TECHNICAL PAPERS
Dec 1, 1998

Recent Approaches to Shear Design of Structural Concrete

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Structural Engineering
Volume 124, Issue 12

Abstract

Truss model approaches and related theories for the design of reinforced concrete members to resist shear are presented. Realistic models for the design of deep beams, corbels, and other nonstandard structural members are illustrated. The background theories and the complementary nature of a number of different approaches for the shear design of structural concrete are discussed. These relatively new procedures provide a unified, intelligible, and safe design framework for proportioning structural concrete under combined load effects.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
ACI Committee 446 (1989). “Fracture mechanics of concrete: Concepts, models and determination of material properties.”ACI 446.1 R-91, American Concrete Institute, Detroit.
2.
Adebar, P.(1994). “Testing structural concrete beam elements.”RILEM: Mat. and Struct., 27(172), 445–451.
3.
Adebar, P., and Collins, M. P.(1996). “Shear strength of members without transverse reinforcement.”Can. J. Civ. Engrg., 23(1), 30–41.
4.
Adebar, P., Kuchma, D., and Collins, M. P.(1990). “Strut-and-tie models for the design of pile caps.”ACI Struct. J., 87(1), 81–92.
5.
Adebar, P., and Zhou, Z.(1993). “Bearing strength of compressive struts confined by plain concrete.”ACI Struct. J., 90, 534–541.
6.
Al-Nahlawi, K. A., and Wight, J. K. (1992). “Beam analysis using concrete tensile strength in truss models.”ACI J., 89(3).
7.
Alshegeir, A., and Ramirez, J. A. (1990). “Analysis of disturbed regions with strut-and-tie models.”Struct. Engrg. Rep. No. CE-STR-90-1, Purdue University, West Lafayette, Ind.
8.
Aoyagi, Y., and Yamada, K.(1983). “Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces.”Proc., Japanese Soc. Civ. Engrs., Tokyo, 331, 167–190.
9.
ASCE-ACI Committee 326.(1962a). “Shear and diagonal tension.”ACI J., 59(1), 1–30.
10.
ASCE-ACI Committee 326.(1962b). “Shear and diagonal tension.”ACI J., 59(1), 277–344.
11.
ASCE-ACI Committee 326.(1962c). “Shear and diagonal tension.”ACI J., 59(1), 352–396.
12.
ASCE-ACI Committee 426.(1973). “The shear strength of reinforced concrete members.”J. Struct. Div., ASCE, 99(6), 1091–1187.
13.
ASCE-ACI Committee 426. (1978). “Suggested revisions to shear provisions for building codes.” American Concrete Institute, Detroit.
14.
Barton, N.(1973). “Review of new shear-strength criterion for rock joints.”Engrg. Geol., 7, 287–332.
15.
Baumann, T.(1972). “Zur Frage der Netzbewehrung von Flachen tragwerken (On the problem of net reinforcement of surface structures).”Bauingenieur, 47(10), 367–377.
16.
Baumann, T., and Rüsch, H. (1970). “Versuche zum Studium der Verdübelungswirkung der Biegezugbewehrung eines Stahlbetonbalkens.”DAfStb H.210, Wilhelm Ernst und Sohn, Berlin, 43–83.
17.
Bazant, Z. P., and Kim, J.-K.(1984). “Size effect in shear failure of longitudinally reinforced beams.”ACI J., 81(5), 456–468.
18.
Bazant, Z. P., and Oh, B. H.(1983). “Crack band theory for fracture of concrete.”RILEM, 16(93), 155–177.
19.
Belarbi, A., and Hsu, T. T. C. (1991). “Constitutive laws of reinforced concrete in biaxial tension-compression.”Res. Rep. UHCEE 91-2, University of Houston, Tex.
20.
Belarbi, A., and Hsu, T. T. C.(1994). “Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete.”ACI Struct. J., 91(4), 465–474.
21.
Belarbi, A., and Hsu, T. T. C.(1995). “Constitutive laws of softened concrete in biaxial tension-compression.”ACI Struct. J., 92(5), 562–573.
22.
