TECHNICAL PAPERS
Oct 1, 2007

Isolation, Characterization, and Identification of Bacteria from Activated Sludge and Soluble Microbial Products in Wastewater Treatment Systems

Publication: Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management
Volume 11, Issue 4

Abstract

Activated sludge process is the most widely used technology for municipal and industrial wastewater treatment. The microbial community of activated sludge is a mixed population of microorganisms containing many species of viruses, bacteria, protozoa, fungi, metazoa, and algae. This review focuses on the recent advances in microbiology of the activated sludge process. The bacterial population in activated sludge system is examined. The standard procedure, medium used, analytical methods and biochemical characterization techniques required for isolation, and identification of bacteria responsible for the key process of wastewater treatment systems (nutrient removal, aerobic, anaerobic, etc.) are discussed in the paper. The effect of seasonal (winter and summer) temperature variations and salinity variation on the bacterial species for wastewater treatment is examined. In addition, soluble microbial products (SMP) is one of the important factors that affects not only microbial activities, but consequently the quality of the effluents from biological wastewater treatment systems; the identification, characterization, significance, and implications of SMP in the context of activated sludge processes are also covered in this paper. Today, most modern wastewater treatment processes rely on the composition and activity of their microbial communities in activated sludges. Recent developments in molecular methods for analysis of the microbial communities have retriggered public interest in the microbiology of activated sludge. Whereas traditional approaches may have reached the point of diminishing returns, the molecular analysis has the potential to increase our understanding of the activated sludge process, and thereby improve the process control.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aggelis, G., Iconomou, D., Chritou, M., Bokas, D., Kotzailias, S., Christou, G., Tsagou, V., and Papanikolaou, S. (2003). “Phenolic removal in model olive oil mill wastewater using Pleyrotus ostreatus in bioreactor cultures and biological evaluation of the process.” Water Res., 37(16), 3897–3904.
Amann, R. I., Ludwig, W., and Schleifer, K.-H. (1995). “Phylogenetic identification and in situ detection of individual microbial cells without cultivation.” Microbiol. Rev., 59, 143–169.
Ansa-Asare, O., Marr, I., and Cresser, M. (2000). “Evaluation of modeled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic matter.” Water Res., 34, 1079–1088.
Aquino, S. F. (2004). “Formation of soluble microbial products (SMP) in anaerobic reactors during stress conditions.” Univ. of London and the diploma of Imperial College, London.
Aquino, S. F., and Stuckey, D. C. (2002). “Characterization of soluble microbial products (SMP) in effluents from anaerobic reactors.” Water Sci. Technol., 45(10), 127–132.
Aquino, S. F., and Stuckey, D. C. (2003). “Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency.” J. Environ. Eng., 129(11), 1007–1014.
Aquino, S. F., and Stuckey, D. C. (2004). “Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds.” Water Res., 38, 255–266.
Barker, D. J., Salvi, S. M. L., Langenhoff, A. A. M., and Stuckey, D. C. (2000). “Soluble microbial products in ABR treating low-strength wastewater.” J. Environ. Eng., 126(3), 239–249.
Barker, D. J., and Stuckey, D. C. (1999). “A review of soluble microbial products (SMP) in wastewater treatment systems.” Water Res., 33(14), 3063–3082.
Barker, D. J., and Stuckey, D. C. (2001). “Modeling of soluble microbial products in anaerobic digestion: The effect of feed strength and composition.” Water Environ. Res., 73(2), 173–184.
Barnard, J. L. (1976). “A review of biological phosphorus removal in the activated sludge process.” Water SA, 2(3), 136–144.
