and the single-component Zn(II) solution by lignin-derived biochar was more in line with the pseudo-second order equation model (R2=0.8697 and R2=0.5359, respectively). The experimental data was modelled by various isotherm models. The results revealed that adsorption isotherm in the case of single-component Zn(II) was more in conformity with the Langmuir isotherm (R2=0.79), suggesting the dominant adsorption of lignin biochar was via monolayer adsorption. Meanwhile, the adsorption isotherm in the case of single-component Mn(II) was well fitted to the Freundlich adsorption model (R2=0.79), indicating adsorption was multilayer in nature.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was funded by Grant (No. S-MIP-17-83) from the Research Council of Lithuania.

References

Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok. 2014. “Biochar as a sorbent for contaminant management in soil and water: A review.” Chemosphere 99 (Mar): 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071.
Ahmad, R., and S. Haseeb. 2015. “Absorptive removal of Pb2+, Cu2+ and Ni2+ from the aqueous solution by using groundnut husk modified with guar gum (GG): Kinetic adn thermodynamic studies.” Groundwater Sustainable Dev. 1 (1–2): 41–49. https://doi.org/10.1016/j.gsd.2015.11.001.
Ali, I. 2010. “The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater.” Sep. Purif. Rev. 39 (3–4): 95–171. https://doi.org/10.1080/15422119.2010.527802.
Ali, I., and V. K. Gupta. 2006. “Advances in water treatment by adsorption technology.” Nat. Protoc. 1 (6): 2661–2667. https://doi.org/10.1038/nprot.2006.370.
Azimi, A., A. Azari, M. Rezakazemi, and M. Ansarpour. 2017. “Removal of heavy metals from industrial wastewaters: A review.” Chem. Bio. Eng. Rev. 4 (1): 37–59. https://doi.org/10.1002/cben.201600010.
Baltrėnaitė-Gedienė, E., E. Marčiulaitienė, M. Pranskevičius, J. Titova, A. Bhatnagar, and E. Abu-Danso. 2020. “Physicochemical properties of pyrogenic carbonaceous product, biochar, syngenetically modified for its use in adsorption systems.” J. Environ. Eng. 146 (8): 04020078. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001748.
Baltrėnas, P., E. Baltrėnaitė, and E. Spudulis. 2015. “Biochar from pine and birch morphology and pore structure change by treatment in biofilter.” Water Air Soil Pollut. 226 (3): 69. https://doi.org/10.1007/s11270-015-2295-8.
Bibiano-Cruz, L., J. Garfias, J. Salas-Garcia, R. Martel, and H. Llanos. 2016. “Batch and column test analyses for hardness removal using natural and homionic clinoptilolite: Breakthrough experiments and modeling.” Sustainable Water Resour. Manage. 2 (2): 183–197. https://doi.org/10.1007/s40899-016-0050-y.
Borchard, N., K. Prost, T. Kautz, A. Moeller, and J. Siemens. 2012. “Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure.” Eur. J. Soil Sci. 63 (3): 399–409. https://doi.org/10.1111/j.1365-2389.2012.01446.x.
Cely, P., G. Gascó, J. Paz-Ferreiro, and A. Méndez. 2015. “Agrinomic properties of biochars from different manure wastes.” J. Anal. Appl. Pyrolysis 111 (Jan): 173–182. https://doi.org/10.1016/j.jaap.2014.11.014.
Chen, J. P., and X. Wang. 2000. “Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns.” Sep. Purif. Technol. 19 (3): 157–167. https://doi.org/10.1016/S1383-5866(99)00069-6.
Chen, X., G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. McBride, and A. G. Hay. 2011. “Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution.” Bioresour. Technol. 102 (19): 8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078.
Chowdhury, Z. Z., S. B. Abd Hamid, and S. M. Zain. 2015. “Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu(II) cations using lignocellulosic wastes.” Bioresources 10 (1): 732–749.
