Abstract

Fouling remains a critical barrier for the continued development of forward-osmosis (FO) membrane bioreactor technology (MBR). Thermal osmotic backwashing at 23°C, 60°C, and 80°C, coupled air scouring, and the impact of frequency and duration of ambient (23°C) osmotic backwashing were evaluated as nonchemical methods for mitigation and removal of biological fouling in an FO-MBR. Results demonstrate that backwashing at elevated temperatures increases the immediate water flux recovery by 7% but does not provide mid- or long-term productivity improvements when compared to ambient temperature backwashing. Constant air scouring was the most effective for minimizing fouling in a bench-scale FO-MBR process; however, a full-scale energy analysis revealed that the high capital and operating costs of constant scouring outweigh the water productivity gains observed. Optimization of ambient backwashing duration and frequency was the most economically efficient FO-MBR fouling mitigation approach.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request (numerical data).

Acknowledgments

This work was supported in part by the Strategic Environmental Research and Development Program (SERDP ER-2237) to S. R. Hiibel and by a Nevada Undergraduate Research Award to D. J. Satterfield. The authors would like to acknowledge Mark Lattin, Christopher Morrow, and Justin LaRue for their support.

References

Achilli, A., T. Y. Cath, E. A. Marchand, and A. E. Childress. 2009. “The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes.” Desalination 239 (1–3): 10–21. https://doi.org/10.1016/j.desal.2008.02.022.
Ang, W. L., A. Wahab Mohammad, D. Johnson, and N. Hilal. 2019. “Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade.” J. Water Process Eng. 31 (Oct): 100886. https://doi.org/10.1016/j.jwpe.2019.100886.
Beloin, C., K. Michaelis, K. Lindner, P. Landini, J. Hacker, J. M. Ghigo, and U. Dobrindt. 2006. “The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli.” J Bacteriol. 188 (4): 1316–1331. https://doi.org/10.1128/JB.188.4.1316-1331.2006.
Brepols, C., H. Schäfer, and N. Engelhardt. 2010. “Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.” Water Sci. Technol. 61 (10): 2461–2468. https://doi.org/10.2166/wst.2010.179.
Cath, T. Y., A. E. Childress, and M. Elimelech. 2006. “Forward osmosis: Principles, applications, and recent developments.” J. Membr. Sci. 281 (1–2): 70–87. https://doi.org/10.1016/j.memsci.2006.05.048.
Ding, A., H. Liang, G. Li, N. Derlon, I. Szivak, E. Morgenroth, and W. Pronk. 2016. “Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water.” J. Membr. Sci. 510 (Jul): 382–390. https://doi.org/10.1016/j.memsci.2016.03.025.
Flemming, H. C., and J. Wingender. 2010. “The biofilm matrix.” Nat. Rev. Microbiol. 8 (9): 623–633. https://doi.org/10.1038/nrmicro2415.
Francis, L., O. Ogunbiyi, J. Saththasivam, J. Lawler, and Z. Liu. 2020. “A comprehensive review of forward osmosis and niche applications.” Environ. Sci. Water Res. Technol. 6 (8): 1986–2015.
Holloway, R. W., A. E. Childress, K. E. Dennett, and T. Y. Cath. 2007. “Forward osmosis for concentration of anaerobic digester centrate.” Water Res. 41 (17): 4005–4014. https://doi.org/10.1016/j.watres.2007.05.054.
