TECHNICAL PAPERS
Sep 15, 2009

Application of Optical Measurement Techniques to Supersonic and Hypersonic Aerospace Flows

Publication: Journal of Aerospace Engineering
Volume 22, Issue 4

Abstract

Experimental investigation is essential to improve the understanding of aerospace flows. During the last years, effort has been put on the development of optical diagnostics capable of imaging or yielding data from the flow in a nonintrusive way. The application of some of these techniques to supersonic and hypersonic flows can be highly challenging due to the high velocity, strong gradients, and restricted optical access generally encountered. Widely used qualitative and semiquantitative optical flow diagnostics are shadowgraph, schlieren, and interferometry. Laser-based techniques such as laser Doppler anemometry and particle image velocimetry are well established for investigation of supersonic flows, but as yet their use in hypersonic flows has been limited. Other relevant measurement techniques include particle tracking velocimetry, Doppler global velocimetry, laser-two-focus anemometry, background oriented schlieren and laser induced fluorescence methods. This paper reviews the development of these and further optical measurement techniques and their application to supersonic and hypersonic aerospace flows in recent years.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adrian, R. J. (1986). “Multi-point optical measurements of simultaneous vectors in unsteady flow—A review.” Int. J. Heat Fluid Flow, 7(2), 127–145.
Adrian, R. J. (1991). “Particle-imaging techniques for experimental fluid mechanics.” Annu. Rev. Fluid Mech., 23, 261–304.
Adrian, R. J. (1993). “Selected papers on laser Doppler velocimetry.” SPIE milestone series, SPIE, Bellingham, Wash.
Adrian, R. J. (2005). “Twenty years of particle image velocimetry.” Exp. Fluids, 39(2), 159–169.
Adrian, R. J., and Earley, W. L. (1986). “Evaluation of laser-Doppler velocimeter performance using Mie scattering theory.” Rep. No. 479, Univ. of Illinois, Champaign, Ill.
Ainsworth, R. W., Thorpe, S. J., and Manners, R. J. (1997). “A new approach to flow-field measurement—A view of Doppler global velocimetry techniques.” Int. J. Heat Fluid Flow, 18(1), 116–130.
Alden, M., Ednet, H., and Svanberg, S. (1983). “Coherent anti-Stokes Raman spectroscopy (CARS) applied in combustion probing.” Phys. Scr., 27, 29–38.
Alkislar, M. B., Lourenco, L. M., and Krothapalli, A. (2000). “Stereoscopic PIV measurements of a screeching supersonic jet.” J. Visualization, 3(2), 135–143.
Anderson, J. D., Jr. (2006). Hypersonic and high temperature gas dynamics, 2nd Ed., AIAA, Reston, Va.
Angele, K. P., Suzuki, Y., Miwa, J., and Kasagi, N. (2006). “Development of a high-speed scanning micro PIV system using a rotating disc.” Meas. Sci. Technol., 17, 1639–1646.
Arakeri, J. H., Das, D., Krothapalli, A., and Lourenco, L. (2004). “Vortex ring formation at the open end of a shock tube: A particle image velocimetry study.” Phys. Fluids, 16(4), 1008–1019.
Babinsky, H. (1993). “A study of roughness in turbulent hypersonic boundary layers.” Ph.D. thesis, Cranfield Univ., Cranfield, U.K.
Barre, S., Braud, P., Chambres, O., and Bonnet, J. P. (1997). “Influence of inlet pressure conditions on supersonic turbulent mixing layers.” Exp. Therm. Fluid Sci., 14(1), 68–74.
Barricau, P., Lempereur, C., Mathe, J. M., Mignosi, A., and Buchet, H. (2002). “Doppler global velocimetry: Development and wind tunnel tests.” Proc., 11th Int. Symp. Applications of Laser Techniques to Fluid Mechanics, Springer, Berlin.
Ben-Yakar, A., and Hanson, R. K. (1999). “Hypervelocity combustion studies using simultaneous OH-PLIF and schlieren imaging in an expansion tube.” Proc., 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, AIAA, Reston, Va.
Beresh, S. J., Henfling, J. F., Erven, R. J., and Spillers, R. W. (2004). “Stereoscopic PIV for crossplane vorticity measurement of a supersonic jet in compressible crossflow.” Proc., 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conf., AIAA, Reston, Va.
Beversdorff, M., Forster, W., Schodl, R., and Jentink, H. W. (1997). “In-flight laser anemometry for aerodynamic investigations on an aircraft.” Opt. Lasers Eng., 27(6), 571–586.
Biancaniello, F. S., Espina, P. I., Mattingly, G. E., and Rider, S. E. (1989). “A flow visualization study of supersonic inert gas-metal atomization.” Mater. Sci. Eng. A, 119, 161–168.