Bergmeister, K., Breen, J. E., and Jirsa, J. O. (1991). “Dimensioning of the nodes and development of reinforcement.”Rep. IABSE Colloquium on Struct. Concrete, IABSE, Zurich, 551–564.
23.
Bhide, S. B., and Collins, M. P.(1989). “Influence of axial tension on the shear capacity of reinforced concrete members.”ACI Struct. J., 86(5), 570–581.
24.
Birkeland, P. W., and Birkeland, H. W.(1966). “Connections in precast concrete construction.”ACI J., 63(3), 345–368.
25.
Braestrup, M. W. (1990). “Shear strength prediction—Plastic method.”Reinforced concrete deep, F. K. Kong, ed., Blackie and Son, London/Van Nostrand Reinhold, New York, 182–203. Bridge Design Specifications and Commentary. 1st Ed. (1994). American Association of State Highway and Transportation Officials, Washington, D.C.
26.
“Building code requirements for reinforced concrete.” (1951). ACI 318-51, American Concrete Institute, Detroit.
27.
“Building code requirements for reinforced concrete.” (1971). ACI-318-71 and Commentary (ACI 318R-71), ACI Committee 318, American Concrete Institute, Detroit.
28.
“Building code requirements for reinforced concrete.” (1995). ACI 318-95M and Commentary (ACI 318 R-95M), ACI Committee 318, American Concrete Institute, Detroit.
29.
Burdet, O. L., Sanders, D. H., Roberts, C. L., Breen, J. E., and Fenves, G. L. (1991). “Models and tests of anchorage zones of post-tensioning tendons.”IABSE Colloquium on Struct. Concrete, Zurich, 545–550.
30.
Caflisch, R., Krauss, R., and Thurlimann, B. (1971). “Biege-und Schubversuche and teilweise Vorgespannten Betonbalken.”Serie C., Bericht 6504-3, Institut fur Baustatik, ETH, Zurich.
31.
“CEB-FIP model code for concrete structures.” (1978). International system of unified standard codes of practice for structures, Comité Euro-International du Beton, Paris, Vol. II.
32.
Chana, P. S.(1987). “Investigation of the mechanism of shear failure of reinforced concrete beams.”Mag. Concrete Res., 39(12), 196–204.
33.
Collins, M. P.(1978). “Toward a rational theory for RC members in shear.”J. Struct. Div., ASCE, 104(4), 649–666.
34.
Collins, M. P., and Mitchell, D.(1980). “Shear and torsion design of prestressed and non-prestressed concrete beams.”J. Prestressed Concrete Inst., 25(5), 32–100.
35.
Collins, M. P., and Mitchell, D. (1985). “Chapter 4 shear and torsion.”CPCA concrete design handbook, Canadian Portland Cement Association, Ottawa, Canada, 4-1–4-51.
36.
Collins, M. P., and Mitchell, D.(1986). “A rational approach to shear design—The 1984 Canadian Code Provisions.”ACI J., 83(6), 925–933.
37.
Collins, M. P., and Mitchell, D. (1991). Prestressed concrete structures. Prentice-Hall, Englewood Cliffs, N.J.
38.
Collins, M. P., Mitchell, D., Adebar, P. E., and Vecchio, F. J.(1996). “A general shear design method.”ACI Struct. J., 93(1), 36–45.
39.
Collins, M. P., Mitchell, D., and MacGregor, J. G. (1993). “Structural design considerations for high-strength concrete.”ACI Concrete Int., 27–34.
40.
Collins, M. P., and Porasz, A.(1989). “Shear design for high strength concrete.”Proc., Workshop on Design Aspects of High Strength Concrete, Comité Euro-International du Béton Bulletin d'Information, CEB, Paris, 193, 77–83.
41.
Comité Euro-International du Beton (CEB). (1978). “Shear and torsion, June: Explanatory and viewpoint papers on Model Code Chapters 11 and 12, prepared by CEB Committee V,” CEB, Paris, CEB Bull. 12.
42.
Comité Euro-International du Beton (CEB). (1982). “Shear, torsion and punching: Progress report by CEB Committee IV.”Member Design, CEB, Paris, CEB Bull. 146.
43.
Comité Euro-International du Beton (CEB)-Fédération International de la Precontrainte (FIP). (1993). Model Code 1990, 1993, (MC90), Thomas Telford, London.