Huy Tran, V., S. Lim, M. Jun Park, D. Suk Han, S. Phuntsho, H. Park, H. Matsuyama, and H. Kyong Shon. 2020. “Fouling and performance of outer selective hollow fiber membrane in osmotic membrane bioreactor: Cross flow and air scouring effects.” Bioresour. Technol. 295 (Jan): 122303. https://doi.org/10.1016/j.biortech.2019.122303.
Ioannou-Ttofa, L., S. Foteinis, E. Chatzisymeon, and D. Fatta-Kassinos. 2016. “The environmental footprint of a membrane bioreactor treatment process through life cycle analysis.” Sci. Total Environ. 568 (Oct): 306–318. https://doi.org/10.1016/j.scitotenv.2016.06.032.
Jin, X., J. Shan, C. Wang, J. Wei, and C. Y. Tang. 2012. “Rejection of pharmaceuticals by forward osmosis membranes.” J. Hazard. Mater. 227–228 (Aug): 55–61. https://doi.org/10.1016/j.jhazmat.2012.04.077.
Krzeminski, P., J. H. J. M. van der Graaf, and J. B. van Lier. 2012. “Specific energy consumption of membrane bioreactor (MBR) for sewage treatment.” Water Sci. Technol. 65 (2): 380–392. https://doi.org/10.2166/wst.2012.861.
Lee, D., and M. Hsieh. 2019. “Forward osmosis membrane processes for wastewater bioremediation: Research needs.” Bioresour. Technol. 290 (Jun): 121795. https://doi.org/10.1016/j.biortech.2019.121795.
Lee, E., J. Kwon, H. Park, W. Hyun, H. Kim, A. Jang, W. H. Ji, H. Kim, and A. Jang. 2013. “Influence of sodium hypochlorite used for chemical enhanced backwashing on biophysical treatment in MBR.” Desalination 316 (May): 104–109. https://doi.org/10.1016/j.desal.2013.02.003.
Le Gouellec, Y. A., and M. Elimelech. 2002. “Calcium sulfate (gypsum) scaling in nanofiltration of agricultural drainage water.” J. Membr. Sci. 205 (1–2): 279–291. https://doi.org/10.1016/S0376-7388(02)00128-X.
McCutcheon, J. R., R. L. McGinnis, and M. Elimelech. 2005. “A novel ammonia–carbon dioxide forward (direct) osmosis desalination process.” Desalination 174 (1): 1–11. https://doi.org/10.1016/j.desal.2004.11.002.
McGinnis, R. L., and M. Elimelech. 2007. “Energy requirements of ammonia–carbon dioxide forward osmosis desalination.” Desalination 207 (1–3): 370–382. https://doi.org/10.1016/j.desal.2006.08.012.
Membré, J. M., B. Leporq, M. Vialette, E. Mettler, L. Perrier, D. Thuault, and M. Zwietering. 2005. “Temperature effect on bacterial growth rate: Quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food.” Int. J. Food Microbiol. 100 (1–3): 179–186.
Meng, F., S. Zhang, Y. Oh, and Z. Zhou. 2017. “Fouling in membrane bioreactors: An updated review.” Water Res. 114 (May): 151–180. https://doi.org/10.1016/j.watres.2017.02.006.
Mi, B., and M. Elimelech. 2010. “Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents.” J. Membr. Sci. 348 (1–2): 337–345. https://doi.org/10.1016/j.memsci.2009.11.021.
Morrow, C. P., and A. E. Childress. 2019. “Evidence, determination, and implications of membrane-independent limiting flux in forward osmosis systems.” Environ. Sci. Technol. 53 (8): 4380–4388. https://doi.org/10.1021/acs.est.8b05925.
Morrow, C. P., N. M. Furtaw, J. R. Murphy, A. Achilli, E. A. Marchand, S. R. Hiibel, and A. E. Childress. 2018a. Integrating an aerobic/anoxic osmotic membrane bioreactor with membrane distillation for potable reuse. Amsterdam, Netherlands: Elsevier.
Morrow, C. P., A. L. McGaughey, S. R. Hiibel, and A. E. Childress. 2018b. “Submerged or sidestream? The influence of module configuration on fouling and salinity in osmotic membrane bioreactors.” J. Membr. Sci. 548 (Feb): 583–592. https://doi.org/10.1016/j.memsci.2017.11.030.