Birch, T. J., Prince, S. A., Ludlow, D. K., and Qin, N. (2001). “The application of a parabolized Navier-Stokes solver to some hypersonic flow problems.” Proc., 10th AIAA/NAL-NASDA-ISAS Int. Space Planes and Hypersonic Systems and Technologies Conf., AIAA, Reston, Va.
Bonnet, J. P., Gresillon, D., and Taran, J. P. (1998). “Non-intrusive measurements for high-speed, supersonic, and hypersonic flows.” Annu. Rev. Fluid Mech., 30, 231–273.
Boutier, A. (1991). “Accuracy of laser velocimetry.” Lecture series on laser velocimetry, Vol. 1, Von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
Brenner, G., Gerhold, T., Hannemann, K., and Rues, D. (1993). “Numerical simulation of shock/shock and shock-wave/boundary-layer interactions in hypersonic flows.” Comput. Fluids, 22(4/5), 427–439.
Brucker, Ch. (1997). “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video.” Meas. Sci. Technol., 8, 1480–1492.
Brummund, U., and Scheel, F. (2002). “Characterisation of a supersonic flowfield using different laser based techniques.” Proc., 10th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Springer, Berlin.
Buchner, S., Lieseberg, A., and Maul, J. (1997). “Density measurements in ballistic re-entry.” Aerosp. Sci. Technol., 1(2), 137–149.
Camussi, R., Guj, G., Imperatore, B., Pizzicaroli, A., and Perigo, D. (2007). “Wall pressure fluctuations induced by transonic boundary layers on a launcher model.” Aerosp. Sci. Technol., 11(5), 349–359.
Clarke, A. (1995). “The application of particle tracking velocimetry and flow visualisation to curtain coating.” Chem. Eng. Sci., 50(15), 2397–2407.
Conly, J. F., and Freske, G. (1976). “Acoustic characteristics of interacting supersonic jets.” J. Sound Vib., 48(1), 83–93.
Dam, N., Klein-Douwel, R. J. H., Sijtsema, N. M., and ter Meulen, J. J. (2001). “Nitric oxide flow tagging in unseeded air.” Opt. Lett., 26(1), 36–38.
Danehy, P. M., DeLoach, R., and Cutler, A. D. (2002). “Application of modern design of experiments to CARS thermometry in a supersonic combustor.” Proc., 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conf., AIAA, Reston, Va.
Danehy, P. M., Mere, P., Gaston, M. J., O’Byrne, S., Palma, P. C., and Houwing, A. F. P. (2001). “Fluorescence velocimetry of the hypersonic, separated flow over a cone.” AIAA J., 39(7), 1320–1328.
Debisschop, J. R., Chambers, O., and Bonnet, J. P. (1994). “Velocity field characteristics in supersonic mixing layers.” Exp. Therm. Fluid Sci., 9, 147–155.
Desse, J. M. (2006). “Recent contribution in colour interferometry and applications to high-speed flows.” Opt. Lasers Eng., 44(3–4), 304–320.
Desse, J. M., and Tribillon, J. M. (2005). Proc., 8th Int. Symp. on Fluid Control, Measurement and Visualization, IOS Press, Amsterdam, The Netherlands.
Dillmann, A., Wetzel, T., and Soeller, C. (1998). “Interferometric measurement and tomography of the density field of supersonic jets.” Exp. Fluids, 25(5–6), 375–387.
Doty, M. J., Henderson, B. S., and Kinzie, K. W. (2004). “Turbulent flow field measurements of separate flow round and Chevron nozzles with pylon interaction using particle image velocimetry.” Proc., 10th AIAA/CEAS Aeroacoustics Conf., AIAA, Reston, Va.
Du Plessis, A., Rohwer, E. G., and Steenkamp, C. M. (2007). “Investigation of four carbon monoxide isotopomers in natural abundance by laser-induced fluorescence in a supersonic jet.” J. Mol. Spectrosc., 243(2), 124–133.
Eklund, D. R., Fletcher, D. G., Hartfield, R. J., Jr., Northam, G., and Dancey, C. L. A. (1995). “Comparative computational/experimental investigation of Mach 2 flow over a rearward-facing step.” Comput. Fluids, 24(5), 593–608.
Elfert, M. (1994). “The effect of rotation and buoyancy on flow development in a rotating circular coolant channel with radially inward flow.” Exp. Therm. Fluid Sci., 9(2), 206–214.
Elsinga, G. E., van Oudheusden, B. W., Scarano, F., and Watt, D. W. (2003). “Assessment and application of quantitative schlieren methods with bi-directional sensitivity: Calibrated colour schlieren and background oriented schlieren.” Exp. Fluids, 36(2), 309–325.