Beer, M., Seviour, E. M., Kong, Y., Cunningham, M., Blackall, L. L., and Seviour, R. J. (2002). “Phylogeny of the filamentous bacterium Eikelboom Type 1851, and design and application of a 16S rRNA targeted oligonucleotide probe for its fluorescence in situ identification in activated sludge.” FEMS Microbiol. Lett., 207, 179–183.
Blackall, L. L., Burrell, P. C., Gwilliam, H., Bradford, D., Bond, P. L., and Hugenholtz, P. (1998). “The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities.” Water Sci. Technol., 37(4–5), 451–454.
Blackall, L. L., Seviour, E. M., Bradford, D., Stratton, H. M., Cunningham, M. A., Hugenholtz, P., and Seviour, R. J. (1996a). “Towards understanding the taxonomy of some of the filamentous bacteria causing bulking and foaming in activated sludge plants.” Water Sci. Technol., 34(5–6), 137–144.
Blackall, L. L., Seviour, E. M., Cunningham, M. A., Seviour, R. J., and Hugenholtz, P. (1995). “‘Microthrix parvicella’ is a novel, deep branching member of the actinomycetes subphylum.” Syst. Appl. Microbiol., 17(4), 513–518.
Blackall, L. L., Stratton, H., Bradford, D., Dot, T. D., Rup, C. S., Seviour, E. M., and Seviour, R. J. (1996b). “‘Candidatus microthrix parvicella,’ a filamentous bacterium from activated sludge sewage treatment plants.” Int. J. Syst. Bacteriol., 46(1), 344–346.
Boero, V. J., Bowers, A. R., and Eckenfelder, W. W., Jr. (1996). “Molecular weight distribution of soluble microbial products in biological systems.” Water Sci. Technol., 34(5–6), 241–248.
Bond, P. L., Hugenholtz, P., Keller, J., and Blackall, L. L. (1995). “Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors.” Appl. Environ. Microbiol., 61(5), 1910–1916.
Borja, R., Alba, J., Mancha, A., Martin, A., Alonso, V., and Sanchez, E. (1998). “Comparative effect of different aerobic pretreatments on the kinetics and macroenergetic parameters of anaerobic digestion of olive mill wastewater in continuous mode.” Bioprocess Eng., 18(2), 127–134.
Bradford, D., Hugenholtz, P., Seviour, E. M., Cunningham, M. A., Stratton, H., Seviour, R. J., and Blackall, L. L. (1996). “16S rRNA analysis of isolates obtained from Gram-negative, filamentous bacteria micromanipulated from activated sludge.” Syst. Appl. Microbiol., 19(3), 334–343.
Carucci, A., Dionisi, D., Majone, M., Rolle, E., and Smurra, P. (2001). “Aerobic storage by activated sludge on real wastewater.” Water Res., 35(16), 3833–3844.
Chipasa, K. B., and Medrzycka, K. (2004a). “Adaptive response of microbial communities to soluble microbial products.” J. Ind. Microbiol. Biotechnol., 31, 384–390.
Chipasa, K. B., and Medrzycka, K. (2004b). “Behavior of microbial communities developed in the presence/reduced level of soluble microbial products.” J. Ind. Microbiol. Biotechnol., 31, 457–461.
Chudoba, J. (1985). “Inhibitory effect of refractory organic compounds produced by activated sludge microorganisms on microbial activity and flocculation.” Water Res., 19(2), 197–200.
Chun, J., Blackall, L. L., Kang, S. A. O., Hah, Y. C., and Goodfellow, M. (1997). “A proposal to reclassify Nocardia pinensis Blackall et al. as Skermania piniformis gen. nov., comb. nov.” Int. J. Syst. Bacteriol., 47(1), 127–131.
Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham,W. K. (1986). “Boichemical model for enhanced biiological phosphorus removal.” Water Res., 20(12), 1511–1521.
Confer, D. R., and Logan B. E. (1997a). “Molecular weight distribution of hydrolysis products during biodegration of model macromolecules in suspended and biofilm cultures. I. Bovine serum albumin.” Water Res., 39(9), 2127–2136.
Confer, D. R., and Logan B. E. (1997b). Molecular weight distribution of hydrolysis products during biodegration of model macromolecules in suspended and biofilm cultures. II. Dextran and dextrin.” Water Res., 31(9), 2137–2145.
Confer, D. R., and Logan B. E. (1998). “A conceptual model describing macromolecule degradation by suspended cultures and biofilms.” Water Sci. Technol., 37(4–5), 231–234.
Copkuner, G. (2002). “A new molecular technique for the identification of microorganisms in biological treatment plants: Fluorescent in situ hybridization.” Turk J. Biol., 26, 57–63.
Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J. R., Jenkins, D., and Blackall, L. L. (2000). “Identification of polyphosphate accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation.” Appl. Environ. Microbiol., 66, 1175–1182.