Chowdhury, Z. Z., S. M. Zain, A. K. Rashid, R. F. Rafique, and K. Khalid. 2013. “Breakthrough curve analysis for column dynamics sorption of Mn(II) ions wastewater by using Mangostana garcinia peel-based granular-activated carbon.” J. Chem. 2013: 1–8. https://doi.org/10.1155/2013/959761.
Chung, H.-K., W.-H. Kim, J. Park, J. Cho, T.-Y. Jeongwon, and P.-K. Park. 2015. “Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amout of adsorbent.” J. Ind. Eng. Chem. 28: 241–246. https://doi.org/10.1016/j.jiec.2015.02.021.
Cojocaru, C., M. Macoveanu, and I. Cretescu. 2011. “Peat-based sorbents for the removal of oil spills from water surface: Application of artificial neural network modeling.” Colloids Surf., A 384 (1–3): 675–684. https://doi.org/10.1016/j.colsurfa.2011.05.036.
Dada, A. O., A. P. Olalekan, A. M. Olatunya, and O. Dada. 2012. “Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk.” J. Appl. Chem. 3 (1): 38–45.
Dawodu, F. A., and K. G. Akpomie. 2014. “Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay.” J. Mater. Res. Technol. 3 (2): 129–141. https://doi.org/10.1016/j.jmrt.2014.03.002.
De Gisi, S., G. Lofrano, M. Grassi, and M. Notarnicola. 2016. “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review.” Sustainable Mater.Technol. 9 (Sep): 10–40. https://doi.org/10.1016/j.susmat.2016.06.002.
Demirbas, A. 2008. “Heavy metal adsorption onto agro-based waste materials: A review.” J. Hazard. Mater. 157 (2–3): 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024.
Ding, Z., X. Hu, Y. Wan, S. Wang, and B. Gao. 2016. “Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests.” J. Ind. Eng. Chem. 33 (Jan): 239–245. https://doi.org/10.1016/j.jiec.2015.10.007.
Downie, A., A. Crosky, and P. Munroe. 2009. “Physical properties of biochar.” Chap. 2 in Biochar for environmental management: Science and technology, edited by J. Lehmann and S. Joseph, 13–32. London: Earthscan.
Duarte, R. A., and A. C. Ladeira. 2011. “Study of manganese removal from mining effluent.” In Mine water—Managing the challenges. Aachen, Germany: International Mine Water Association.
Dula, T., K. Siraj, and S. A. Kitte. 2014. “Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (oxytenanthera abyssinica).” ISRN Environ. Chem. 2014: 1. https://doi.org/10.1155/2014/438245.
Duwiejuah, A. B., A. H. Abubakari, A. K. Quainoo, and Y. Amadu. 2020. “Review of biochar properties and remediation of metal pollution of water and soil.” J. Health Pollut. 10 (27): 200902. https://doi.org/10.5696/2156-9614-10.27.200902.
El-Sayed, G., H. A. Dessouki, and S. S. Ibrahiem. 2011. “Removal of Zn(II), Cd(II) and Mn(II) from aqueous solutions by adsorption on maize stalks.” Malaysian J. Anal. Sci. 15 (1): 8–21.
Engwa, G. A., P. U. Ferdinand, F. N. Nwalo, and M. N. Unachukwu. 2019. “Mechanism and health effects of heavy metal toxicity in humans.” In Poisoning in the modern world—New tricks for an old dog? edited by O. Karcioglu and B. Arslan. London: Intechopen. https://doi.org/10.5772/intechopen.82511.
Etim, U. J., S. A. Umoren, and U. M. Eduok. 2016. “Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution.” Supplement, J. Saudi Chem. Soc. 20: S67–S76. https://doi.org/10.1016/j.jscs.2012.09.014.
Fernández-González, R., M. A. Martín-Lara, J. A. Moreno, G. Blázquez, and B. M. Calero. 2019. “Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: Scale-up and preparation of zinc-based biochar.” J. Cleaner Prod. 227 (Aug): 634–644.
