TECHNICAL PAPERS
Apr 1, 2008

Dynamic Fragmentation of an Ultrahigh-Strength Concrete during Edge-On Impact Tests

Publication: Journal of Engineering Mechanics
Volume 134, Issue 4

Abstract

To understand and model damage generated during impact by a penetrator of ultrahigh strength concrete targets, edge-on impact tests are performed with Ductal concrete, which is unreinforced or reinforced with short fibers. Two edge-on impact configurations are designed with a dynamic confinement system. The first configuration uses aluminum projectiles and allows us to study the dynamic fragmentation that spreads out within the tile without any confined damage close to the impact point. The fragmentation process is composed of numerous oriented millimetric cracks. In the second configuration, steel projectiles are used with a higher impact velocity. Damaged zones are visualized by using an ultrahigh speed camera and a sarcophagus configuration designed to prevent the fragments from moving. Postmortem studies of impacted tiles enabled us to observe an intense fragmentation of the targets and confined damage close to the impact point when steel projectiles were used. Simulations are performed with an anisotropic damage model coupled with a concrete plasticity model. Orientation and crack density are compared with postmortem observations.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was funded by the Délégation Générale pour l’Armement. The writers acknowledge useful discussions with Dr. L. Rota.

References

Abraham, F., and Gao, H. (2000). “How fast can cracks propagate?” Phys. Rev. Lett., 84(14), 3113–3116.
Abramowitz, M., and Stegun, I. A. (1965). Handbook of mathematical functions, Dover, New York.
Bayard, O. (2003). “Approche multiéchelles du comportement mécanique des bétons à ultrahautes performances renforcés par des fibres courtes.” Ph.D. dissertation, Ecole Normale Supérieure de Cachan, Cachan, France (in French).
Bažant, Z. P. (1984). “Size effect in blunt fracture: Concrete, rock, metal.” J. Eng. Mech., 110(4), 518–535.
Bažant, Z. P. (2000). “Size effect.” Int. J. Solids Struct., 37, 69–80.
Behloul, M. (1996). “Analyse et modélisation du comportement d’un matériau à matrice cimentaire fibrée à ultrahautes performances (Bétons de Poudres Réactives). Du matériau à la structure.” Ph.D. dissertation, Ecole Normale Supérieure de Cachan, Cachan, France (in French).
Beremin, F. M. (1983). “A local criterion for cleavage fracture of a nuclear pressure vessel steel.” Metall. Trans. A, 14A, 2277–2287.
Bluhm, J. I. (1969). “Fracture arrest.” Fracture, Academic, New York, 1–63.
Boulay, C., Le Maou, F., Renwez, S., Sercombe, J., and Toutlemonde, F. (1997). “Caractérisation du comportement au choc d’un béton de poudres réactives grâce à des essais de traction directe.” LCPC Rep., Laboratoire Central des Ponts et Chaussées, Paris.
Broek, D. (1982). Elementary engineering fracture mechanics, Martinus Nijhoff, The Hague, The Netherlands.
Buzaud, E. (1998). “Performances mécaniques et balistiques du microbéton MB50.” Rep., Centre d’Etudes de Gramat, Gramat, France.
Buzaud, E. (2003). “Personal communication.” Centre d’Etudes de Gramat, Gramat, France.
Camacho, G. T., and Ortiz, M. (1996). “Computational modeling of impact damage in brittle materials.” Int. J. Solids Struct., 33(20–22), 2899–2938.
da Silva, A. R. C., Proença, S. P. B., Billardon, R., and Hild, F. (2004). “Probabilistic approach to predict cracking in lightly reinforced microconcrete pannels.” J. Eng. Mech., 130(8), 931–942.
Davies, D. G. S. (1973). “The statistical approach to engineering design in ceramics.” Proc. Br. Ceram. Soc., 22, 429–452.