Das, Q., Chowdhury, J. U., and Anwar, M. N. (2004). “Isolation, purification and characterization of biodegradable polymer producing bacteria listeria murrayi.” Pakistan Journal of Biological Sciences, 7(11), 2018–2021.
Davenport, R. J., Curtis, T. P., Goodfellow, M., Stainsby, F. M., and Bingley, M. (2000). “Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants.” Appl. Environ. Microbiol., 66(3), 1158–1166.
de los Reyes, F. L., Ritter, W., and Raskin, L. (1997). “Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.” Appl. Environ. Microbiol., 63(3), 1107–1117.
de los Reyes, M. F., de los Reyes, F. L., III, Hernandez, M., and Raskin, L. (1998). “Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes.” Appl. Environ. Microbiol., 64(7), 2503–2512.
Dionisi, H. M., Layton, A. C., Harms, G., Gregory, I. R., Robinson, K. G., and Sayler, G. S. (2002). “Quantification of nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrospira spp. from full-scale wastewater treatment plants by competitive PCR.” Appl. Environ. Microbiol., 68(1), 245–253.
Drysdale, G., Kasan, H., and Bux, F. (1999). “Denitrification by heterotrophic bacteria during activated sludge treatment.” Water SA, 25(3), 357–362.
Eckenfelder, W. W., Argaman, Y., and Miller, E. (1988). “Process selection criteria for the biological treatment of industrial wastewaters.” American Institute of Chemical Engineers, AIChE, New York, 59C.
Eikelboom, D., and Geurkink, B. (2002). “Filamentous microorganisms observed in industrial activated sludge plants.” Water Sci. Technol., 46(1–2), 535–542.
Eikelboom, D. H. (1975). “Filamentous organisms observed in activated sludge.” Water Res., 9(4), 365–388.
Ekama, G. A., and Wentzel, M. C. (1999). “Denitrification kinetics in biological n and p removal activated sludge systems treating municipal wastewaters.” Water Sci. Technol., 39(6), 69–77.
Erhart, R., Bradford, D., Seviour, R. J., Amann, R., and Blackall, L. L. (1997). “Development and use of fluorescent in situ hybridization probes for the detection and identification of ‘Microthrix parvicella’ in activated sludge.” Syst. Appl. Microbiol., 20(2), 310–318.
Etchebehere, C., Errazquin, I. S., Barrandeguy, E., Dabert, P., Moletta, R., and Mux, L. A. (2001). “Evaluation of the denitrifying microbiota of anoxic reactors.” FEMS Microbiol. Ecol., 35, 259–265.
Fang, H. H. P., and Jia, X.-S. (1998). “Soluble microbial products (SMP) of acetotrophic methanogenesis.” Bioresour. Technol., 66, 235–239.
Fountoulakis, M. S., Dokianakis, S. N., Kornaros, M. E., Aggelis, G. G., and Lyberatos, G. (2002). “Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus.” Water Res., 36(16), 4735–4744.
Forster, S., Snape, J. R., Lappin-Scott, H. M., and Porter, J. (2002). “Simultaneous fluorescent Gram staining and activity assessment of activated sludge bacteria.” Appl. Environ. Microbiol., 68(10), 4772–4779.
Francis, F., III, d. l. R., and Raskin, L. (2002). “Role of filamentous microorganisms in activated sludge foaming: Relationship of mycolata levels to foaming initiation and stability.” Water Res., 36, 445–459.
Franta, J. H. B., Pribyl, M., Adamietz, E., and Wilderer, P. A. (1994). “Advanced biological treatment of papermill wastewaters; Effects of operation conditions on COD removal and production of soluble organic compounds in activated sludge systems.” Water Sci. Technol., 30(3), 199–207.
García García, I., Jimenez Pena, P. R., Bonilla Venceslada, J. L., Martin Martin, A., Martin Santos, M. A., and Ramos Gomez, E. (2000). “Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus, and Geotrichum candidum.” Process Biochem., 35(8), 751–758.
Gaudy, J. A. F., and Blachly, T. R. (1985). “A study of the biodegradability of residual COD.” J. Conn State Dent. Assoc., 57(4), 332–338.
Gonzalez, G., Herrera, G., Garcia, M. T., and Pena, M. (2001). “Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida.” Bioresour. Technol., 80(2), 137–142.
Grady, C. P. L. J., Daigger, G. T., and Lim, H. C. (1999). Biological wastewater treatment, Marcel Dekker, New York.
