Abstract

A biodigester consists of a closed chamber to anaerobically digest biomass into biogas and biofertilizer, and is an efficient alternative for organic waste treatment and energy generation. The new interest in decentralizing waste treatment and the restricted space of urban centers makes compact biodigesters a feasible alternative for sustainable cities. This paper presents the compact and low-cost Hexagonal Methane Collector biodigester and its operational capacity to produce biogas. The factorial experimental design results indicate that the volume of inoculum and mixture inside the reactor are important in controlling biogas yield, but the volume of water is not. The findings indicate that this novel biodigester technology has a practical operational mode based on a batch dry system. The space-saving hexagonal shape and the flexible design, which can serve a variable number of people in small places are other advantages of Hexagonal Methane Collector compared with available models. Therefore, this concept of biodigester could be an important tool to integrate organic waste treatment and energy sustainability goals in increasingly populated urban centers.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published paper.

Acknowledgments

The authors thank Professor David Vilas Boas de Campos and the Laboratory of Soil and Plant Analysis/EMBRAPA SOLOS for Nitrogen and Carbon analysis. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Finance Code 001. The authors are grateful for the support from the Multi-user Facility for Greenhouse Gases and Volatile Fuels at the Fluminense Federal University (GAS-UFF).

References

Ahamed, A., K. Yin, B. J. H. Ng, F. Ren, V. W.-C. Chang, and J.-Y. Wang. 2016. “Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives.” J. Cleaner Prod. 131 (Sep): 607–614. https://doi.org/10.1016/j.jclepro.2016.04.127.
AOAC (Association of Official Analytical Chemists). 1990. Official methods of analysis. 15th ed. Washington, DC: AOAC.
Battista, F., et al. 2020. “Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts.” J. Chem. Technol. Biotechnol. 95 (2): 328–338. https://doi.org/10.1002/jctb.6096.
Behera, M., and M. M. Ghangrekar. 2017. “Optimization of operating conditions for maximizing power generation and organic matter removal in microbial fuel cell.” J. Environ. Eng. 143 (4): 04016090. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001179.
Clarke, W. P. 2018. “The uptake of anaerobic digestion for the organic fraction of municipal solid waste—Push versus pull factors.” Bioresour. Technol. 249 (Feb): 1040–1043. https://doi.org/10.1016/j.biortech.2017.10.086.
Curry, N., and P. Pillay. 2012. “Biogas prediction and design of a food waste to energy system for the urban environment.” Renew. Energy 41 (May): 200–209. https://doi.org/10.1016/j.renene.2011.10.019.
Deepanraj, B., N. Senthilkumar, and J. Ranjitha. 2019. “Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake.” Energy Sources Part A 1–8. https://doi.org/10.1080/15567036.2019.1636902.
Di Matteo, U., B. Nastasi, A. Albo, and D. A. Garcia. 2017. “Energy contribution of OFMSW (organic fraction of municipal solid waste) to energy-environmental sustainability in urban areas at small scale.” Energies 10 (2): 229. https://doi.org/10.3390/en10020229.
Enrich-Prast, A., A. Gaxiola, A. L. Santoro, J. Durán, A. Rodríguez, and H. Marotta. 2018. “Ciclos biogeoquímicos y cambios globales” [Biogeochemical cycles and global changes]. In Cambio Global: Una mirada desde Iberoamérica [Global change: A look from Latin America], edited by P. A. Marquet, F. Valladares, S. Magro, A. Gaxiola, and A. Enrich-Prast, 111–125. Madrid, Spain: Asociación Cultural y Científica Iberoamericana.
Forster-Carneiro, T., M. Pérez, and L. I. Romero. 2008. “Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste.” Bioresour. Technol. 99 (15): 6994–7002. https://doi.org/10.1016/j.biortech.2008.01.018.