44.
Cook, W. D., and Mitchell, D.(1998). “Studies of disturbed regions near discontinuities in reinforced concrete members.” ACI Struct. J., 85(2), 206–216.
45.
Daschner F., and Kupfer, H. (1982). “Versuche zur Schubkraftubertragung an Rissen von Nornal- und Leichtbeton.”Bauingenieur, 59, 57– 60.
46.
Dei Poli, S., Gambarova, P. G., and Karakoc, C.(1987). “Aggregate interlock role in RC thin-webbed beams in shear.”J. Struct. Engrg., ASCE, 113(1), 1–19.
47.
Dei Poli, S., Prisco, M. D., and Gambarova, P. G.(1990). “Stress field in web of RC thin-webbed beams failing in shear.”J. Struct. Engrg., ASCE, 116(9), 2496–2515.
48.
“Design of Concrete Structures for Buildings.” (1984). CAN3-A23.3-M84, Canadian Standards Association, Rexdale, ON, Canada.
49.
“Design of concrete structures.” (1994). Canadian Standards Association, Rexdale, ON, Canada.
50.
Drucker, D. C. (1991). “On structural concrete and the theorems of limit analysis. IABSE report 2, Zürich, EC2, 1991, Eurocode No. 2.”Design of concrete structures, part 1: General rules and rules for buildings, Thomas Telford, London.
51.
(1981a). “Discussion of `Shear and torsion design of non-prestressed concrete beams' by M. P. Collins and D. Mitchell.”J. Prestressed Concrete Inst., 26(6), 96–118.
52.
Eibl, J., and Neuroth. (1988). “Untersuchungen zur Druckfestigkeit von bewehrtem Beton bei gleichzeitig wirkendem Querzug.” Institut fur Massivbau und Baustofftechnologie, University of Karlsruhe, Germany.
53.
Eurocode No. 2. (1991). “Design of concrete structures, part 1: General rules and rules for buildings.” Thomas Telford, London.
54.
Evans, R. H., and Marathe, M. S.(1968). “Microcracking and stress-strain curves for concrete in tension.”Mat. and Struct., Res. and Testing, RILEM, Paris, 1(1), 61–64.
55.
Fenwick, R. C., and Paulay, T.(1968). “Mechanisms of shear resistance of concrete beams.”J. Struct. Div., ASCE, 94(10), 2325–2350.
56.
Gambarova, P. G.(1979). “Aggregate interlock role in RC thin-webbed beams in shear.”J. Struct. Div., ASCE, 113(1), 1–19.
57.
Gambarova, P. G. (1981). “On aggregate interlock mechanism in reinforced concrete plate with extensive cracking.”IABSE Colloquium, Zurich, 105–134.
58.
Gambarova, P. G., and di Prisco, M. (1991). “Interface behaviour.”Behavior and analysis of reinforced concrete structures under alternate actions including inelastic response, Vol. 1, General Models, CEB Bull. 210, Lausanne, Switzerland.
59.
Gopalaratnam, V. S., and Shah, S. P.(1985). “Softening response of plain concrete in direct tension.”ACI J. Proc., 82(3), 310–323.
60.
Gupta, P., and Collins, M. P. (1993). “Behaviour of reinforced concrete members subjected to shear and compression.”Report, Department of Civil Engineering, University of Toronto, Canada.
61.
Hamadi, Y. D. (1976). “Force transfer across cracks in concrete structures,” PhD thesis, Polytechnic of Central London.
62.
Hamadi, Y. D., and Regan, P. E.(1980). “Behaviour in shear of beams with flexural cracks.”Mag. Concrete Res., 32(1), 67–77.
63.
Hillerborg, A., and Modéer M., and Petersson(1976). “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.”Cement and Concrete Res., 6, 773–782.
64.
Hofbeck, J. A., Ibrahim, I. A., and Mattock, A. H.(1969). “Shear transfer in reinforced concrete.”ACI J. Proc., 66(2), 119–128.
65.
Hsu, T. T. C. (1993). Unified theory of reinforced concrete. CRC Press, Boca Raton, Fla.
66.