Hejzlar, J. and Chudoba, J. (1986). “Microbial polymers int he aquatic environment—I: Production by activated sludge microorganisms under different conditions.” Water Res., 20(10), 1209–1216.
Hoppe, H. (1976). “Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography.” Mar. Biol. (Berlin), 36, 291–302.
Huang, X., Liu, R., and Qian, Y. (2000). “Behaviour of soluble microbial products in a membrane bioreactor.” Process Biochem. (Oxford, U.K.), 36, 401–406.
Hugenholtz, P., Tyson, G. W., Webb, R. I., Wagner, A. M., and Blackall, L. L. (2001). “Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria, with no known pure-culture representatives.” Appl. Environ. Microbiol., 67(1), 411–419.
Jenkins, D., Richard, M., and Daigger, G. (1993). Manual on the causes and control of activated sludge bulking and foaming, 2nd Ed., Lewis Publishers.
Jetten, M. S., Wagner, M., Fuerst, J., Loosdrecht, M. V., Kuenen, G., and Strous, M. (2001). “Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process.” Curr. Opin. Microbiol., 12, 283–288.
Juretschko, S., Loy, A., Lehner, A., and Wagner, M. (2002). “The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach.” Syst. Appl. Microbiol., 25(1), 84–99.
Kallas, J., and Munter, R. (1994). “Posttreatment of pulp and paper industry wastewaters using oxidation and adsorption processes.” Water Sci. Technol., 29(5–6), 259–272.
Kampfer, P. (1995). “Physiological and chemotaxonomic characterization of filamentous bacteria belonging to the genus haliscomenobacter.” Syst. Appl. Microbiol., 18(3), 363–367.
Kämpfer, P. (1997). “Detection and cultivation of filamentous bacteria from activated sludge.” FEMS Microbiol. Ecol., 23(3), 169–181.
Kampfer, P., Weltin, D., Hoffmeister, D., and Dott, W. (1995). “Growth requirements of filamentous bacteria isolated from bulking and scumming sludge.” Water Res., 29(6), 1585–1588.
Kanagawa, T., Kamagata, Y., Aruga, S., Kohno, T., Horn, M., and Wagner, M. (2000). “Phylogenetic analysis of and oligonucleotide probe development for Eikelboom Type 021N filamentous bacteria isolated from bulking activated sludge.” Appl. Environ. Microbiol., 66, 5043–5052.
Kawaharasaki, M., Tanaka, M. H., Kanagawa, T., and Nakamura, K. (1999). “In situ identification of polyphosphate accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4 ,6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration.” Water Res., 33(1), 257–265.
Khan, S. T., and Hiraishi, A. (2001). “Isolation and characterization of a new poly(3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge.” FEMS Microbiol. Lett., 205, 253–257.
Kim, B. C., Park, J. H., and Gu, M. B. (2004). “Development of a DNA microarray chip for the identification of sludge bacteria using an unsequenced random genomic DNA hybridization method.” Environ. Sci. Technol., 38, 6767–6774.
Kim, M. H., Hao, O. J., and Wang, N. S. (1997). “Acinetobacter isolates from different activated sludge processes: Characteristics and neural network identification.” FEMS Microbiol. Ecol., 23(3), 217–227.
Kim, S. B., Goodfellow, M., Kelly, J., Saddler, G. S., and Ward, A. C. (2002). “Application of oligonucleotide probes for the detection of Thiothrix spp. in activated sludge plants treating paper and board mill wastes.” Water Sci. Technol., 46(1–2), 559–564.
Kitatsuji, K., Miyata, H., and Fukase, T. (1996). “Isolation of microorganisms that lyse filamentous bacteria and characterization of the lytic substance secreted by bacillus polymyxa.” J. Ferment. Bioeng., 82(4), 323–327.
Kjeldsen, K. U., Joulian, C., and Ingvorsen, K. (2004). “Oxygen tolerance of sulfate-reducing bacteria in activated sludge.” Environ. Sci. Technol., 38, 2038–2043.
Klatte, S., Rainey, F. A., and Kroppenstedt, R. M. (1994). “Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae lechevalier and lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov.” Int. J. Syst. Bacteriol., 44(4), 769–773.
Kuo, W.-C., and Parkin, G. F. (1996). “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties.” Water Res., 30(4), 915–922.
Kuo, W.-C., Sneve, M. A., and Parking, G. F. (1996). “Formation of soluble microbial products during anaerobic treatment.” Water Environ. Res., 68, 279–285.