Estevadeordal, J., Gogineni, S., Kimmel, R. L., and Hayes, J. R. (2004). “Schlieren imaging in hypersonic plasmas.” Proc., 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Estruch, D., Lawson, N. J., MacManus, D. G., Garry, K. P., and Stollery, J. L. (2008). “Measurement of shock wave unsteadiness using a high-speed schlieren system and digital image processing.” Rev. Sci. Instrum., 79(12), 126108-1–126108-3.
Faure, T. M., Miton, H., and Vassilieff, N. (2004). “A laser Doppler anemometry technique for Reynolds stresses measurement.” Exp. Fluids, 37(3), 465–467.
Fisher, S. C. (1985). “High-speed laser schlieren and ultraviolet diagnostics of gas/gas rocket ignition and combustion.” Proc., 23rd Aerospace Sci. Meeting, AIAA, Reston, Va.
Forkey, J. N., Lempert, W. R., and Miles, R. B. (1998). “Accuracy limits for planar measurements of flow field velocity, temperature and pressure using filtered Rayleigh scattering.” Exp. Fluids, 24(2), 151–162.
Forster, W., Karpinsky, G., Krain, H., Roehle, I., and Schodl, R. (2002). “3 component-Doppler-laser-two-focus velocimetry applied to a transonic centrifugal compressor.” Proc., 10th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Springer, Berlin.
Fu, S., and Wu, Y. (2001). “Detection of velocity distribution of a flow field using sequences of schlieren images.” Opt. Eng., 40(8), 1661–1666.
Ge, Y., Cha, S. S., and Park, J. H. (2006). “Study of particle tracking algorithms based on neural networks for stereoscopic tracking velocimetry.” Opt. Lasers Eng., 44(6), 623–636.
Gochberg, L. A. (1997). “Electron beam fluorescence methods in hypersonic aerothermodynamics.” Prog. Aerosp. Sci., 33(7–8), 431–480.
Grant, I. (1997). “Particle image velocimetry: A review.” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 211(1), 55–76.
Grant, I., and Wang, X. (1995). “Directionally-unambiguous, digital particle image velocimetry studies using image intensifier camera.” Exp. Fluids, 18(5), 358–362.
Grant, I., and Yan, Y. Y. (1991). “A machine vision particle image velocimetry system for the monitoring opaque slurry motion.” Proc., 14th Int. Congress on Instrumentation in Aerospace Simulation Facilities, IEEE, Calif.
Haertig, J., Havermann, M., Rey, C., and George, A. (2002). “Particle image velocimetry in Mach 3.5 and Mach 4.5 shock tunnel flows.” AIAA J., 40(6), 1056–1060.
Hamel, N., et al. (2001). “Supersonic PIV measurements in an open jet flow.” Proc., 37th AIAA/ASME/SAE/ASE Joint Propulsion Conf. and Exhibit, AIAA, Reston, Va.
Hayes, W. D., and Probstein, R. F. (1959). Hypersonic flow theory, Academic, New York.
Hirsch, C. (2007). Numerical computation of internal and external flows volume 1: The fundamentals of computational fluid dynamics, Butterworth-Heinemann, Stoneham, Mass.
Hishashi, N., Naoki, S., Hideaki, K., and Goro, M. (2005). “Velocity and turbulence measurements in a supersonic flow field using particle tracking velocimetry.” 5th Int. Symp. Adv. Fluid Inf., 5, 72–73.
Hou, Y. X., Clemens, N. T., and Dolling, D. S. (2003). “Wide-field PIV study of shock induced turbulent boundary layer separation.” Proc., 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conf., AIAA, Reston, Va.
Humble, R. A., Elsinga, G. E., Scarano, F., and van Oudheusden, B. W. (2007). “Investigation of the instantaneous 3D flow organization of a shock wave/turbulent boundary layer interaction using tomographic PIV.” Proc., 37th AIAA Fluid Dynamics Conf. and Exhibit, AIAA, Reston, Va.
Humble, R. A., Scarano, F., and van Oudheusden, B. W. (2006a). “Unsteady planar base flow investigation using particle image velocimetry and proper orthogonal decomposition.” Proc., 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Humble, R. A., Scarano, F., and van Oudheusden, B. W. (2006b). “Experimental study of an incident shock wave/turbulent boundary layer interaction using PIV.” Proc., 36th AIAA Fluid Dynamics Conf. and Exhibit, AIAA, Reston, Va.
Humphreys, W. H., Jr., Bartman, S. M., Parrot, T. L., and Jones, M. G. (1998). “Digital PIV measurements of acoustic particle displacements in a normal incidence impedance tube.” Proc., 20th Advanced Measurement and Ground Testing Technology Conf., AIAA, Reston, Va.
Humphreys, W. L., and Bartram, S. M. (1993). “A survey of particle image velocimetry applications in Langley aerospace facilities.” Proc., 31st Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Hung, C. M., and MacCormack, R. W. (1976). “Numerical solutions of supersonic and hypersonic laminar compression corner flows.” AIAA J., 14(4), 475–481.