Hsu, T. T. C., Mau, S. T., and Chen, B.(1987). “A theory of shear transfer strength of reinforced concrete.”ACI Struct. J., 84(2), 149–160.
67.
IABSE.(1991a). “IABSE—Colloquium Stuttgart 1991: Structural Concrete IABSE Report.” IABSE, Zurich, 62, 1–872.
68.
IABSE.(1991b). “IABSE—Colloquium Stuttgart 1991: Structural Concrete—Summarizing Statement.”Struct. Engrg. Int., 1(3), 52–54.
69.
Isenberg, J. (1993). “Finite element analysis of reinforced concrete structures II.”Proc., Int. Workshop, New York.
70.
Jirsa, J. O., Breen, J. E., Bergmeister, K., Barton, D., Anderson, R., and Bouadi, H. (1991). “Experimental studies of nodes in strut-and-tie models.”IABSE Colloquium, Struct. Concrete, Zurich, 525–532.
71.
Kani, G. N. J.(1964). “The riddle of shear failure and its solution.”ACI J., 61(4), 441–467.
72.
Kani, G. N. J.(1967). “How safe are our large reinforced concrete beams?”ACI J., 64(3), 128–141.
73.
Kani, M. W., Huggins, M. W., and Wiltkopp, P. F. (1979). Kani on shear in reinforced concrete. Department of Civil Engineering, University of Toronto, Canada.
74.
Kirmair, M. (1987). “Das Schubtragverhalten Schlanker Stahlbeton- balken—Theoretische und Experimentele Untersuchungen fur Leicht- und Normalbeton,” Dissertation, University of Munich, Germany.
75.
Kirschner, U., and Collins, M. P. (1986). “Investigating the behaviour of reinforced concrete shell elements.”Publication No. 86-09, Department of Civil Engineering, University of Toronto, Canada.
76.
Kollegger, J., and Mehlhorn, G. (1988). “Biaxial tension-compression tests on reinforced concrete panels.”Forschungsberichte aus dem Fachgebeit Massivbau, No. 6, Gesamthochschule Kassel, Kassel, West Germany.
77.
Kollegger, J., and Mehlhorn, G. (1990). “Experimentelle Untersuchungen zur Bestimmung der Druckfestigkeit des gerissenen Stahlbetons bei einer Querzugbeanspruchung.”DAtStb H.413, Beuth, Berlin.
78.
Kupfer, H. (1964). “Erweiterung der Morsch schen Fachwerkanalogie mit Hilfe des Prinzips vom Minimum der Formanderungsarbeit (Generalization of Mörsch's truss analogy using the principle of minimum strain energy).”Comite Euro-International du Beton, Bulletin d'Information, No. 40, CEB, Paris, 44–57.
79.
Kupfer, H., and Bulicek, H. (1991). “Comparison of fixed and rotating crack models in shear design of slender concrete beams.”Progress in Structural Engineering, D. E. Grierson, et al., eds., Kluwer, Dordrecht, The Netherlands, 129–138.
80.
Kupfer, H. B., and Gerstle, K.(1973). “Behaviour of concrete under biaxial stresses.”J. Engrg. Mech. Div., ASCE, 99(4), 853–866.
81.
Kupfer, H., Mang, R., and Karavesyrouglou, M. (1983). “Failure of the shear-zone of R.C. and P.C. girders—An analysis with consideration of interlocking of cracks.”Bauingenieur, 58, 143–149 (in German).
82.
Kupfer, H., and Moosecker, W. (1979). “Beanspruchung und Verformung der Schubzone des schlanken profilierten Stahlbeton balkens.”Forschungsbeitrage fur die Baubraxis, Wilhelm Ernst und Sohn, Berlin, 225–236.
83.
Lampert, P., and Thurlimann, B. (1971). “Ultimate strength and design of reinforced concrete beams in torsion and bending.”IABSE, No. 31-I, 107–131.
84.
Leonhardt, F.(1965). “Reducing the shear reinforcement in reinforced concrete beams and slabs.”Mag. Concrete Res., 17(53), 187–198.
85.
Leonhardt, F. (1977). “Schub bei Stahlbeton und Spannbeton: Grundlagen der neueren Schubbemessung.” BuStb 72 H.11, 270–277 und H.12, 295–302.