Lajoie, C. A., Layton, A. C., Stapleton, R. D., Gregory, I. R., Meyers, A. J., and Sayler, G. S. (1997). “Molecular analysis and control of activated sludge.” Biotechnology in the sustainable environmenta, G. Slayer, J. Sanseverino, and K. Davis, eds., Plenum Press, 323–342.
Laspidou, C. S., and Rittmann, B. E. (2002a). “Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass.” Water Res., 36, 1983–1992.
Laspidou, C. S., and Rittmann, B. E. (2002b). “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass.” Water Res., 36, 2711–2720.
Layton, A. C., Karanth, P. N., Lajoie, C. A., Meyers, A. J., Gregory, R., Stapleton, R. D., Taylor, D. E., and Sayler, G. S. (2000). “Quantification of hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis.” Appl. Environ. Microbiol., 66(3), 1167–1174.
Lebrun, T., Thieblin, E., Coste, C., Molinier, J., and Moletta, R. (1999). “Origin and nature of refractory organic compounds produced during anaerobic treatment of easily biodegradable substrate.” Environ. Technol., 20, 987–993.
Lemmer, H., Zaglauer, A., Neef, A., Meier, H., and Amann, R. (1997). “Denitrification in a methanol-fed fixed-bed reactor. 2: Composition and ecology of the bacterial community in the biofilms.” Water Res., 31(8), 1903–1908.
Lina, C. K., Katayamab, Y., Hosomic, M., Murakamic, A., and Okadad, M. (2003). “The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes.” Water Res., 37, 2944–2952.
Liu, J., Burrel, P., Seviour, E., Soddell, J., Blackall, L., and Seviour, R. (2000a). “The filamentous bacteria morphotype ‘Nostocoida limicola’ I contains at least two previously described genera in the low G+C Gram positive bacteria.” Syst. Appl. Microbiol., 23, 528–534.
Liu, J., and Seviour, R. (2001). “Design and application of oligonucleotide probes for fluorescent in situ identification of the filamentous bacterial morphotype Nostocoida limicola in activated sludge.” J. Environ. Microbiol., 3(9), 551–560.
Liu, R. L., McKenzie, C., Seviour, E., Webb, R., Blackall, L., Saint, C., and Seviour, R. (2001). “Phylogeny of the filamentous bacterium ‘Nostocoida limicola’ III from activated sludge.” Int. J. Sys. Evol. Microbiol., 51, 195–202.
Liu, W.-T., Mino, T., Matsuo, T., and Nakamura, K. (2000). “Isolation, characterization and identification of polyhydroxyalkanoate accumulating bacteria from activated sludge.” J. Biosci. Bioeng., 90(5), 494–500.
Liu, W.-T., Mino, T., Nakamura, K., and Matsuo, T. (1996). “Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal.” Water Res., 30(1), 75–82.
Liu, W.-T., Nielsen, A. T., Wu, J.-H., Tsai, C.-S., Matsuo, Y., and Molin, S. (2001). “In situ identification of polyphosphate- and polyhydroxyalkanoate accumulating traits for microbial populations in a biological phosphorus removal process.” Environ. Microbiol., 3(2), 110–122.
Liu, Y., and Rols, J.-L. (2002). “Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge.” Appl. Microbiol. Biotechnol., 59, 605–608.
Lopez-Lopez, A., Expositio, E., Anton, J., Rodriquez-Valera, F., and Aldaz, A. (1998). “Use of Thiobacillus ferrooxidans in a coupled microbiological-electrochemical system for wastewater detoxification.” Biotechnol. Bioeng., 63(1), 79–86.
Lotter, L. H. (1985). “The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process.” Water Sci. Technol., 17(11–12), 127–138.
Lu, S. G., Imai, T., Ukita, M., Sekine, M., Higuchi, T., and Fukagawa, M. (2001). “A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products.” Water Res., 35(8), 2038–2048.
Mamais, D., and Jenkins, D. (1992). “The effects of MCRT and temperature on enhanced biological phosphorus removal.” Water Sci. Technol., 26(5–6), 955–965.
Martins, A. M. P., Pagilla, K., Heijnen, J. J., and van Loosdrecht, M. C. M. (2004). “Filamentous bulking sludge—A critical review.” Water Res., 38(4), 793–817.
Mehandjiyska, L. (1995). “Microbiological analysis of activated sludge in municipal wastewater treatment plant at ‘kremikovtzi’ holding.” Journal of Culture Collections, 1, 18–22.
Michael, W., Gabriele, R., Hans-Peter, K., Janine, F., and Rudolf, A. (1996). “In situ analysis of nitrifying bacteria in sewage treatment plants.” Water Sci. Technol., 34(1–2), 237–244.