Ido, T., and Murai, Y. (2006). “A recursive interpolation algorithm for particle tracking velocimetry.” Flow Meas. Instrum., 17(5), 267–275.
Ikeda, Y., Kuratani, N., Nakajima, T., Tomioka, S., and Mitani, T. (2002). “M2.5 supersonic PIV measurement in step-back flow with the normal injection.” Proc., 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Jackson, D. A., and Paul, D. M. (1970). “Measurement of hypersonic velocities and turbulence by direct spectral analysis of Doppler shifted laser light.” Phys. Lett., 32A(2), 77–78.
Jackson, D. A., and Paul, D. M. (1971). “Measurement of supersonic velocity and turbulence by laser anemometry.” J. Phys. E: J. Sci. Instrum., 4(3), 173–177.
Jiang, L. Y., and Sislian, J. P. (2002). “Rayleigh scattering in supersonic high-temperature exhaust plumes.” Exp. Fluids, 32(4), 487–493.
Kastell, D., and Shiplyuk, A. N. (1999). “Experimental technique for the investigation of artificially generated disturbances in planar laminar hypersonic boundary layers.” Aerosp. Sci. Technol., 3(6), 345–354.
Kawanabe, H., Kawasaki, K., and Masahiro, S. (2000). “Gas-flow measurements in a jet flame using cross-correlation of high-speed-particle images.” Meas. Sci. Technol., 11, 627–632.
Keane, R. D., and Adrian, R. J. (1990). “Optimization of particle image velocimeters. Part 1: Double pulsed systems.” Meas. Sci. Technol., 1, 1202–1215.
Kearney, S. P., and Jackson, M. N. (2006). “Dual pump CARS thermometry in sooting acetylene-fueled flames.” Proc., 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Kerherve, F., Jordan, P., Gervais, Y., Valiere, J. C., and Braud, P. (2004). “Two-point laser Doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model.” Exp. Fluids, 37(3), 419–437.
Kleine, H., Gronig, H., and Takayama, K. (2006). “Simultaneous shadow, schlieren and interferometric visualization of compressible flows.” Opt. Lasers Eng., 44(3–4), 170–189.
Kompenhans, J., and Hoecker, R. (1990). “Application of particle image velocity to high speed flows.” Proc., 5th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Springer, Berlin.
Koochesfahani, M. M., Goh, A. C., and Schock, H. J. (2004). “Molecular tagging velocimetry (MTV) and its automotive applications. The aerodynamics of heavy vehicles: trucks, buses, and trains.” Lecture Notes on Appl. Comp. Fluid Mech., 19, 143–155.
Kost, F., and Kapteijn, C. (1997). “Application of laser-two-focus velocimetry to transonic turbine flows.” Proc., 7th Int. Conf. on Laser Anemometry, Advances, and Applications, Univ. of Karlsruhe, Karlsruhe, Germany.
Krain, H., and Hah, C. (2003). “Numerical and experimental investigation of the unsteady flow field in a transonic centrifugal compressor.” Proc., Int. Gas Turbine Congress Tokyo, GTSJ, Tokyo, Japan.
Krehl, P., Engemann, S., and Neuwald, P. (1995). “Flash lightning instrumentation for colour schlieren shock wave photography.” Shock Waves, 4(4), 195–207.
Krothapalli, A., Rajkuperan, E., Alvi, U., and Lourenco, L. (1999). “Flow field and noise characteristics of a supersonic impinging jet.” J. Fluid Mech., 392, 155–181.
Lai, J. C. S., and He, Y. (1989). “Error considerations for turbulent measurements using laser-two-focus velocimetry.” J. Phys. E: Sci. Instrum., 22, 108–114.
Lanen, T. A. W. N. (1990). “Digital holographic interferometry in flow research.” Opt. Commun., 79(5), 386–396.
Lang, N. (2000). “Investigation of the supersonic flowfield around a delta wing using particle image velocimetry.” Proc., 10th Int. Symp. On Appl. Las. Anem. Fluid Mech, Springer, Berlin.
Lawson, N. (1995). “The application of particle image velocimetry to high speed flows.” Ph.D. thesis, Loughborough Univ. of Technology, Leicester, U.K.
Lawson, N. J. (2004). “The application of laser measurement techniques to aerospace flows.” Proc. Inst. Mech. Eng. [H], 218, 33–57.
Lawson, N. J., Page, G., Halliwell, N. A., and Coupland, J. M. (1999). “Application of particle image velocity to a small scale de Laval nozzle.” AIAA J., 37(7), 798–804.
Le Barbu-Debus, K., Lahmani, F., Zehnacker-Rentien, A., and Guchhait, N. (2006). “Laser-induced fluorescence and single vibronic level emission spectroscopy of chiral (R)-1-aminoindan and some of its clusters in a supersonic jet.” Phys. Chem. Chem. Phys., 8(8), 1001–1006.