86.
(1964). “Discussion of `The riddle of shear failure and its solution' by G. N. J. Kani.”ACI J., 61(12), 1587–1636.
87.
Leonhardt, F., and Walther, R. (1966). “Wardetiger Trager,”Deutscher Ausschuss fur Stahlbeton, Bulletin No. 178, Wilhelm Ernst und Sohn, Berlin.
88.
Lipski, A. (1971/1972). “Poutres a ame mince en beton arme ou precontraint.”Ann. d. Travaux Publ. d. Belgique No. 1-2.
89.
Loeber, P. J. (1970). “Shear transfer by aggregate interlock,” MS thesis, University of Canterbury, Christchurch, New Zealand.
90.
Loov, R. E., and Patniak, A. K. (1994). “Horizontal shear strength of composite concrete beams with a rough interface.”PCI J., 39(1), 48– 109.
91.
MacGregor, J. G. (1992). Reinforced concrete mechanics and design, 2nd Ed., Prentice-Hall, Englewood Cliffs, N.J.
92.
MacGregor, J. G., and Walters, J. R. V.(1967). “Analysis of inclined cracking shear in slender r.c. beams.”ACI J., 64, 644–653.
93.
Mallee, R. (1981). “Zum Schubtragverhalten stabformiger Stahlbeton- elemente.”DAfStbH.323, Berlin.
94.
Marti, P. (1980). “Zur Plastischen Berechnung von Stahlbeton (On plastic analysis of reinforced concrete).”Rep. No. 104, Institute of Structural Engineering, ETH, Zurich.
95.
Marti, P.(1985). “Basic tools of reinforced concrete beam design.”ACI J., 82(1), 46–56.
96.
Marti, P.(1991). “Dimensions and detailing.”IABSE Colloquium on Struct. Concrete, IABSE Report, Zurich, 62, 411–443.
97.
Marti, P., and Meyboom, J.(1992). “Response of prestressed elements to in-plane shear.”ACI Struct. J., 89(5), 503–514.
98.
Mattock, A. H. (1974). “Shear transfer in concrete having reinforcement at an angle to the shear plane.”ACI Spec. Publ. SP42, 17–42.
99.
Mattock, A. H.(1976). “Design proposal for reinforced concrete corbels.”PCI J., 21(3), 18–42.
100.
Mattock, A. H., Chen, K. C., and Soongswang, K.(1976). “The behavior of reinforced concrete corbels.”PCI J., 21(2), 52–77.
101.
Mattock, A. H., and Hawkins, N. M.(1972). “Research on shear transfer in reinforced concrete.”PCI J., 17(2), 55–75.
102.
(1986). “Discussion of `Shear transfer in cracked reinforced concrete,' by S. G. Millard and R. P. Johnson.”Mag. Concrete Res., 38(134), 47–51.
103.
(1985). “Discussion of `Basic tools of reinforced concrete design,' by P. Marti.”ACI J., 82(6), 933–935.
104.
Mattock, A. H., Li, W. K., and Wang, T. C.(1976). “Shear transfer in lightweight reinforced concrete.”PCI J., 21(1), 20–39.
105.
Millard, S. G., and Johnson, R. P.(1984). “Shear transfer in cracked reinforced concrete.”Mag. Concrete Res., 37(130), 3–15.
106.
Mitchell, D., and Collins, M. P.(1974). “Diagonal compression field theory—A rational model for structural concrete in pure torsion.”ACI J., 71, 396–408.
107.
Mörsch, E. (1909). Concrete-steel construction. McGraw-Hill, New York. (English translation by E. P. Goodrich).
108.
Mörsch, E. (1920). “Der Eisenbetonbau-Seine Theorie und Anwendung (Reinforced concrete construction—Theory and application).” 5th Ed., Wittwer, Stuttgart, Vol. 1, Part 1.
109.
Mörsch, E. (1922). “Der Eisenbetonbau-Seine Theorie und Anwendung.” 5th Ed., Wittwer, Stuttgart, Vol. 1, Part 2.
110.
