Abstract

Low impact development (LID) practices contribute to the reduction of flooding and improvement of water quality. Water crises may be a result of water scarcity and flooding due to climatic changes and the increase of impervious areas, and thus, stormwater harvesting becomes a sustainable alternative solution for relative water problems. The performance of a bioretention system with the submerged zone (SZ) and unsaturated zone (USZ) was evaluated as an alternative for stormwater harvesting. The study was carried out on a laboratory scale, using a bioretention box to simulate the processes that occur in a real system and in the field. The system was efficient in removing TP (68.5% and 76.5%), COD (71.6% and 56.9%), and NO2 (28% and 16.6%) in USZ and SZ events, respectively. NH3 removal (31%) occurred only at SZ events. NO3 was exported at all events tested but at values below the Brazilian CONAMA Resolution 357/2005 on the quality of water bodies for supply. The bioretention effluent showed relatively high values of turbidity; however, the pH parameter presented good values in all experiments (>6.5 and <7.5), and E. coli only in some cases presented satisfactory values to meet the Brazilian Standard for Rainwater Usage for nonpotable purposes (<200  MPN/100  mL). In general, both configurations provide different improvements for stormwater to support sustainable water resources management. This study presents a comparison between bioretention systems with and without SZ as an initial proposal for the improvement in bioretention systems in Brazil; however, more experiments must be monitored, and new improvements should be tested for reaching restrictive water reuse purposes.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 2014/50848-9 Institutos Nacionais de Ciência e Tecnologia (INCT—II) (Climate Change, Water Security); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Programa de Excelência Acadêmica (PROEX) [Programa de Pós-Graduação em Engenharia Hidráulica e Saneamento (PPGSHS) EESC/Universiddade de São Paulo (USP)]; and Escola de Engenharia de São Carlos (FAPESP) 2017/26110-8—A New Generation of Compensatory Techniques for Urban Drainage: Recycling and Decentralized Alternatives for Water, Energy, and Food Security.

References

ABNT (Associação Brasileira de Normas Técnicas). 2019. NBR 15527: Aproveitamento de água de chuva de coberturas para fins não potáveis: Requisitos. [Brazilian Standard for Rainwater Usage for non-potable purposes: Requirements]. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
Admiraal, H., and A. Cornaro. 2020. “Future cities, resilient cities: The role of underground space in achieving urban resilience.” Underground Space 5 (3): 223–228. https://doi.org/10.1016/j.undsp.2019.02.001.
APHA (American Public Health Association). 2015. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Azevedo, F. S. 2019. “Biorretenção: Tecnologia alternativa para manejo de águas pluviais urbanas aplicada a João Pessoa, PB” [Bioretention system: Alternative technology for stormwater management applied to João Pessoa, PB]. Master thesis, Dept. of Civil and Environmental Engineering, Federal Univ. of Paraíba.
Barbassa, A. P. 1991. “Simulação do efeito da urbanização sobre a drenagem pluvial da cidade de São Carlos—SP” [Simulation of the effect of urbanization on the storm drainage of the city of Sao Carlos—SP]. [In Portuguese.] Ph.D. thesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo.
BRASIL. Portaria de consolidação n° 5. de 28 de setembro de. 2017. “Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde” [Consolidation of rules on health actions and services of the Unified Health System in Brazil]. [In Portuguese.] Accessed November 2020. https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017.pdf.
Chandrasena, G., T. Pham, E. Payne, A. Deletic, and D. McCarthy. 2014. “E. coli removal in laboratory scale stormwater biofilters: Influence of vegetation and submerged zone.” J. Hydrol. 519 (Part A): 814–822. https://doi.org/10.1016/j.jhydrol.2014.08.015.
Chandrasena, G., M. Shirdashtzadeh, Y. Li, A. Deletic, J. Hathaway, and D. McCarthy. 2017. “Retention and survival of E. coli in stormwater biofilters: Role of vegetation, rhizosphere microorganisms and antimicrobial filter media.” Ecol. Eng. 102 (May): 166–177. https://doi.org/10.1016/j.ecoleng.2017.02.009.