Godwin, P. M., Y. Pan, H. Xiao, and M. T. Afzal. 2019. “Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater.” J. Bioresour. Bioprod. 4 (1): 31–42. https://doi.org/10.21967/jbb.v4i1.180.
Gupta, S., S. Sireesha, I. Sreedhar, C. M. Patel, and K. L. Anitha. 2020. “Latest trends in heavy metal removal from wastewater by biochar based sorbents.” J. Water Process Eng. 38 (Dec): 101561. https://doi.org/10.1016/j.jwpe.2020.101561.
Harikishore Kumar Reddy, D., D. K. V. Ramana, K. Seshaiah, and A. V. R. Reddy. 2011. “Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent.” Desalination 268 (1–3): 150–157. https://doi.org/10.1016/j.desal.2010.10.011.
Harter, R. D. 1992. “Competitive sorption of cobalt, copper, and nickel ions by a calcium-saturated soil.” Soil Sci. Soc. Am. J. 56 (2): 444–449. https://doi.org/10.2136/sssaj1992.03615995005600020017x.
Hasfalina, C. M., R. Z. Maryam, C. A. Luqman, and M. Rashid. 2012. “Adsorption of copper (II) from aqueous medium in fixed-bed column by kenaf fibres.” APCBEE Procedia 3: 255–263. https://doi.org/10.1016/j.apcbee.2012.06.079.
Inyang, M., B. Gao, Y. Yao, Y. Xue, A. R. Zimmerman, P. Pullammanappallil, and X. Cao. 2012. “Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass.” Bioresour. Technol. 110 (Apr): 50–56. https://doi.org/10.1016/j.biortech.2012.01.072.
Inyang, M. I., B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y. S. Ok, and X. Cao. 2016. “A review of biochar as a low-cost adsorbent for aqueous heavy metal removal.” Critical Rev. Environ. Sci. Technol. 46 (4): 406–433. https://doi.org/10.1080/10643389.2015.1096880.
Kołodyńska, D., R. Wnętrzak, J. J. Leahy, M. H. B. Hayes, W. Kwapiński, and Z. Hubicki. 2012. “Kinetic and adsorptive characterization of biochar in metal ions removal.” Chem. Eng. J. 197 (Jul): 295–305. https://doi.org/10.1016/j.cej.2012.05.025.
Komkienė, J., and E. Baltrėnaitė. 2016. “Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase.” Int. J. Environ. Sci. Technol. 13 (2): 471–482. https://doi.org/10.1007/s13762-015-0873-3.
Kwak, J.-H., M. S. Islam, S. Wang, S. A. Messele, M. A. Naeth, M. G. El-Din, and S. X. Chang. 2019. “Biochar properties and lead(II) adsorption capacity depend on feedstock types, pyrolysis temperature, and steam activation.” Chemosphere 231 (Sep): 393–404. https://doi.org/10.1016/j.chemosphere.2019.05.128.
Leng, L., X. Yuan, G. Zeng, J. Shao, X. Chen, Z. Wu, H. Wang, and X. Peng. 2015. “Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (malachite green) adsorption.” Fuel 155 (Sep): 77–85. https://doi.org/10.1016/j.fuel.2015.04.019.
Li, J., Y. Li, Y. Wu, and M. Zheng. 2014. “A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant.” J. Hazard. Mater. 280 (Sep): 450–457. https://doi.org/10.1016/j.jhazmat.2014.08.033.
Liang, S. L., X. Guo, N. Feng, and Q. Tian. 2010. “Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solution by Mg2+/K+ orange peel adsorbents.” J. Hazard. Mater. 174 (1–3): 756–762. https://doi.org/10.1016/j.jhazmat.2009.09.116.
Liu, Y., and Y.-J. Liu. 2008. “Biosorption isotherms, kinetics and thermodynamics.” Sep. Purif. Technol. 61 (3): 229–242. https://doi.org/10.1016/j.seppur.2007.10.002.