Muller, P. (1978). “Plastische Berechnung von Stahlbetonscheiben und-balken (Plasticity analysis of reinforced concrete wall and beams).”Report No. 83, Institute of Structural Engineering, ETH, Zurich.
111.
Muttoni, A. (1990). “Applicability of the theory of plasticity for dimensioning reinforcing concrete,” PhD thesis, ETH Zurich Birkhäuser, Basel (in German).
112.
Nielsen, M. P. (1971). “Om jernbetonskivers styrke.”Polyteknisl Forlag, Copenhagen (On the strength of reinforced concrete discs). Acta Polytech. Scand., Ci-70, Copenhagen.
113.
Nielsen, M. P. (1984). Limit analysis and concrete plasticity. Prentice-Hall, Englewood Cliffs, N.J.
114.
Nielsen, M. P., and Braestrup, N. W. (1975). “Plastic shear strength of reinforced concrete beams.”Tech. Rep. 3, Bygningsstatiske Meddelelser, Vol. 46.
115.
Nielsen, M. P., Braestrup, M. W., Jensen, B. C., and Bach, F. (1978). “Concrete plasticity, beam shear–Shear in joints–Punching shear.”Special Publication, Danish Society for Structural Science and Engineering, Lyngby, Denmark, Final Ed.
116.
Nissen, I. (1987). “Rißverzahnung des Betons-gegenseitige Rißuferverschie- bungen und ubertragbare Krafte,” Dissertation, University of Munich.
117.
Niwa, J., Yamada, K., Yokozawa, K., and Okamura, M.(1986). “Reevaluation of the equation for shear strength of r.c.-beams without web reinforcement.” Translated from Proc., Japan Soc. Civ. Engrg., 5(372), 1986–1988.
118.
Norges Byggstandardiseringsrad (NBR). (1989). “Prosjektering av betongkonstruksjoner Beregnings-og konstruksjonsregler (Concrete structures design rules).”NS 3743, Norges Standardiseringsforbund, Oslo.
119.
Okamura, H., and Higai, T.(1980). “Proposed design equation for shear strength of R.C. beams without web reinforcement.”Proc., Japan Soc. Civ. Engrg., 300, 131–141.
120.
Pang, X.-B. D., and Hsu, T. T. C. (1992). “Constitutive laws of reinforced concrete in shear.”Res. Rep. UHCEE 92-1, Department of Civil and Environmental Engineering, University of Houston, Tex.
121.
Pang, X.-B. D., and Hsu, T. T. C.(1995). “Behavior of reinforced concrete membrane elements in shear.”ACI Struct. J., 92(6), 665–679.
122.
Pang, X.-B. D., and Hsu, T. T. C. (1996). “Fixed-angle softened-truss model for reinforced concrete.”Struct. J. Am. Concrete Inst., 93(2).
123.
Park, R., and Paulay, T. (1975). Reinforced concrete structures. Wiley, New York.
124.
Paulay, T., Park, R., and Phillips, M. H. (1974). “Horizontal construction joints in cast-in-place reinforced concrete.”ACI Spec. Publ., ST-42, 599–616.
125.
Ramirez, J. A.(1994). “Strut-and-tie design of pretensioned members.”ACI Struct. J., 91(5), 572–578.
126.
Ramirez, J. A., and Breen, J. E.(1991). “Evaluation of a modified truss-model approach for beams in shear.”Struct. J. Am. Concrete Inst., 88(5), 562–571.
127.
Regan, P.(1993). “Research on shear: A benefit to humanity or a waste of time?”Struct. Engr., 71(19/5), 337–347.
128.
Regan, P. E., and Braestrup, M. W. (1985). “Punching shear in reinforced concrete—A state of the art report.”CEB Bull. 168, Lausanne, Switzerland.
129.
Reineck, K.-H. (1982). “Models for the design of reinforced and prestressed concrete members.”CEB Bull. 146, Paris, 43–96.
130.
Reineck, K.-H. (1989). “Theoretical considerations and experimental evidence on web compression failures of high strength concrete beams.”CEB Bull. 193, Lausanne, Switzerland, 61–73.
131.
Reineck, K.-H. (1990). “Mechanical model for the behaviour of reinforced concrete members in shear,” PhD thesis, University of Stuttgart.