Dagenais, D., J. Brisson, and T. Fletcher. 2018. “The role of plants in bioretention systems; Does the science underpin current guidance?” Ecol. Eng. 120 (Sep): 532–545. https://doi.org/10.1016/j.ecoleng.2018.07.007.
Daniel Júnior, J. J. 2013. “Avaliação de uma biorretenção como estrutura sustentável de drenagem urbana” [Evaluation of a bioretention system as a sustainable drainage device]. Master thesis, Dept. of Sanitary and Environmental Engineering, Federal Univ. of Santa Maria.
Davis, A., W. Hunt, R. Traver, and M. Clar. 2009. “Bioretention technology: Overview of current practice and future needs.” J. Environ. Eng. 135 (3): 109–117. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:3(109).
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 2020. “Condições Meteorológicas Estação da Embrapa Pecuária Sudeste” [Meteorological conditions station of Southern Embrapa Pecuária]. [In Portuguese.] Accessed June 1, 2020. http://www.cppse.embrapa.br/meteorologia/index.php?pg=caracterizacao.
EPA (Environmental Protection Agency). 2012. Guidelines for water reuse. Washington, DC: USEPA, Office of Wastewater Management.
Erickson, A., P. Weiss, and J. Gulliver. 2013. Optimizing stormwater treatment practices. New York: Springer.
Feng, W., B. Hatt, D. McCarthy, T. Fletcher, and A. Deletic. 2012. “Biofilters for stormwater harvesting: Understanding the treatment performance of key metals that pose a risk for water use.” Environ. Sci. Technol. 46 (9): 5100–5108. https://doi.org/10.1021/es203396f.
Field, C. B., V. Barros, T. F. Stocker, and Q. Dahe, eds. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK: Cambridge University Press.
Fletcher, T., et al. 2014. “SUDS, LID, BMPs, WSUD and more: The evolution and application of terminology surrounding urban drainage.” Urban Water J. 12 (7): 525–542. https://doi.org/10.1080/1573062X.2014.916314.
Fletcher, T., H. Andrieu, and P. Hamel. 2013. “Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art.” Adv. Water Resour. 51 (Jan): 261–279. https://doi.org/10.1016/j.advwatres.2012.09.001.
Galavoti, R. C. 2011. “Proposta de um modelo de gestão integrada de águas urbanas em escala de lote residencial: Alcances e limitações” [Proposal for an integrated urban water management model on a residential lot scale: Scope and limitations]. [In Portuguese.] Ph.D. thesis, São Carlos School of Engineering, University of Sao Paulo.
Goonetilleke, A., et al. 2017. “Stormwater reuse, a viable option: Fact or fiction?” Econ. Anal. Policy 56: 14–17. https://doi.org/10.1016/j.eap.2017.08.001.
Hunt, W., A. Davis, and R. Traver. 2012. “Meeting hydrologic and water quality goals through targeted bioretention design.” J. Environ. Eng. 138 (6): 698–707. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000504.
Hunt, W., B. Lord, B. Loh, and A. Sia. 2015. Plant selection for bioretention systems and stormwater treatment practices. Springer briefs in water science and technology. New York: Springer.
Jiang, C., J. Li, H. Li, and Y. Li. 2019. “Nitrogen retention and purification efficiency from rainfall runoff via retrofitted bioretention cells.” Sep. Purif. Technol. 220 (Aug): 25–32. https://doi.org/10.1016/j.seppur.2019.03.036.
Kandel, S., J. Vogel, C. Penn, and G. Brown. 2017. “Phosphorus retention by fly ash amended filter media in aged bioretention cells.” Water 9 (10): 746. https://doi.org/10.3390/w9100746.
Kim, M., C. Sung, M. Li, and K. Chu. 2012. “Bioretention for stormwater quality improvement in Texas: Removal effectiveness of Escherichia coli.” Sep. Purif. Technol. 84 (Jan): 120–124. https://doi.org/10.1016/j.seppur.2011.04.025.
Lau, A., D. Tsang, N. Graham, Y. Ok, X. Yang, and X. Li. 2017. “Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater.” Chemosphere 169 (Feb): 89–98. https://doi.org/10.1016/j.chemosphere.2016.11.048.