Mino, T., Tsuzuki, Y., and Matsuo, T. (1987). “Effects of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process.” Biological phosphorus removal from waste waters. Advances in water pollution control, Ramadori, ed., Pergamon Press, Oxford, 27–38.
Mino, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (1998). “Microbiology and biochemistry of the enhanced biological phosphate removal process.” Water Res., 32(11), 3193–3207.
Morgan-Sagastume, F., and Allen, D. G. (2003). “Effects of temperature transient conditions on aerobic biological treatment of wastewater.” Water Res., 37(15), 3590–3601.
Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K., and Kamagata, Y. (1995). “Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate accumulating bacterium isolated from activated sludge.” Int. J. Syst. Bacteriol., 45(1), 17–22.
Nakamura, K., Ishikawa, S., and Kawaharasaki, M. (1995). “Phosphate uptake and release activity in immobilized polyphosphate accumulating bacterium microlunatus phosphovorus strain NM-1.” J. Ferment. Bioeng., 80(4), 377–382.
Namour, Ph., and Muller, M. C. (1997). “Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: A physical-chemical method for measurement of the refractory part of effluents.” Water Res., 32(7), 2224–2231.
Nielsen, A. T., Liu, W.-T., Filipe, C., Leslie Grady, J., Molin, S., and Stahl, D. A. (1999). “Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor.” Appl. Environ. Microbiol., 65, 1251–1258.
Nielsen, J. L., and Nielsen, P. H. (2002). “Quantification of functional groups in activated sludge by microautoradiography.” Water Sci. Technol., 46(1–2), 389–395.
Nielsen, P. H. (2002). The activated sludge floc, Wiley, Chichester, U.K.
Nielsen, P. H., Thomsen, T. R., and Nielsen, J. L. (2004). “Bacterial composition of activated sludge - Importance for floc and sludge properties.” Water Sci. Technol., 49(10), 51–58.
Nogueira, R., Melo, L. F., Purkhold, U., Wuertz, S., and Wagner, M. (2002). “Nitrifying and heterotrophic population dynamics in biofilm reactors: Effects of hydraulic retention time and the presence of organic carbon.” Water Res., 36, 469–481.
Oehmen, A., Vives, M. T., Lu, H., Yuan, Z., and Keller, J. R. (2005). “The effect of pH on the competition between polyphosphateaccumulating organisms and glycogen-accumulating organisms.” Water Res., 39, 3727–3737.
Owen, W. F., Stuckey, D. C., and Healy, Jr., J. B. (1979). “Bioassay for monitoring biochemical methane potential and anaerobic toxicity.” Water Res., 13(6), 485–492.
Paris, D. and Blondeau, R. (1999). “Isolation and characterization of Arthrobacter sp. from activated sludge of a pulp and paper mill.” Water Res., 33(4), 947–950.
Parkin, G. F. and McCarty, P. L. (1981). “A comparison of the characteristics of soluble organic nitrogen in untreated and activated sludge treated wastewaters.” Water Res., 15(1), 139–149.
Pick, E. (1995). “Aerobic bacteria.” Ecological aspects of used-water treatment, C. R. Cruds and H. A. Awkes, eds., Vol. 1, Academic, New York.
Pijuan, M., Guisasola, A., Baeza, J. A., Carrera, J., Casas, C., and Lafuente, J. (2005). “Aerobic phosphorus release linked to acetate uptake: Influence of PAO intracellular storage compounds.” Biochem. Eng. J., 26, 184–190.
Pijuan, M., Guisasola, A., Baeza, J. A., Carrera, J., Casas, C., and Lafuente, J. (2006). “Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions.” J. Biotechnol., 123(1), 117–126.
Polz, M. F., Odintsova, E. V., and Cavanaugh, C. M. (1996). “Phylogenetic relationships of the filamentous sulfur bacterium Thiothrix ramosa based on 16S rRNA sequence analysis.” Int. J. Syst. Bacteriol., 46(1), 94–97.
Pribyl, M., Tucek, F., Wilderer, P. A., and Wanner, J. (1997). “Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors.” Water Sci. Technol., 35(1), 27–34.
Purkhold, U., Pommerening-Röser, A., Juretschko, S., Koops, H.-P., and Wagner, M. (2000). “Phylogeny of all recognized species of ammonia-oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys.” Appl. Environ. Microbiol., 66, 5368–5382.
Radajewski, S., Ineson, P., Parekh, N. R., and Murrell, J. C. (2000). “Stable-isotope probing as a tool in microbial ecology.” Nature (London), 403, 646–649.