Liu, Z., and F.-S. Zhang. 2009. “Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass.” J. Hazard. Mater. 167 (1–3): 933–939. https://doi.org/10.1016/j.jhazmat.2009.01.085.
Lu, H., W. Zhang, S. Wang, L. Zhuang, Y. Yang, and R. Qiu. 2013. “Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures.” J. Anal. Appl. Pyrolysis 102 (Jul): 137–143. https://doi.org/10.1016/j.jaap.2013.03.004.
Mahdi, Z., Q. J. Yu, and A. E. Hanandeh. 2018. “Removal of lead(II) from aqueous solution using date seed-derived biochar: Batch and column studies.” Appl. Water Sci. 8 (6): 1–13. https://doi.org/10.1007/s13201-018-0829-0.
Malik, D. S., C. K. Jain, and A. K. Yadav. 2017. “Heavy metal removal by fixed-bed column—A review.” ChemBioEng Rev. 5 (3): 173–179. https://doi.org/10.1002/cben.201700018.
Malkoc, E., and Y. Nuhoglu. 2007. Determination of kinetic and equilibrium parameters for the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chem. Eng. Process. Process Intensif. 46 (10), 1020–1029. https://doi.org/10.1016/j.cep.2007.05.007.
Matouq, M., N. Jildeh, M. Qtaishat, M. Hindiyeh, and M. Q. Al Syouf. 2015. “The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods.” J. Environ. Chem. Eng. 3 (2): 775–784. https://doi.org/10.1016/j.jece.2015.03.027.
Meroufel, B., O. Benali, M. Benyahia, Y. Benmoussa, and M. A. Zenasni. 2013. “Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies.” J. Mater. Environ. Sci. 4 (3): 482–491.
Mittal, A., L. Kurup, and J. Mittal. 2007. “Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers.” J. Hazard. Mater. 146 (1–2): 243–248. https://doi.org/10.1016/j.jhazmat.2006.12.012.
Monser, L., and N. Adhoum. 2002. “Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater.” Sep. Purif. Technol. 26 (2–3): 137–146. https://doi.org/10.1016/S1383-5866(01)00155-1.
Moreno-Piraján, J. C., V. S. Garcia-Cuello, and L. Giraldo. 2011. “The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells.” Adsorption 17 (3): 505–514. https://doi.org/10.1007/s10450-010-9311-5.
Nuić, I., M. Trgo, J. Perić, and N. Vukojević Medvidović. 2013. “Analysis of breakthrough curves of Pb and Zn sorption from binary solutions on natural clinoptilolite.” Microporous Mesoporous Mater. 167 (Feb): 55–61. https://doi.org/10.1016/j.micromeso.2012.04.037.
Pagnanelli, F., A. Esposito, L. Toro, and F. Vegliò. 2003. “Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model.” Water Res. 37 (3): 627–633. https://doi.org/10.1016/S0043-1354(02)00358-5.
Papa, E. F. 2017. “Batch and fixed bed column studies on cadmium (I) and lead (II) adsorption from aqueous solution by coffee pulp biochar.” In Proc., 5th Int. Conf. on Civil, Architecture and Waste Management, 284–289. Singapore: International Association of Civil, Architecture, Environment and Waste Management.
Park, J.-H., J.-S. Cho, Y. S. Ok, S.-H. Kim, S. W. Kang, I. W. Choi, J. S. Heo, R. D. DeLaune, and D. C. Seo. 2015. “Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.” J. Environ. Sci. Health Part A Toxic/Hazardous Substances Environ. Eng. 50 (11): 1194–1204. https://doi.org/10.1080/10934529.2015.1047680.
Park, J.-H., J. J. Wang, S.-H. Kim, J.-S. Cho, S.-W. Kang, R. D. Delaune, K.-J. Han, and D.-C. Seo. 2017. “Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution.” Colloids Surf. 533 (Nov): 330–337. https://doi.org/10.1016/j.colsurfa.2017.08.041.