Li, G., J. Xiong, J. Zhu, Y. Liu, and M. Dzakpasu. 2021. “Design influence and evaluation model of bioretention in rainwater treatment: A review.” Sci. Total Environ. 787 (Sep): 147592. https://doi.org/10.1016/j.scitotenv.2021.147592.
Li, J., and A. Davis. 2016. “A unified look at phosphorus treatment using bioretention.” Water Res. 90 (Mar): 141–155. https://doi.org/10.1016/j.watres.2015.12.015.
Lim, K., A. Hamilton, and S. Jiang. 2015. “Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications.” Sci. Total Environ. 523 (Aug): 95–108. https://doi.org/10.1016/j.scitotenv.2015.03.077.
Lucas, W., and M. Greenway. 2008. “Nutrient retention in vegetated and nonvegetated bioretention mesocosms.” J. Irrig. Drain. Eng. 134 (5): 613–623. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(613).
Luo, Y., X. Yue, Y. Duan, A. Zhou, Y. Gao, and X. Zhang. 2020. “A bilayer media bioretention system for enhanced nitrogen removal from road runoff.” Sci. Total Environ. 705 (Feb): 135893. https://doi.org/10.1016/j.scitotenv.2019.135893.
Ma, Y., W. He, H. Zhao, J. Zhao, X. Wu, W. Wu, X. Li, and C. Yin. 2019. “Influence of low impact development practices on urban diffuse pollutant transport process at catchment scale.” J. Cleaner Prod. 213 (Mar): 357–364. https://doi.org/10.1016/j.jclepro.2018.12.198.
Macedo, M. B. 2020. “Decentralized urban runoff recycling facility addressing the security of the water-energy-food nexus.” Ph.D. thesis, São Carlos School of Engineering, Univ. of Sao Paulo.
Macedo, M. B., C. A. F. do Lago, and E. M. Mendiondo. 2019a. “Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment.” Sci. Total Environ. 647 (Jan): 923–931. https://doi.org/10.1016/j.scitotenv.2018.08.002.
Macedo, M. B., C. A. F. do Lago, E. M. Mendiondo, and M. Giacomoni. 2019b. “Bioretention performance under different rainfall regimes in subtropical conditions: A case study in São Carlos, Brazil.” J. Environ. Manage. 248 (Oct): 109266. https://doi.org/10.1016/j.jenvman.2019.109266.
Maglionico, M. 1998. “Indagine sperimentale e simulazione numerica degli aspetti qualitativi dei deflussi nelle reti di drenaggio urbano” [Experimental investigation and numerical simulation of the qualitative aspects of outflows in urban drainage networks]. [In Italian.] Ph.D. thesis, Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna.
Martins, R. G. 2017. “Modelagem da carga de poluição difusa em escala de bacia com valores de concentração média por evento a partir de dados de uma rede de monitoramento local” [Modeling of diffuse pollution load on a basin scale with average concentration values per event from data from a local monitoring network]. [In Portuguese.] Ph.D. thesis, São Carlos School of Engineering, Univ. of Sao Paulo.
Mei, Y., H. Zhou, X. Zhu, P. Zhang, X. Li, Y. Zuo, X. M. Wang, and J. J. Bao. 2020. “Isothermal adsorption characteristics of bioretention media for fecal Escherichia coli.” Thermal Sci. 24 (4): 2427–2436. https://doi.org/10.2298/TSCI2004427M.
Melo, T., A. Coutinho, J. Cabral, A. Antonino, and J. Cirilo. 2014. “Jardim de chuva: Sistema de biorretenção para o manejo das águas pluviais urbanas” [Rain garden: Bioretention system for urban stormwater management]. [In Portuguese.] Ambiente Construído 14 (4): 147–165. https://doi.org/10.1590/S1678-86212014000400011.
NRMMC (Natural Resource Management Ministerial Council). 2008. Australian guidelines for water recycling: Managing health and environmental risks (Phase 2): Augmentation of drinking water supplies, environment protection and heritage council, national health and medical research council. Washington, DC: NRMMC.