132.
Reineck, K.-H.(1991a). “Modelling of members with transverse reinforcement.”IABSE Colloquium on Struct. Concrete, IABSE Rep., IABSE, Zurich, 62, 481–488.
133.
Reineck, K.-H.(1991b). “Model for structural concrete members without transverse reinforcement.”IABSE Colloquium Struct. Concrete, IABSE Rep., IABSE, Zurich, 62, 643–648.
134.
Reineck, K.-H.(1991c). “Ultimate shear force of structural concrete members without transverse reinforcement derived from a mechanical model.”ACI Struct. J., 88(5), 592–602.
135.
Reinhardt, H. W. (1986). “The role of fracture mechanics in rational rules for concrete design.”IABSE Survey S-34/86 in IABSE Per. 1/1986, IABSE, Zurich.
136.
Reinhardt, H. W., Cornelissen, H. A. W., and Hordijk, D. A.(1986). “Tensile tests and failure analysis of concrete.”J. Struct. Engrg., ASCE, 112(11), 2462–2477.
137.
Remmel, G. (1994). “Zum Zug- und Schubtragverhalten von Bauteilen aus hochfestem Beton.”DAfStb, H.444, Beuth, Berlin.
138.
Ritter, W.(1899). “Die bauweise hennebique.”Schweizerische Bauzeitung, 33(7), 59–61.
139.
Rogowsky, D. M., and MacGregor, J. G.(1986). “Design of reinforced concrete deep beams.”Concrete Int.: Des. and Constr., 8(8), 49–58.
140.
Rogowsky, D. M., MacGregor, J. G., and Ogg, S. Y.(1986). “Tests of reinforced concrete deep beams.”ACI J., Proc., 83(8), 614–623.
141.
Schäfer, K., Schelling, G., and Kuchler, T. (1990). “Druck-und Querzug in bewehrten Betonelementen.”DAfStb H.408, Beuth, Berlin.
142.
Schlaich, J., and Schäfer, K. (1983). “Zur Druck-Querzug-Festigkeit des Stahlbetons.”BuStb 78, H.3, 73–78.
143.
Schlaich, J., and Schäfer, K. (1984). “Konstrulerenim Stahlbeton-bau.”Beton-Kalender 1984, Wilhelm Ernst und Sohn, Berlin, 787–1004.
144.
Schlaich, J., Schäfer, I., and Jennewein, M.(1987). “Towards a consistent design of structural concrete.”J. Prestressed Concrete Inst., 32(3), 74–150.
145.
Shioya, T., Iguro, M., Nojiri, Y., Akiayma, H., and Okada, T. (1989). “Shear strength of large reinforced concrete beams, fracture mechanics: Application to concrete.”SP-118, ACI, Detroit, 259–279.
146.
Shirai, S., and Noguchi, H. (1989). “Compressive deterioration of cracked concrete.”Proc., ASCE Struct. Congr. 1989: Des., Anal. and Testing, ASCE, New York, 1–10.
147.
Stevens, N. J., Uzumeri, S. M., and Collins, M. P.(1991). “Reinforced concrete subjected to reversed cyclic shear—Experiments and constitutive model.”ACI Struct. J., 88(2), 135–146.
148.
“Standard building regulations for the use of reinforced concrete.” (1920). American Standard Specification No. 23, American Concrete Institute, Detroit, 16, 283–322.
149.
Talbot, A. N. (1909). “Tests of reinforced concrete beams: resistance to web stresses series of 1907 and 1908.”Bull. 29, University of Illinois Engineering Experiment Station, Urbana, Ill.
150.
Tassios, T. P., and Vintzeleou, E. N.(1986). “Concrete-to-concrete friction.”J. Struct. Engrg., ASCE, 113(4), 832–849.
151.
Tassios, T. P., and Vintzeleou, E. N.(1987). “Concrete-to-concrete friction.”J. Struct. Engrg., ASCE, 113(4), 832–849.
152.
Taylor, H. P. J. (1974). “The fundamental behaviour of reinforced concrete beams in bending and shear.”ACI SP-42, Detroit, 43–77.
153.