Lee, H. F. (1972). “Electron beam visualization in hypersonic airflows.” Proc., 7th Aerodynamic Testing Conf., AIAA, Reston, Va.
Lempert, W. R., Jang, N., Sethuram, S., and Samimy, M. (2002). “Molecular tagging velocimetry measurements in supersonic microjets.” AIAA J., 40(6), 1065–1070.
Liepmann, H. W., and Roshko, A. (1957). Elements of gasdynamics, Wiley, New York.
Lin, Y. W., Chiu, T. C., and Chang, H. T. (2003). “Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis.” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 793(1), 37–48.
Liu, T., and Sullivan, J. P. (2005). Pressure and temperature sensitive paints, Springer, Berlin.
Loose, S., Richard, H., Thimm, M., Becker, W., and Raffel, M. (2006). “Optical measurement techniques for high Reynolds number train investigations.” Exp. Fluids, 40(4), 643–653.
Lou, H., Shih, C., and Alvi, F. S. (2003). “A PIV study of supersonic impinging jet.” Proc., 9th AIAA/CEAS Aeroacoustics Conf. and Exhibit, AIAA, Reston, Va.
Lourenco, L. M. (1993). “Velocity bias technique for particle image velocimetry measurements of high-speed flows.” Appl. Opt., 32(12), 2159–2162.
Lourenco, L. M., and Krothapalli, A. (1994). “Application of PIV in high-speed wind tunnel testing.” Proc. 32nd Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Magre, P., Collin, G., Pin, O., Badie, J. M., Olalde, G., and Clement, M. (2001). “Temperature measurements by CARS and intrusive probe in an air-hydrogen supersonic combustion.” Int. J. Heat Mass Transfer, 44(21), 4095–4105.
Mallinson, S. G., Hillier, R., Jackson, A. P., Kirk, D. C., Soltani, S., and Zanchetta, M. (2000). “Gun tunnel flow calibration: Defining input conditions for hypersonic flow computations.” Shock Waves, 10(5), 313–322.
Marshall, D. (2005). “High speed aerodynamics of novel missile configurations.” MS thesis, Cranfield Univ., Cranfield, U.K.
Martinez, B. (2006). “Multicomponent Doppler global velocimetry in the ISL supersonic wind tunnel.” Proc., 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
McIntyre, T. J., Kleine, H., and Houwing, A. F. P. (2007). “Optical imaging techniques for hypersonic impulse facilities.” Aeronaut. J., 111(1115), 1–16.
Melling, A. (1997). “Tracer particles and seeding for particle image velocimetry.” Meas. Sci. Technol., 8, 1406–1416.
Meyers, J. F., Lee, J. W., Fletcher, M. T., Cavone, A. A., and Guerrero Viramontes, J. A. (2006). “Supersonic flow field investigations using a fiber-optic based Doppler global velocimeters.” Proc., 13th Int. Symp. on Appl. Las. Techn. to Fluid Mechanics, Springer, Berlin.
Miles, R., Connors, J., Markovitz, E., Howard, P., and Roth, G. (1989). “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (Relief) velocity tagging of oxygen.” Exp. Fluids, 8(1–2), 17–24.
Miles, R., Grinstead, J., Kohl, R. H., and Diskin, G. (2000). “The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies.” Meas. Sci. Technol., 11, 1272–1281.
Miles, R., Lampert, W., and Zhang, B. (1991). “Turbulent structure measurements by RELIEF flow tagging.” Fluid Dyn. Res., 8(1–4), 9–17.
Miles, R., Qian, L., and Zaidi, S. H. (2006). “Imaging flow structure and species with atomic and molecular filters.” Opt. Lasers Eng., 44(3–4), 240–260.
Mironov, S. G., and Aniskin, V. M. (2004). “Experimental study of a hypersonic shock layer stability on a circular surface of compression.” C. R. Mec., 332(9), 701–708.
Moraitis, C. S., and Simeonides, G. A. (1993). “Application of particle image velocimetry to hypersonic flows: Perspectives and impedimenta.” Proc. Int. Congress on Instrumentation in Aerospace Simulation Facilities, IEEE, Calif.
Muller, J., Mummler, R., and Staudacher, W. (2001). “Comparison of some measurement techniques for shock-induced boundary layer separation.” Aerosp. Sci. Technol., 5(6), 383–395.
Murphree, Z. R., Yuceil, K. B., Clemens, N. T., and Dolling, D. S. (2007). “Experimental studies of transitional boundary layer shock wave interactions.” Proc., 45th AIAA Aerosp. Sci. Meet. And Exhib., AIAA, Reston, Va.
Nakamura, H., Sato, N., Kobayashi, H., and Masuya, G. (2005). “Measurement of supersonic flowfield using particle tracking velocimetry.” Proc., 21st Int. Congress on Instrumentation in Aerospace Simulation Facilities, IEEE, Calif.