Gu, Y., X. Chen, Z. Liu, X. Zhou, and Y. Zhang. 2014. “Effect of inoculums sources on the anaerobic digestion of rice straw.” Bioresour. Technol. 158 (Apr): 149–155. https://doi.org/10.1016/j.biortech.2014.02.011.
Gurjar, R., and M. Behera. 2020. “Treatment of organic fraction of municipal solid waste in bioelectrochemical systems: A review.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020018. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000505.
Jacyna, J., M. Kordalewska, and M. J. Markuszewski. 2019. “Design of experiments in metabolomics-related studies: An overview.” J. Pharm. Biomed. Anal. 164 (Feb): 598–606. https://doi.org/10.1016/j.jpba.2018.11.027.
Kaye, J. P., P. M. Groffman, N. B. Grimm, L. A. Baker, and R. V. Pouyat. 2006. “A distinct urban biogeochemistry?” Trends Ecol. Evol. 21 (4): 192–199. https://doi.org/10.1016/j.tree.2005.12.006.
Kelleher, M. 2001. “Anaerobic digestion facilities in Switzerland.” BioCycle 42 (10): 34–38.
Kong, X., S. Xu, J. Liu, H. Li, K. Zhao, and L. He. 2016. “Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization.” J. Environ. Manage. 166 (Jan): 31–37. https://doi.org/10.1016/j.jenvman.2015.10.002.
Le Quéré, C., et al. 2018. “Global carbon budget 2018.” Earth Syst. Sci. Data 10 (4): 2141–2194. https://doi.org/10.5194/essd-10-2141-2018.
Li, J., S. M. Zicari, Z. Cui, and R. Zhang. 2014. “Processing anaerobic sludge for extended storage as anaerobic digester inoculum.” Bioresour. Technol. 166 (Aug): 201–210. https://doi.org/10.1016/j.biortech.2014.05.006.
Li, Y., S. Y. Park, and J. Zhu. 2011. “Solid-state anaerobic digestion for methane production from organic waste.” Renewable Sustainable Energy Rev. 15 (1): 821–826. https://doi.org/10.1016/j.rser.2010.07.042.
Lissens, G., P. Vandevivere, L. De Baere, E. M. Biey, and W. Verstraete. 2001. “Solid waste digestors: Process performance and practice for municipal solid waste digestion.” Water Sci. Technol. 44 (8): 91–102. https://doi.org/10.2166/wst.2001.0473.
Liu, G., R. Zhang, H. M. El-Mashad, and R. Dong. 2009. “Effect of feed to inoculum ratios on biogas yields of food and green wastes.” Bioresour. Technol. 100 (21): 5103–5108. https://doi.org/10.1016/j.biortech.2009.03.081.
Liu, Y., H. Wang, and G. H. Tzeng. 2018. “From measure to guidance: Galactic model and sustainable development planning toward the best smart city.” J. Urban Plann. Dev. 144 (4): 04018035. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000478.
Lundstedt, T., E. Seifert, L. Abramo, B. Thelin, A. Nyström, J. Pettersen, and R. Bergman. 1998. “Experimental design and optimization.” Chemometr. Intell. Lab. Syst. 42 (1–2): 3–40. https://doi.org/10.1016/S0169-7439(98)00065-3.
Luo, L., W. Gong, L. Qin, Y. Ma, W. Ju, and H. Wang. 2018. “Influence of liquid- and solid-state coupling anaerobic digestion process on methane production of cow manure and rice straw.” J. Mater. Cycles Waste Manage. 20 (3): 1804–1812. https://doi.org/10.1007/s10163-018-0750-5.
Mokomele, T., L. C. Sousa, V. Balan, E. van Rensburg, B. E. Dale, and J. F. Görgens. 2019. “Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus.” Bioresour. Technol. 272 (Jan): 326–336. https://doi.org/10.1016/j.biortech.2018.10.049.
Moldan, B., S. Janoušková, and T. Hák. 2012. “How to understand and measure environmental sustainability: Indicators and targets.” Ecol. Indic. 17 (Jun): 4–13. https://doi.org/10.1016/j.ecolind.2011.04.033.
Monlau, F., C. Sambusiti, E. Ficara, A. Aboulkas, A. Barakataand, and H. Carrère. 2015. “New opportunities for agricultural digestate valorization: Current situation and perspectives.” Energy Environ. Sci. 8 (9): 2600–2621. https://doi.org/10.1039/C5EE01633A.
Nerini, F. F., et al. 2018. “Mapping synergies and trade-offs between energy and the Sustainable Development Goals.” Nat. Energy 3 (1): 10–15. https://doi.org/10.1038/s41560-017-0036-5.
Nieto, J. R., L. S. da Silva, V. Murtinho, C. Rigueiro, and A. Gonçalves. 2016. “Conceptual model for the sustainable rehabilitation of medium-size inner cities in Europe: Coimbra, Portugal.” J. Urban Plann. Dev. 142 (3): 04015023. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000303.