Patel, H. 2019. “Fixed-bed column adsorption study: A comprehensive review.” Appl. Water Sci. 9 (3): 45. https://doi.org/10.1007/s13201-019-0927-7.
Patel, H. 2020. “Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder.” Sci. Rep. 10 (1): 16895. https://doi.org/10.1038/s41598-020-72583-6.
Pellera, F.-M., A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.-Y. Wang, and E. Gidarakos. 2012. “Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural products.” J. Environ. Manage. 96 (1): 35–42. https://doi.org/10.1016/j.jenvman.2011.10.010.
Piscitelli, L., P.-A. Rivier, D. Mondelli, T. Miano, and E. J. Joner. 2017. “Assessment of addition of biochar to filtering mixtures for potential water pollutant removal.” Environ. Sci. Pollut. Res. 25 (3): 2167–2174. https://doi.org/10.1007/s11356-017-0650-6.
Qambrani, N. A., M. M. Rahman, S. Won, S. Shim, and C. Ra. 2017. “Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review.” Renewable Sustainable Energy Rev. 79 (Nov): 255–273. https://doi.org/10.1016/j.rser.2017.05.057.
Raudonius, S. 2017. “Application of statistics in plant and crop research: Important issues.” Zemdirbyste-Agri. 104 (4): 377–382. https://doi.org/10.13080/z-a.2017.104.048.
Reddad, Z., C. Gerente, Y. Andres, and P. Le Cloirec. 2002. “Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies.” Environ. Sci. Technol. 36 (9): 2067–2073. https://doi.org/10.1021/es0102989.
Regmi, P., J. L. G. Moscoso, S. Kumar, X. Cao, J. Mao, and G. Schafran. 2012. “Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.” J. Environ. Manage. 109 (Oct): 61–69. https://doi.org/10.1016/j.jenvman.2012.04.047.
Reyhanitabar, A., H. Ramezanzadeh, S. Oustan, and M. Nayshabouri. 2017. “Comparison of batch and column methods in zinc sorption and desotpion in a sandy soil.” Int. J. Adv. Sci. Eng. Technol. 5 (2): 19–22.
Saha, P., S. Chowdhury, S. Gupta, and I. Kumar. 2010. “Insight into adsorption equilibrium, kinetics and thermodynamics of malachite green onto clayey soil of Indian origin.” Chem. Eng. J. 165 (3): 874–882. https://doi.org/10.1016/j.cej.2010.10.048.
Sangchoom, W., and R. Mokaya. 2015. “Valorization of lignin waste: Carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage.” ACS Sustainable Chem. Eng. 3 (7): 1658–1667. https://doi.org/10.1021/acssuschemeng.5b00351.
Schmidt, H. P., T. Bucheli, C. Kammann, B. Glaser, S. Abiven, and J. Leifeld. 2012. European biochar certificate—Guidelines for a sustainable production of biochar. Arbaz, Switzerland: European Biochar Foundation.
Senthilkumar, R., K. Vijayaraghavan, M. Thilakavathi, P. V. R. Iyer, and M. Velan. 2006. “Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions.” J. Hazard. Mater. 136 (3): 791–799. https://doi.org/10.1016/j.jhazmat.2006.01.014.
Shafaghat, A., F. Salimi, M. Valiei, J. Salehzadeh, and M. Shafaghat Lonbar. 2012. “Removal of heavy metals (Pb2+, Cu2+ and Cr3+) from aqueous solutions using five plants materials.” African J. Biotechnol. 11 (4): 852–855.
Sivaprakash, B., N. Rajamohan, and A. M. Sadik. 2010. “Batch and column sorption of heavy metal from aqueous solution using a marine alga Sargassum tenerrimum.Int. J. Chem. Tech. Res. 2 (1): 155–162.