Neemeh, R., AlGattus, S., and Neemeh, L. (1999). “Experimental investigation of noise reduction in supersonic jets due to jet rotation.” J. Sound Vib., 221(3), 505–524.
Neumann, T., and Ermert, H. (2006). “Schlieren visualization of ultrasonic wave fields with high spatial resolution.” Ultrasonics, 44(1), 1561–1566.
O’Byrne, S., Doolan, M., Olsen, S. R., and Houwing, A. F. P. (1999). “Measurement and imaging of supersonic combustion in a model scramjet engine.” Shock Waves, 9(4), 221–226.
Oppenheim, A. K., Urtiew, P. A., and Weinberg, F. J. (1966). “On the use of laser light sources in schlieren-interferometer systems.” Proc. R. Soc. London, Ser. A, 291(1425), 279–290.
Ottavy, X., Trebinjac, I., and Vouillarmet, A. (2001a). “Analysis of the interrow flow field within a transonic axial compressor: Part 1—Experimental investigation.” J. Turbomach., 123(1), 49–56.
Ottavy, X., Trebinjac, I., and Vouillarmet, A. (2001b). “Analysis of the interrow flow field within a transonic axial compressor: Part 2—Unsteady flow analysis.” J. Turbomach., 123(1), 57–63.
Pianthong, K., Behnia, M., and Milton, B. E. (2001). “Visualization of supersonic diesel fuel jets using a shadowgraph technique.” Proc., 24th Int. Congress on High-Speed Photography and Photonics, SPIE, Bellingham, Wash.
Pianthong, K., Zakrzewski, S., Behnia, M., and Milton, B. E. (2003). “Characteristics of impact driven supersonic liquid jets.” Exp. Therm. Fluid Sci., 27, 589–598.
Pietri, L., Amielh, M., and Anselmet, F. (2000). “Simultaneous measurements of temperature and velocity fluctuations in a slightly heated jet combining a cold wire and laser Doppler anemometry.” Int. J. Heat Fluid Flow, 21(1), 22–36.
Pilverdier, H., Brun, R., and Dumitrescu, M. P. (2001). “Emission and Raman spectroscopy measurements in hypersonic nitrogen flows.” J. Thermophys. Heat Transfer, 15(4), 484–490.
Ponchaut, N. F., Mouton, C. A., and Hornung, H. G. (2004). “Development of three-dimensional particle tracking velocimetry for supersonic flow.” Proc., 2nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Porcar, R., and Prenel, J. P. (1982). “A partially, incoherent, periodic, pulsed light source for optical flow studies.” Opt. Laser Technol., 14(6), 320–324.
Radicic, W. N., Olsen, J. B., Nielson, R. V., Macedone, J. H., and Farnsworth, P. B. (2006). “Characterisation of the supersonic expansion in the vacuum interface of an inductively coupled plasma mass spectrometer by high-resolution diode laser spectroscopy.” Spectrochim. Acta, Part B, 61(6), 686–695.
Raffel, M., and Kost, F. (1998). “Investigation of aerodynamic effects of coolant ejection at the trailing edge of a turbine blade model by PIV and pressure measurements.” Exp. Fluids, 24(5–6), 447–461.
Raffel, M., Willert, C. E., Wereley, S. T., and Kompenhans, J. (2007). Particle image velocimetry: A practical guide, 2nd Ed., Springer, Berlin.
Ramanah, D., and Mee, D. J. (2006). “Scramjet flow visualization using background oriented schlieren in hypersonic impulse facilities.” Proc., 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conf., AIAA, Reston, Va.
Ramanah, D., Raghunath, S., Mee, D. J., Rosgen, T., and Jacobs, P. A. (2007). “Background oriented schlieren for flow visualization in hypersonic impulse facilities.” Shock Waves, 17(1–2), 65–70.
Reeves, M., Farrell, P. V., and Musculus, M. P. (1999). “Demonstration of a two-photon, confocal laser-induced fluorescence technique for the detection of nitric oxide in atmospheric pressure flows and hydrogen air-flames.” Meas. Sci. Technol., 10(4), 285–294.
Reisch, U., and Meuer, R. (2000). “CFD-simulation of the flow through a fluidic element.” Aerosp. Sci. Technol., 4, 111–123.
Richard, H., and Raffel, M. (2001). “Principle and applications of the background oriented schlieren (BOS) method.” Meas. Sci. Technol., 12(9), 1576–1585.
Riethmuller, M. L. (2001). Particle image velocimetry and associated techniques, Von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
Riethmuller, M. L., and Scarano, F. (2005). Advanced measuring techniques for supersonic flows, Von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
Rodriguez, O., Desse, J. M., and Pruvost, J. (1997). “Interaction between a supersonic hot jet and a coaxial supersonic flow.” Aerosp. Sci. Technol., 1(6), 369–379.