Ramothokang, T. R., Drysdale, G., and Bux, F. (2003). “Isolation and cultivation of filamentous bacteria implicated in activated sludge bulking.” Water SA, 29(4), 405–410.
Reddy, T., and Bux, F. (2002). “The effect of media on evaluating the phosphate uptake capacity of activated sludge bacterial isolates.” Water SA, 28(2), 159–164.
Rittman, B. E., Bae, W., Namkung, E., and Lu, C. J. (1987). “A critical evaluation of microbial product formation in biological processes.” Water Sci. Technol., 19(3–4), 517–528.
Robles, A., Lucas, R., de Cienfuegos, G. A., and Galvez, A. (2000). “Biomass production and detoxification of wastewaters from the olive oil industry by strains of Penicillium isolated from wastewater disposal ponds.” Bioresour. Technol., 74(3), 217–221.
Rossett, S., Hildisch, D., Christensson, C., Del Dot, T., Blackall, L. L., and Tandoi, V. (1997). “Isolation and identification of an Eikelboom type 1863 strain as Acinetobacter johnsonii.” Water Res., 31(3), 657–660.
Salvadó, H., Mas, M., Menendez, S., and Garcia, M. P. (2001). “Effects of shock loads of salt on protozoan communities of activated sludge.” Acta Protozool., 40(3), 177–185.
Sawayama, S., Hanada, S., and Kamagata, Y. (2000). “Isolation and characterization of phototrophic bacteria growing in lighted upflow anaerobic sludge blanket reactor.” J. Biosci. Bioeng., 89(4), 396–399.
Schade, M., Beimfohr, C., and Lemmer, H. (2002). “Phylogenetic and physiological characterization of a ‘Nostocoida limicola’-like organisms isolated from activated sludge.” Water Sci. Technol., 46(1–2), 91–97.
Schiener, P., Nachaiyasit, S., and Stuckey, D. C. (1998). “Production of soluble microbial products (SMP) in an anaerobic baffled reactor: Composition, biodegradability, and the effect of process parameters.” Environ. Technol., 19, 391–400.
Seviour, E., Blackall, L., Christensson, C., Hugenholtz, P., Cunningham, M., Bradford, D., Stratton, H., and Seviour, R. (1997). “The filamentous morphotype Eikelboom type 1863 is not a single genetic entity.” J. Appl. Microbiol., 82(4), 11–21.
Seviour, E. M., Williams, C., DeGrey, B., Soddell, J. A., Seviour, R. J., and Lindrea, K. C. (1994). “Studies on filamentous bacteria from Australian activated sludge plants.” Water Res., 28(11), 2335–2342.
Seviour, R., Liu, J., Seviour, E., McKenzie, C., Blackall, L., and Saint, C. P. (2002). “The ‘Nostocoida limcola’ story: The phylogeny of this morphotype responsible for bulking in activated sludge.” Water Sci. Technol., 46(1–2), 105–110.
Seviour, R. J., Maszenan, A. M., Soddell, J. A., Tandoi, V., Patel, B. K. C., Kong, Y., and Schumann, P. (2000). “Microbiology of the ‘G-bacteria’ in activated sludge.” Environ. Microbiol., 2(6), 581–593.
Sharifi-Yazdi, M., Azimi, C., and Khalili, M. (2001). “Isolation and identification of bacteria present in the activated sludge unit, in the treatment of industrial waste water.” Iranian J. Publ. Health, 30(3–4), 91–94.
Shin, H.-S., and Kang, S.-T. (2003). “Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times.” Water Res., 37, 121–127.
Sidat, M., Bux, F., and Kasan, H. (1999). “Polyphosphate accumulation by bacteria isolated from activated sludge.” Water SA, 25(2), 175–179.
Smolders, G. J. F., Van der Meij, J., Van Loosdrecht, M. C. M., and Heijnen, J. J. (1994a). “Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence.” Biotechnol. Bioeng., 43(6), 461–470.
Smolders, G. J. F., Van Der Meij, J., Van Loosdrecht, M. C. M., and Heijen, J. J. (1994b). “Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process.” Biotechnol. Bioeng., 44(7), 837–848.
Snaidr, J., Amann, R., Huber, I., Ludwig, W., and Schleifer, K.-H. (1997). “Phylogenetic analysis and in situ identification of bacteria in activated sludge.” Appl. Environ. Microbiol., 63, 2884–2896.
Snaidr, J., Beimfohr, C., Levantesi, C., Rossetti, C., Waarde, J., Geurkink, B., Eikelboom, D., Lemaitre, M., and Tandoi, V. (2002). “Phylogenetic analysis and in situ identification of ‘Nostocoida limicola’-like filamentous bacteria in activated sludge from industrial wastewater treatment plants.” Water Sci. Technol., 46(1–2), 99–104.
Spring, S., Kampfer, P., Ludwig, W., and Schleifer, K. H. (1996). “Polyphasic characterization of the genus Leptothrix: New descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend.” Syst. Appl. Microbiol., 19(4), 634–643.