Osman, M., K. Wan Yusof, H. Takaijudin, H. Goh, M. Abdul Malek, N. Azizan, and S. I. Abdurrasheed. 2019. “A review of nitrogen removal for urban stormwater runoff in bioretention system.” Sustainability 11 (19): 5415. https://doi.org/10.3390/su11195415.
Osman Akan, A. 2013. “Preliminary design aid for bioretention filters.” J. Hydrol. Eng. 18 (3): 318–323. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000554.
Payne, E., D. McCarthy, A. Deletic, and K. Zhang. 2019. “Biotreatment technologies for stormwater harvesting: Critical perspectives.” Curr. Opin. Biotechnol. 57 (Jun): 191–196. https://doi.org/10.1016/j.copbio.2019.04.005.
Payne, E., T. Pham, A. Deletic, B. Hatt, P. Cook, and T. Fletcher. 2018. “Which species? A decision-support tool to guide plant selection in stormwater biofilters.” Adv. Water Resour. 113 (Mar): 86–99. https://doi.org/10.1016/j.advwatres.2017.12.022.
Roy-Poirier, A., P. Champagne, and Y. Filion. 2010. “Review of bioretention system research and design: Past, present, and future.” J. Environ. Eng. 136 (9): 878–889. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000227.
Shen, P., A. Deletic, K. Bratieres, and D. McCarthy. 2020. “Real time control of biofilters delivers stormwater suitable for harvesting and reuse.” Water Res. 169 (Feb): 115257. https://doi.org/10.1016/j.watres.2019.115257.
Shirdashtzadeh, M., G. Chandrasena, R. Henry, and D. McCarthy. 2017. “Plants that can kill; Improving E. coli removal in stormwater treatment systems using Australian plants with antibacterial activity.” Ecol. Eng. 107 (Oct): 120–125. https://doi.org/10.1016/j.ecoleng.2017.07.009.
Shrestha, P., S. Hurley, and B. Wemple. 2018. “Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems.” Ecol. Eng. 112 (Mar): 116–131. https://doi.org/10.1016/j.ecoleng.2017.12.004.
Silveira, A., and J. Goldenfum. 2007. “Metodologia Generalizada para Pré-Dimensionamento de Dispositivos de Controle Pluvial na Fonte” [Generalized methodology for pre-sizing of rain control devices at source]. [In Portuguese.] Revista Brasileira De Recursos Hídricos 12 (2): 157–168. https://doi.org/10.21168/rbrh.v12n2.p157-168.
Simonovic, S. 2017. “Bringing future climatic change into water resources management practice today.” Water Resour. Manage. 31 (10): 2933–2950. https://doi.org/10.1007/s11269-017-1704-8.
Simonovic, S., and A. Peck. 2013. “Dynamic resilience to climate change caused natural disasters in coastal megacities quantification framework.” Br. J. Environ. Clim. Change 3 (3): 378–401. https://doi.org/10.9734/BJECC/2013/2504.
Søberg, L., R. Winston, M. Viklander, and G. Blecken. 2019. “Dissolved metal adsorption capacities and fractionation in filter materials for use in stormwater bioretention facilities.” Water Res X 4 (Aug): 100032. https://doi.org/10.1016/j.wroa.2019.100032.
Souza, C., M. Cruz, and C. Tucci. 2012. “Desenvolvimento Urbano de Baixo Impacto: Planejamento e Tecnologias Verdes para a Sustentabilidade das Águas Urbanas” [Low impact urban development: Planning and green technologies for urban water sustainability]. [In Portuguese.] Revista Brasileira De Recursos Hídricos 17 (2): 9–18. https://doi.org/10.21168/rbrh.v17n2.p9-18.
Stott, R., K. Tondera, G. T. Blecken, and C. Schreiber. 2018. “Microbial loads and removal efficiency under varying flows.” In Ecotechnologies for the treatment of variable stormwater and wastewater flows. SpringerBriefs in water science and technology, edited by K. Tondera, G. T. Blecken, F. Chazarenc, and C. Tanner. Cham, Switzerland: Springer.
Trowsdale, S., and R. Simcock. 2011. “Urban stormwater treatment using bioretention.” J. Hydrol. 397 (3–4): 167–174. https://doi.org/10.1016/j.jhydrol.2010.11.023.