Scarano, F., and Haertig, J. (2003). “Application of non-isotropic resolution PIV in supersonic and hypersonic flows.” Proc., 5th Int. Symp. on Particle Image Velocimetry, IPP, London, U.K.
Scarano, F., and Riethmuller, M. L. (2000). “Advances in iterative multigrid PIV image processing.” Exp. Fluids, 29(7), 51–60.
Scarano, F., and van Oudheusden, B. W. (2002). “PIV investigation of a planar supersonic wake flow.” Proc., 11th Int. Symp. on Application of Laser Techniques to Fluid Mechanics, Springer, Berlin.
Scarano, F., and van Oudheusden, B. W. (2003). “Planar velocity measurements of a two-dimensional compressible wake.” Exp. Fluids, 34, 430–441.
Schodl, R., et al. (2002). “Doppler global velocimetry for the analysis of combustor flows.” Aerosp. Sci. Technol., 6(7), 481–493.
Schrijer, F. F. J., Scarano, F., van Oudheusden, B. W., and Bannink, W. J. (2005). “Application of PIV in a hypersonic double-ramp flow.” Proc., AIAA/CIRA 13th Int. Space Planes and Hypersonics Systems and Technologies Conf., AIAA, Reston, Va.
Settles, G. S. (1985). “Colour-coding schlieren techniques for the optical study of heat and fluid flow.” Int. J. Heat Fluid Flow, 6(1), 3–15.
Settles, G. S. (2001). Schlieren and shadowgraph techniques, Springer, New York.
Shapiro, A. H. (1953). The dynamics and thermodynamics of compressible fluid flow, Ronald, New York.
Shi, H. H., Takayama, K., and Nagayasu, N. (1995). “The measurement of impact pressure and solid surface response in liquid-solid impact up to hypersonic range.” Wear, 186–187(2), 352–359.
Smith, L. G. (1994). “Pulsed-laser schlieren visualization of hypersonic boundary-layer instability waves.” Proc., 18th AIAA Aerospace Ground Testing Conf., AIAA, Reston, Va.
Sonoda, T., Arima, T., Olhofer, M., Sendhoff, B., Kost, F., and Giess, P. A. (2006). “A study of advanced high-loaded transonic turbine airfoils.” J. Turbomach., 128(4), 650–657.
Sorensen, C. M., and Fischback, D. J. (2000). “Patterns in Mie scattering.” Opt. Commun., 173, 145–153.
Srivastava, A., Dutta, S., Panigrahi, P. K., and Muralidhar, K. (2005). “Laser schlieren measurement of vertical flow past a heated horizontal circular cylinder.” Int. Comm. Heat Mass Transf., 32(3–4), 520–528.
Stainback, P. C., and Nagabushana, K. A. (1993). “Review of hot-wire anemometry techniques and the range of their applicability.” ASME FED, 167, 93–133.
Stanislas, M., and Monnier, J. C. (1997). “Practical aspects of image recording in particle image velocimetry.” Meas. Sci. Technol., 8, 1417–1426.
Tanner, A. (1972). “A holographic interferometer and fringe analyser, and their use for the study of supersonic flow.” Opt. Laser Technol., 4(6), 281–287.
Theunissen, R., Scarano, F., and Riethmuller, M. L. (2007). “An adaptive sampling and windowing interrogation method in PIV.” Meas. Sci. Technol., 18(1), 275–287.
Theunissen, R., Schrijer, F. F. J., Scarano, F., and Riethmuller, M. L. (2006). “Application de la PIV adaptive dans un écoulement hypersonique.” Proc., Congres Francophone de Techniques Laser, Von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
Thorpe, S. J., Quinlan, N., and Ainsworth, R. W. (2000). “The characterisation and application of a pulsed neodymium YAG laser DGV system to a time-varying high-speed flow.” Opt. Laser Technol., 32(7–8), 543–555.
Thurow, B., Jiang, N., Lempert, W., and Samimy, M. (2004). “MHz rate planar Doppler velocimetry in supersonic jets.” Proc., 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Toyoda, K., Sato, H., Ando, H., Miyazaki, K., Takada, K., and Maeno, K. (2005). “Preliminary test of coherent anti-Stokes Raman spectroscopy for strong shock waves.” Proc., 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reston, Va.
Tsai, C. Y., and Bakos, R. J. (1998). “Shock-tunnel flow visualization with a high-speed schlieren and laser holographic interferometry system.” Proc., 20th Advanced Measurement and Ground Testing Technology Conf., AIAA, Reston, Va.
Tummers, R. J., van Veen, E. H., George, N., Rodink, R., and Hanjali, K. (2004). “Measurement of velocity-temperature correlations in a turbulent diffusion flame.” Exp. Fluids, 37(3), 364–374.