Sprynskyy, M., B. Buszewski, A. P. Terzyk, and J. Namieśnik. 2006. “Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite.” J. Colloid Interface Sci. 304 (1): 21–28. https://doi.org/10.1016/j.jcis.2006.07.068.
Srivastava, N. K., and C. B. Majumder. 2008. “Novel biofiltration methods for the treatment of heavy metals from industrial wastewater.” J. Hazard. Mater. 151 (1): 1–8. https://doi.org/10.1016/j.jhazmat.2007.09.101.
Srivatsav, P., B. S. Bhargav, V. Shanmugasundaram, J. Arun, K. P. Gopinath, and A. Bhatnagar. 2020. “Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review.” Water 12 (12): 3561. https://doi.org/10.3390/w12123561.
Taghlidabad, R. H., E. Sepehr, H. Khodaverdiloo, A. Samadi, and M. H. Rasouli-Sadaghiani. 2020. “Characterization of cadmium adsorption on two cost-effective biochars for water treatment.” Arabian J. Geosci. 13 (12): 448. https://doi.org/10.1007/s12517-020-05477-6.
Tarakanovas, P., and S. Raudonius. 2003. Agronominių tyrimų duomenų statistinė analizė, taikant kompiuterines programas ANOVA, STAT, SPLIT–PLOT iš paketo SELEKCIJA ir IRRISTAT. [In Lithuanian.] Akademija: LŽŪU Leidybos centras.
Terdputtakun, A., O.-A. Arqueropanyo, P. Sooksamiti, S. Janhom, and W. Naksata. 2017. “Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent.” Environ. Earth Sci. 76 (22): 777. https://doi.org/10.1007/s12665-017-7110-y.
Thompson, K. A., K. K. Shimabuku, J. P. Kearns, D. R. U. Knappe, R. S. Summers, and S. M. Cook. 2016. “Environmental comparison of biochar and activated carbon for tertiary wastewater treatment.” Environ. Sci. Technol. 50 (20): 11253–11262. https://doi.org/10.1021/acs.est.6b03239.
Titova, J., and E. Baltrėnaitė. 2020. “Physical and chemical properties of biochar produced from sewage sludge compost and plants biomass, fertilized with that compost, important for soil improvement.” Waste Biomass Valorization 12 (7): 3781–3800. https://doi.org/10.1007/s12649-020-01272-2.
Titova, J., E. Baltrėnaitė-Gedienė, A. Medyńska-Juraszek, and E. Bakšienė. 2020. “Leaching of potentially toxic elements from biochars intended for soil improvement.” Zemdirbyste-Agri. 107 (3): 235–242. https://doi.org/10.13080/z-a.2020.107.030.
Tumin, N. D., A. Luqman Chuah, Z. Z, and S. Abdul Rashid. 2008. “Adsorption of copper from aqueous solution by Elais Guineensis kernel activated carbon.” J. Eng. Sci. Technol. 3 (2): 180–189.
Uchimiya, M., S. Chang, and K. T. Klasson. 2011. “Screening biochars for heavy metal retention in soil: Role of oxygen functional groups.” J. Hazard. Mater. 190 (1–3): 432–441. https://doi.org/10.1016/j.jhazmat.2011.03.063.
Uchimiya, M., I. M. Lima, K. Thomas Klasson, S. Chang, L. H. Wartelle, and J. E. Rodgers. 2010. “Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil.” J. Agric. Food. Chem. 58 (9): 5538–5544. https://doi.org/10.1021/jf9044217.
Wang, S., Y. Xu, N. Norbu, and Z. Wang. 2018. “Remediation of biochar on heavy metal polluted soils.” IOP Conf. Ser.: Earth Environ. Sci. 108(4): 042113. https://doi.org/10.1088/1755-1315/108/4/042113.
Wang, S., and Z. H. Zhu. 2007. “Effects of acidic treatment of activated carbons on dye adsorption.” Dyes Pigm. 75 (2): 306–314. https://doi.org/10.1016/j.dyepig.2006.06.005.