UN (United Nations). 2020. “The 17 goals.” Accessed April 2021. https://sdgs.un.org/goals.
Vijayaraghavan, K., et al. 2021. “Bioretention systems for stormwater management: Recent advances and future prospects.” J. Environ. Manage. 292 (Aug): 112766. https://doi.org/10.1016/j.jenvman.2021.112766.
Wan, Z., T. Li, and Z. Shi. 2017. “A layered bioretention system for inhibiting nitrate and organic matters leaching.” Ecol. Eng. 107 (Oct): 233–238. https://doi.org/10.1016/j.ecoleng.2017.07.040.
Wang, M., D. Zhang, Y. Li, Q. Hou, Y. Yu, J. Qi, W. Fu, J. Dong, and Y. Cheng. 2018. “Effect of a submerged zone and carbon source on nutrient and metal removal for stormwater by bioretention cells.” Water 10 (11): 1629. https://doi.org/10.3390/w10111629.
Xiong, J., S. Ren, Y. He, X. Wang, X. Bai, J. Wang, and M. Dzakpasu. 2019. “Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment.” Chemosphere 237 (Dec): 124424. https://doi.org/10.1016/j.chemosphere.2019.124424.
Yoshizaki, H. T. Y., C. A. M. Rodriguez, and L. Ciccotti. 2019. “Riscos e Desastres: Caminhos para o Desenvolvimento Sustentável” [Risks and Disasters: Pathways to. In Sustainable Development]. [In Portuguese.] São Carlos, Brazil: RiMa Editora.
You, Z., L. Zhang, S. Pan, P. Chiang, S. Pei, and S. Zhang. 2019. “Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff.” Water Res. 161 (Sep): 61–73. https://doi.org/10.1016/j.watres.2019.05.105.
Zhang, K., A. Randelovic, L. Aguiar, D. Page, D. McCarthy, and A. Deletic. 2015. “Methodologies for pre-validation of biofilters and wetlands for stormwater treatment.” PLoS One 10 (5): e0125979. https://doi.org/10.1371/journal.pone.0125979.
Zinger, Y., G. Blecken, T. Fletcher, M. Viklander, and A. Deletić. 2013. “Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone.” Ecol. Eng. 51 (Feb): 75–82. https://doi.org/10.1016/j.ecoleng.2012.12.007.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 12December 2021

History

Received: Feb 1, 2021
Accepted: Jul 29, 2021
Published online: Sep 20, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 20, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher, Hydraulic Engineering and Sanitation, Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-7841-046X. Email: [email protected]
Marina Batalini de Macedo [email protected]
Researcher, Hydraulic Engineering and Sanitation, Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil. Email: [email protected]
Tassiana Halmenschlager Oliveira [email protected]
Researcher, Hydraulic Engineering and Sanitation, Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil. Email: [email protected]
Cesar Ambrogi Ferreira do Lago [email protected]
Researcher, Hydraulic Engineering and Sanitation, Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil. Email: [email protected]
Marcus Nóbrega Gomes Jr., S.M.ASCE [email protected]
Researcher, Hydraulic Engineering and Sanitation, Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil; Researcher, Dept. Civil and Environmental Engineering, Univ. of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249. Email: [email protected]
Researcher, Hydraulic Engineering and Sanitation, Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 13566-590, Brazil. ORCID: https://orcid.org/0000-0002-0331-0122. Email: [email protected]
Eduardo Mario Mendiondo [email protected]
Professor, Hydraulic Engineering and Sanitation Dept.,Univ. of Sao Paulo, Av. Trabalhador Saocarlense, 400 CP 359 São Carlos, SP CEP 3566-590, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Modeling Framework for Bioretention Analysis: Assessing the Hydrologic Performance under System Uncertainty, Journal of Hydrologic Engineering, 10.1061/JHYEFF.HEENG-5705, 28, 9, (2023).
  • Evaluating bioretention scale effect on stormwater retention and pollutant removal, Environmental Science and Pollution Research, 10.1007/s11356-022-23237-9, 30, 6, (15561-15574), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share