Thurlimann, B., Marti, P., Pralong, J., Ritz, P., and Zimmerli, B. (1983). “Vorlesung Zum Bortbildungs kurs fur Bauingenieure.” Institute fur Bautecknik und Konstruktion, ETH, Zurich.
154.
Vecchio, F. J., and Collins, M. P. (1982). “The response of reinforced concrete to in-plane shear and normal stresses.”Publ. No. 82-03, Department of Civil Engineering, University of Toronto, Canada.
155.
Vecchio, F. J., and Collins, M. P.(1986). “The modified compression field theory for reinforced concrete elements subjected to shear.”J. Am. Concrete Inst., 83(2), 219–231.
156.
Vecchio, F. J., and Collins, M. P.(1988). “Predicting the response of reinforced concrete beams subjected to shear using the modified compression field theory.”ACI Struct. J., 85(4), 258–268.
157.
Vecchio, F. J., and Collins, M. P. (1993). “Compression response of cracked reinforced concrete.”J. Struct. Engrg., ASCE, 119(12), 3590– 3610.
158.
Vecchio, F. J., Collins, M. P., and Aspiotis, J.(1994). “High strength concrete elements subjected to shear.”ACI Struct. J., 91(4), 423–433.
159.
Vintzeleou, E. N., and Tassios, T. P.(1986). “Mathematical models for dowel action under monotonic conditions.”Mag. Concrete Res., 38, 13–22.
160.
Wagner, H. (1929). “Ebene Blechwandträger mit sehr dünnem Stegblech (Metal beams with very thin webs).”Zeitschrift für Flugtechnik und Motorloftschiffahr, 20(8–12), Berlin.
161.
Walraven, J. C. (1980). “Aggregate interlock: A theoretical and experimental analysis,” PhD thesis, Delft University, The Netherlands.
162.
Walraven, J. C.(1981). “Fundamental analysis of aggregate interlock.”J. Struct. Div., ASCE, 108, 2245–2270.
163.
Walraven, J. C. (1987). “Shear in prestressed concrete members.”A State-of-the-Art Report; CEB Bull. 180, Paris.
164.
Walraven, J. C., Frenay, J., and Pruijssers, A.(1987). “Influence of concrete strength and load history on the shear friction capacity of concrete members.”PCI J., 21(1), 66–84.
165.
Walraven, J., and Lehwalter, N. (1990). “Einfluß des Maßstabs in schubbeanspruchten Bauteilen ohne Schubbewehrung.”BuStb 85, H.9, 228– 232.
166.
Walraven, J., and Lehwalter, N.(1994). “Size effects in short beams loaded in shear.”ACI Struct. J., 91(5), 585–593.
167.
Walraven, J. C., and Reinhardt, H. W. (1981). “Concrete mechanics port A—Theory and experiment on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading.” University of Delft, The Netherlands, 26(1A).
168.
Withey, M. O.(1907). “Tests of plain and reinforced concrete series of 1906.”Bull. Univ. of Wis., Engineering Series, 4(1), 1–66.
169.
Withey, M. O.(1908). “Tests of plain and reinforced concrete series of 1907.”Bull. Univ. of Wis., Engineering Series, 4(2), 1–66.
170.
Woo, K., and White, R. N.(1991). “Initiation of shear cracking in reinforced concrete beams with no web reinforcement.”ACI Struct. J., 88(3), 301–308.
171.
Yoon, Y. S., Cook, W. D., and Mitchell, D.(1996). “Minimum shear reinforcement in normal, medium and high-strength concrete beams.”ACI Struct. J., 93(5), 576–584.
172.
Zhang, L. X. (1995). “Constitutive laws of reinforced membrane elements with high strength concrete,” PhD dissertation, Department of Civil and Environmental Engineering, University of Houston, Tex.
173.
Zsutty, T. C.(1971). “Shear strength prediction for separate categories of simple beams tests.”ACI J., 68(2), 138–143.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 124Issue 12December 1998
Pages: 1375 - 1417

History

Published online: Dec 1, 1998
Published in print: Dec 1998

Permissions

Request permissions for this article.

Authors

Affiliations

ASCE-ACI Committee 445 on Shear and Torsion

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share