Wang, T.-H., M.-H. Li, and S.-P. Teng. 2009. “Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite.” J. Hazard. Mater. 161 (1): 409–415. https://doi.org/10.1016/j.jhazmat.2008.03.112.
Wang, Z., X. Yu, B. Pan, and B. S. Xing. 2010. “Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes.” Environ. Sci. Technol. 44 (3): 978–984. https://doi.org/10.1021/es902775u.
Xu, X., X. Cao, and L. Zhao. 2013a. “Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars.” Chemosphere 92 (8): 955–961. https://doi.org/10.1016/j.chemosphere.2013.03.009.
Xu, X., X. Cao, L. Zhao, H. Wang, H. Yu, and B. Gao. 2013b. “Removal of Cu, Zn and Cd from aqueous solutions by the dairy manure-derived biochar.” Environ. Sci. Pollut. Res. 20 (1): 358–368. https://doi.org/10.1007/s11356-012-0873-5.
Yan, W., T. C. Acharjee, C. J. Coronella, and V. R. Vásquez. 2009. “Thermal pretreatment of lignocellulosic biomass.” Environ. Progress Sustainable Energy 28 (3): 435–440. https://doi.org/10.1002/ep.10385.
Zeferino, L. F., I. Gaubeur, M. E. V. Suárez-Iha, and P. A. M. Freitas. 2014. Adsorption of 5.5’-disulfonicindigotin (5.5’-DI) onto green coconut fiber (Cocos nucifera L.): Kinetic and Isotherms.” J. Encapsulation Adsorpt. Sci. 4 (2): 37–52. https://doi.org/10.4236/jeas.2014.42005.
Zhang, H., F. Xu, J. Xue, S. Chen, J. Wang, and Y. Yang. 2020. “Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism.” Sci. Rep. 10 (1): 1–13. https://doi.org/10.1038/s41598-020-63000-z.
Zhao, J. J., X.-J. Shen, X. Domene, J.-M. Alcaniz, X. Liao, and C. Palet. 2019. “Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions.” Sci. Rep. 9 (1): 1–12.
Zheng, R., Z. Chen, C. Cai, B. Tie, X. Liu, B. J. Reid, Q. Huang, M. Lei, G. Sun, and E. Baltrėnaitė. 2015. “Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—A field experiment in Hunan, China.” Environ. Sci. Pollut. Res. 22 (14): 11097–11108. https://doi.org/10.1007/s11356-015-4268-2.
Zhou, D., D. Liu, F. Gao, M. Li, and X. Luo. 2017. “Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils.” Int. J. Environ. Res. Public Health 14 (7): 681. https://doi.org/10.3390/ijerph14070681.
Zwain, H. M., M. Vakili, and I. Dahlan. 2014. “Waste material for zinc removal from wastewater: A comprehensive review.” Int. J. Chem. Eng. 2014: 13. https://doi.org/10.1155/2014/347912.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 12December 2021

History

Received: Sep 29, 2020
Accepted: Jun 6, 2021
Published online: Sep 20, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 20, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Edita Baltrėnaitė-Gedienė, Ph.D. [email protected]
Professor and Chief Researcher, Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Saulėtekio al. 11, Vilnius LT-10223, Lithuania. Email: [email protected]
Junior Researcher, Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Saulėtekio al. 11, Vilnius LT-10223, Lithuania. ORCID: https://orcid.org/0000-0003-2461-4536. Email: [email protected]
Jelena Ankuda, Ph.D. [email protected]
Junior Researcher, Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Saulėtekio al. 11, Vilnius LT-10223, Lithuania (corresponding author). Email: [email protected]
Eglė Marčiulaitienė, Ph.D. [email protected]
Associate Professor and Senior Researcher, Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Saulėtekio al. 11, Vilnius LT-10223, Lithuania. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share