Nwaigwe, K. N., and C. C. Enweremadu. 2016. “Comparative analysis of a locally developed biogas digester using selected substrates.” In Vol. 1 of Proc., ASME 2016 10th Int. Conf. on Energy Sustainability and 14th Int. Conf. on Fuel Cell Science, Engineering and Technology. New York: ASME. https://doi.org/10.1115/ES2016-59047.
Rajendran, K., S. Aslanzadeh, F. Johansson, and M. J. Taherzadeh. 2013. “Experimental and economical evaluation of a novel biogas digester.” Energy Convers. Manage. 74 (Oct): 183–191. https://doi.org/10.1016/j.enconman.2013.05.020.
Rajendran, K., S. Aslanzadeh, and M. J. Taherzadeh. 2012. “Household biogas digesters—A review.” Energies 5 (8): 2911–2942. https://doi.org/10.3390/en5082911.
Ramana, M. V., V. Ramanathan, Y. Feng, S.-C. Yoon, S.-W. Kim, G. R. Carmichael, and J. J. Schauer. 2010. “Warming influenced by the ratio of black carbon to sulphate and the black-carbon source.” Nat. Geosci. 3 (8): 542–545. https://doi.org/10.1038/ngeo918.
Shahabadi, S. M. S., and A. Reyhani. 2014. “Optimization of operating conditions in ultrafiltration process for produced water treatment via the full factorial design methodology.” Sep. Purif. Technol. 132 (Aug): 50–61. https://doi.org/10.1016/j.seppur.2014.04.051.
Shewa, W. A., A. Hussain, R. Chandra, J. Lee, S. Saha, and H.-S. Lee. 2020. “Valorization of food waste and economical treatment: Effect of inoculation methods.” J. Cleaner Prod. 261 (Jul): 121170. https://doi.org/10.1016/j.jclepro.2020.121170.
Silva, D. J., and A. C. Queiroz. 2002. Análise de alimentos: métodos químicos e biológicos [Food analysis: Chemical and biological methods]. 2nd ed. Viçosa, Brazil: Universidade Federal de Viçosa.
Surendra, K. C., D. Takara, A. G. Hashimoto, and S. K. Khanal. 2014. “Biogas as a sustainable energy source for developing countries: Opportunities and challenges.” Renewable Sustainable Energy Rev. 31 (Mar): 846–859. https://doi.org/10.1016/j.rser.2013.12.015.
Syaichurrozi, I. 2018. “Biogas production from co-digestion Salvinia molesta and rice straw and kinetics.” Renew. Energy 115 (Jan): 76–86. https://doi.org/10.1016/j.renene.2017.08.023.
Thiriet, P., T. Bioteau, and A. Tremier. 2020. “Optimization method to construct micro-anaerobic digesters networks for decentralized biowaste treatment in urban and peri-urban areas.” J. Cleaner Prod. 243 (Jan): 118478. https://doi.org/10.1016/j.jclepro.2019.118478.
Thompson, N., and J. Yang. 2015. “Developing affordable and sustainable housing through energy, transport, and building utility integration.” J. Urban Plann. Dev. 141 (4): 04014037. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000244.
Vassileva, I., J. Campillo, and S. Schwede. 2017. “Technology assessment of the two most relevant aspects for improving urban energy efficiency identified in six mid-sized European cities from case studies in Sweden.” Appl. Energy 194 (May): 808–818. https://doi.org/10.1016/j.apenergy.2016.07.097.
Walker, M., H. Theaker, R. Yaman, D. Poggio, W. Nimmo, A. Bywater, G. Blanch, and M. Pourkashanian. 2017. “Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK.” Waste Manage. 61 (Mar): 258–268. https://doi.org/10.1016/j.wasman.2017.01.036.
Wang, X., M. Guo, R. H. E. M. Koppelaar, K. H. Van Dam, C. P. Triantafyllidis, and N. A. Shah. 2018. “Nexus approach for sustainable urban energy-water-waste systems planning and operation.” Environ. Sci. Technol. 52 (5): 3257–3266. https://doi.org/10.1021/acs.est.7b04659.
Yildiz, S., S. Kivrak, and G. Arslan. 2019. “Contribution of built environment design elements to the sustainability of urban renewal projects: Model proposal.” J. Urban Plann. Dev. 145 (1): 04018045. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000493.
Zhang, R., H. M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, and P. Gamble. 2007. “Characterization of food waste as feedstock for anaerobic digestion.” Bioresour. Technol. 98 (4): 929–935. https://doi.org/10.1016/j.biortech.2006.02.039.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 2February 2021