Nawaz, M. S., F. Parveen, S. J. Khan, and N. P. Hankins. 2019. “Impact of osmotic backwashing, particle size distribution and feed-side cross-flow velocity on flux in the forward osmosis membrane bioreactor (FO-MBR).” J. Water Process Eng. 31 (Oct): 100861. https://doi.org/10.1016/j.jwpe.2019.100861.
Phuntsho, S., S. Vigneswaran, J. Kandasamy, S. Hong, S. Lee, and H. K. Shon. 2012. “Influence of temperature in the performance of forward osmosis desalination process.” J. Membr. Sci. 415–416 (6): 734–744. https://doi.org/10.1016/j.memsci.2012.05.065.
Pradhan, M., S. Vigneswaran, J. Kandasamy, and R. Ben Aim. 2012. “Combined effect of air and mechanical scouring of membranes for fouling reduction in submerged membrane reactor.” Desalination 288 (Mar): 58–65. https://doi.org/10.1016/j.desal.2011.12.010.
Qin, J., K. A. Kekre, M. H. Oo, G. Tao, C. L. Lay, C. H. Lew, E. R. Cornelissen, and C. J. Ruiken. 2010. “Preliminary study of osmotic membrane bioreactor: Effects of draw solution on water flux and air scouring on fouling.” Water Sci. Technol. 62 (6): 1353–1360. https://doi.org/10.2166/wst.2010.426.
Raffin, M., E. Germain, and S. J. Judd. 2012. “Influence of backwashing, flux and temperature on microfiltration for wastewater reuse.” Sep. Purif. Technol. 96 (Aug): 147–153. https://doi.org/10.1016/j.seppur.2012.05.030.
Verrecht, B., T. Maere, I. Nopens, C. Brepols, and S. Judd. 2010. “The cost of a large-scale hollow fibre MBR.” Water Res. 44 (18): 5274–5283. https://doi.org/10.1016/j.watres.2010.06.054.
Wang, Z., J. Tang, C. Zhu, Y. Dong, Q. Wang, and Z. Wu. 2015. “Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment.” J. Membr. Sci. 475 (Feb): 184–192. https://doi.org/10.1016/j.memsci.2014.10.032.
Xiao, K., S. Liang, X. Wang, C. Chen, and X. Huang. 2019. “Current state and challenges of full-scale membrane bioreactor applications: A critical review.” Bioresour. Technol. 271 (Jan): 473–481. https://doi.org/10.1016/j.biortech.2018.09.061.
Yadav, S., I. Ibrar, S. Bakly, D. Khanafer, A. Altaee, V. C. Padmanaban, A. K. Samal, and A. H. Hawari. 2020. “Organic fouling in forward osmosis: A comprehensive review.” Water 12 (1505): 1–25. https://doi.org/10.3390/w12051505.
Yu, Y., S. Lee, and S. K. Maeng. 2017. “Forward osmosis membrane fouling and cleaning for wastewater reuse.” J. Water Reuse Desalin. 7 (2): 111–120. https://doi.org/10.2166/wrd.2016.023.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 8August 2021

History

Received: Jan 8, 2021
Accepted: Apr 2, 2021
Published online: Jun 8, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 8, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Derrick J. Satterfield
Graduate Student, Dept. of Chemical and Materials Engineering, Univ. of Nevada, Reno, 1664 N. Virginia St./MS 388, Reno, NV 89557.
Undergraduate Student, Dept. of Chemical and Materials Engineering, Univ. of Nevada, Reno, 1664 N. Virginia St./MS 388, Reno, NV 89557. ORCID: https://orcid.org/0000-0002-9505-8568
Undergraduate Student, Dept. of Chemical and Materials Engineering, Univ. of Nevada, Reno, 1664 N. Virginia St./MS 388, Reno, NV 89557. ORCID: https://orcid.org/0000-0002-2406-5277
Assistant Professor, Dept. of Chemical and Materials Engineering, Univ. of Nevada, Reno, 1664 N. Virginia St./MS 388, Reno, NV 89557 (corresponding author). ORCID: https://orcid.org/0000-0001-5075-8934. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share