Turnbull, S. M., MacGregor, S. J., Tuema, F. A., and Farish, O. (1993). “A quantitative laser schlieren method for measurement of neutral gas density in high-pressure gas switches.” Meas. Sci. Technol., 4, 1154–1159.
Unalmis, O. H., Hou, Y. X., Bueno, P. C., Clemens, N. T., and Dolling, D. S. (2000). “PIV investigation of role of boundary layer velocity fluctuations in unsteady shock-induced separation.” Proc., 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conf., AIAA, Reston, Va.
van der Draai, R. K., van Schinkel, R., Telesca, A., Scarano, F., Elsiga, G. E., and Feenstra, G. J. (2005). “Application of PIV in (local) supersonic flows in DNW wind tunnels.” Proc., 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, AIAA, Reston, Va.
van der Laan, W. P. N., Tolboom, R. A. L., Dam, N. J., and ter Meulen, J. J. (2003). “Molecular tagging velocimetry in the wake of an object in supersonic flow.” Exp. Fluids, 34(4), 531–533.
Vasudeva, G., Honnery, D. R., and Soria, J. (2005). “Non-intrusive measurement of a density field using the background oriented schlieren (BOS) method.” Proc., 4th Australian Conf. on Laser Diagnostic in Fluid Mechanics and Combustion, The Univ. of Adelaide, Adelaide, Australia, 137–140.
Venkatakrishnan, L., and Meier, G. E. A. (2004). “Density measurements using the background oriented schlieren technique.” Exp. Fluids, 37(2), 237–247.
Verma, S. B. (2002). “Application of laser schlieren technique to study shock-wave boundary-layer interaction flow fields.” Proc., 11th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Springer, Berlin.
Verma, S. B., and Koppenwallner, G. (2001). “Detection of shock motion using laser schlieren system in a hypersonic SWBLI flowfield.” Proc., AIAA/NAL-NASDA-ISAS 10th Int. Space Planes and Hypersonic Systems and Technologies Conf., AIAA, Reston, Va.
Wernet, M. P. (2000). “Development of digital particle imaging velocimetry for use in turbomachinery.” Exp. Fluids, 28(2), 97–115.
Westerweel, J. (1997). “Fundamentals of digital particle image velocimetry.” Meas. Sci. Technol., 8, 1379–1392.
Willert, C., Hassa, C., Stockhausen, G., Jarius, M., and Voges, M. (2006). “Combined PIV and DGV applied to a pressurized gas turbine combustion facility.” Meas. Sci. Technol., 17, 1670–1679.
Wood, C. F., Leach, D. H., Zhang, J. Z., Chang, R. K., and Barber, P. W. (1988). “Time-resolved shadowgraphs of large individual water and ethanol droplets vaporized by a pulsed CO2 laser.” Appl. Opt., 27(11), 2279–2286.
Wyant, J. C. (2002). “White light interferometry.” Proc. SPIE, 4737, 98–107.
Xiao, X., Puri, I. K., and Agrawal, A. K. (2002). “Temperature measurements in steady axisymmetric partially premixed flames by the use of rainbow schlieren deflectometry.” Appl. Opt., 41(10), 1922–1928.
Xu, J., Lin, C., Sha, J., and Zhang, K. (2006). “A PIV study and numerical simulation of overexpanded supersonic impinging free jet.” Proc., 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conf., AIAA, Reston, Va.
Yamamoto, Y., et al. (2002). “Numerical and experimental aerothermodynamics of strong hypersonic shock-shock interactions.” Proc., 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conf., AIAA, Reston, Va.
Yang, W. J. (1989). Handbook of flow visualization, Hemisphere, New York.
Zitoun, K. B., Sastry, S. K., and Guezennec, Y. (2001). “Investigation of three dimensional interstitial velocity, solids motion and orientation in solid liquid flow using particle tracking velocimetry.” Int. J. Multiphase Flow, 27(8), 1397–1414.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 22Issue 4October 2009
Pages: 383 - 395

History

Received: Nov 7, 2007
Accepted: Sep 26, 2008
Published online: Sep 15, 2009
Published in print: Oct 2009

Permissions

Request permissions for this article.

Authors

Affiliations

David Estruch [email protected]
Researcher, Applied Aerodynamics Group, Dept. of Aerospace Sciences, Cranfield Univ., Cranfield, Bedfordshire MK43 0AL, U.K. (corresponding author). E-mail: [email protected]
Nicholas J. Lawson [email protected]
Reader, Applied Aerodynamics Group, Dept. of Aerospace Sciences, Cranfield Univ., Cranfield, Bedfordshire MK43 0AL, U.K. E-mail: [email protected]
Kevin P. Garry [email protected]
Professor, Applied Aerodynamics Group, Dept. of Aerospace Sciences, Cranfield Univ., Cranfield, Bedfordshire MK43 0AL, U.K. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share