History

Received: Jun 10, 2020
Accepted: Oct 5, 2020
Published online: Dec 15, 2020
Published in print: Feb 1, 2021
Discussion open until: May 15, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Vinícius Oliveira de Araújo, C.Eng. [email protected]
Graduate Program in Biosystems Engineering, School of Engineering, Fluminense Federal Univ., Rua Passo da Pátria 156, São Domingos, Niterói, RJ 24210-253, Brazil. Email: [email protected]
Fernando Almeida Tavares Silva [email protected]
Physical Geography Laboratory, Dept. of Geography, Graduate Program in Geography, Fluminense Federal Univ., Av. Gal. Milton Tavares de Souza, s/n°, Niterói, RJ 24210-346, Brazil. Email: [email protected]
Humberto Marotta, D.Sc. [email protected]
Professor, Physical Geography Laboratory, Dept. of Geography, Graduate Program in Geography, Fluminense Federal Univ., Av. Gal. Milton Tavares de Souza, s/n°, Niterói, RJ 24210-346, Brazil; Ecosystems and Global Change Laboratory/International Laboratory of Global Change, Biomass and Water Management Research Center, Graduate Program in Geosciences (Environmental Geochemistry), Fluminense Federal Univ., Av. Edmundo March, s/n°, Niterói, RJ 24210-310, Brazil. Email: [email protected]
Jonni Guiller Ferreira Madeira, D.Sc. https://orcid.org/0000-0001-5676-1720 [email protected]
Professor, Dept. of Mechanical Engineering, Federal Center of Technological Education of Rio de Janeiro, Rua Areal 522 – Parque Mambucaba, Angra dos Reis, RJ 23953-030, Brazil. ORCID: https://orcid.org/0000-0001-5676-1720. Email: [email protected]
Carla Aparecida Florentino Rodrigues, D.Sc. [email protected]
Professor, Faculty of Veterinary, Fluminense Federal Univ., Rua Vital Brasil 64, Santa Rosa, Niterói, RJ 24230-340, Brazil. Email: [email protected]
Dirlane de Fátima do Carmo, D.Sc. [email protected]
Professor, Dept. of Agricultural and Environmental Engineering, Graduate Program in Biosystems Engineering, School of Engineering, Fluminense Federal Univ., Rua Passo da Pátria 156, São Domingos, Niterói, RJ 24210-253, Brazil. Email: [email protected]
Professor, Laboratory of Microbial Technology, Dept. of Pharmaceutical Technology, Graduate Program in Biosystems Engineering, Graduate Program in Science and Biotechnology, Fluminense Federal Univ., Rua Mário Viana 523, Santa Rosa, Niterói, RJ 24241-000, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-9280-9397. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share