Stante, L., Cellamare, C. M., Malaspina, F., Bortone, G., and Tilche, A. (1997). “Biological phosphorus removal by pure culture of Lampropedia spp.” Water Res., 31(6), 1317–1324.
Stefanie, J. W. H., Oude Elferink, Vorstman, W. J. C., Sopjes, A., and Stams, A. J. M. (1998). “Characterization of the sulfate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewaters.” FEMS Microbiol. Ecol., 27(2), 185–194.
Strous, M., Kuenen, J. G., Fuerst, J. A., Wagner, M., and Jetten, M. S. M. (2002). “The anammox case—A new experimental manifesto for microbiological eco-physiology.” Antonie van Leeuwenhoek, 81, 693–702.
Takeno, K., Yamaoka, Y., and Sasaki, K. (2005). “Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria.” World J. Microbiol. Biotechnol., 21(8–9), 1385–1391.
Tandoi, V., Majone, M., May, J., and Ramadori, R. (1998). “The behaviour of polyphosphate accumulating acinetobacter isolates in an anaerobic-aerobic chemostat.” Water Res., 32(10), 2903–2912.
Tsloalpas, A., Dimou, D., Iconomou, D., ad Aggelis, G. (2002). “Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity.” Bioresour. Technol., 84(3), 251–257.
Vincenzini, M., Marchini, A., Ena, A., and de Philippis, R. (1997). “ H2 and poly-b-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria.” FEMS Microbiol. Lett., 19, 759–762.
Wagner, M., Amann, R., Kampfer, P., Assmus, B., Hartmann, A., Hutzler, P., Springer, N., and Schleifer, K. H. (1994). “Identification and in situ detection of gram-negative filamentous bacteria in activated sludge.” Syst. Appl. Microbiol., 17(3), 405–417.
Wagner, M., Amann, R., Lemmer, H., and Schleifer, K.-H. (1993). “Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure.” Appl. Environ. Microbiol., 59, 1520–1525.
Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. (1994). “Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge.” Applied and Environmental Microbiology, 60(3), 792–800.
Wagner, M., and Loy, A. (2002). “Bacterial community composition and function in sewage treatment systems.” Curr. Opin. Biotechnol., 13, 218–227.
Washington, D. R., Clesceri, L. S., Young, J. C., and Hardt, F. W. (1970). “Influence of microbial waste products on metabolic activity of high solids activated sludge.” Proc., of 24th Purdue Industrial Waste Conf., Purdue Univ., West Lafayette, Ind., 1103–1117.
Wentzel, M. C., Loewenthal, R. E., Ekama, G. A., and Marais, V. G. R. (1988). “Enhanced polyphosphate organism cultures in activated sludge systems. 1: Enhanced culture development.” Water SA, 14(2).
Wong, M.-T., Mino, T., Seviour, R. J., Onuki, M., and Liu, W.-T. (2005). “In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan.” Water Res., 39, 2901–2914.
Zhang, B., and Yamamoto, K. (1996). “Seasonal change of microbial population and activities in a building wastewater reuse system using a membrane separation activated sludge process.” Water Sci. Technol., 34(5–6), 295–302.
Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y., and Nakamura, K. (2003). “Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphateaccumulating microorganism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.” Int. J. Sys. Evol. Microbiol., 53, 1155–1163.

Information & Authors

Information

Published In

Go to Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management
Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management
Volume 11Issue 4October 2007
Pages: 240 - 258

History

Received: Mar 6, 2007
Accepted: Mar 6, 2007
Published online: Oct 1, 2007
Published in print: Oct 2007

Permissions

Request permissions for this article.

Authors

Affiliations

S. Yan
INRS Eau, Terre et Environnement, 490, rue de la Couronne, Sainte-Foy, PQ, Canada G1K 9A9.
Bala Subramanian
INRS Eau, Terre et Environnement, 490, rue de la Couronne, Sainte-Foy, PQ, Canada G1K 9A9.
R. Y. Surampalli
U. S. Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117.
S. Narasiah
Univ. of Sherbrooke, Sherbrooke, Canada J1K 2R1.
R. D. Tyagi
INRS Eau, Terre et Environnement, 490, rue de la Couronne, Sainte-Foy, PQ, Canada G1K 9A9 (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share