Denoual, C., Barbier, G., and Hild, F. (1997). “A probabilistic approach for fragmentation of ceramics under impact loading.” C. R. Acad. Sci. Paris, 325, 685–691.
Denoual, C., Cottenot, C. E., and Hild, F. (1996). “On the identification of damage during impact of a ceramic by a hard projectile.” Proc., 16th Int. Conf. on Ballistics, APDS, Arlington, Va., 541–550.
Denoual, C., Cottenot, C. E., and Hild, F. (1998). “Analysis of the degradation mechanisms in an impacted ceramic.” Proc., Shock Compression of Condensed Matter, AIP, Melville, N.Y., 427–430.
Denoual, C., and Hild, F. (1998). “On the characteristic scales involved in a fragmentation process.” J. Phys. IV, 8, 119–126.
Denoual, C., and Hild, F. (2000). “A damage model for the dynamic fragmentation of brittle solids.” Comput. Methods Appl. Mech. Eng., 183, 247–258.
Denoual, C., and Hild, F. (2002). “Dynamic fragmentation of brittle solids: A multiscale model.” Eur. J. Mech. A/Solids, 21(1), 105–120.
Drucker, D. C., and Prager, W. (1956). “Soil mechanics and plastic analysis of limit design.” Q. Appl. Math., 14, 157–165.
Engineering Systems International (ESI). (2001). PAM-SHOCK user’s manual, ESI, Paris.
Espinosa, H. D., Zavattieri, P. D., and Dwivedi, S. K. (1998). “A finite deformation continuum/discrete model for the description of fragmentation and damage in brittle materials.” J. Mech. Phys. Solids, 46, 1909–1942.
Forquin, P. (2003). “Endommagement et fissuration de matériaux fragiles sous impact balistique, rôle de la microstructure.” Ph.D. dissertation, Ecole Normale Supérieure de Cachan, Cachan, France (in French).
Forquin, P., Tran, L., Louvigné, P.-F., Rota, L., and Hild, F. (2003). “Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics.” Int. J. Impact Eng., 28, 1061–1076.
Freund, L. B. (1972). “Crack propagation in an elastic solid subjected to general loading—Constant rate of extension.” J. Mech. Phys. Solids, 20, 129–140.
Freund, L. B. (1990). Dynamic fracture mechanics, Cambridge University Press, Cambridge, U.K.
Grady, D. E., and Kipp, M. E. (1980). “Continuum modeling of explosive fracture in oil shale.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17, 147–157.
Gulino, R., and Phoenix, S. L. (1991). “Weibull strength statistics for graphite fibers measured from the break progression in a model graphite/glass/epoxy microcomposite.” J. Mater. Sci., 26(11), 3107–3118.
Hibbitt, H. D., Karlsson, B. I., and Sorensen, P. (2001). Abaqus user’s manual, ABAQUS/EXPLICIT 6.1, HKS, Providence, R.I.
Hild, F., Forquin, P., and Silva, A. R. C. (2003). “Single and multiple fragmentation of brittle geomaterials.” Revue Française Génie Civil, 7(7-8), 973–1003.
Hornemann, U., Kalthoff, J. F., Rothenhäusler, H., Senf, H., and Winkler, S. (1984). “Experimental investigation of wave and fracture propagation in glass—Slabs loaded by steel cylinders at high impact velocities.” EMI Rep. E 4/84, Weil am Rhein, Germany, Ernst-Mach-Institute, Freiburg, Germany.
Ibrahimbegovic, A., and Delaplace, A. (2003). “Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material.” Comput. Struct., 81(12), 1255–1266.
Jayatilaka, A. de S. (1979). Fracture of engineering brittle materials, Applied Sciences, London.
Jeulin, D. (1991). “Modèles morphologiques de structures aléatoires et changement d’échelle.” thèse d’État, Univ. de Caen, Caen, France.
Kanninen, M. F., and Popelar, C. H. (1985). Advanced fracture mechanics, Oxford University Press, Oxford, U.K.
Knauss, W. G., and Ravi-Chandar, K. (1985). “Some basic problems in stress wave dominated fracture.” Int. J. Fract., 27(3-4), 127–143.
Knauss, W. G., and Ravi-Chandar, K. (1986). “Fundamental considerations in dynamic fracture.” Eng. Fract. Mech., 23(1), 9–20.
Kolsky, H. (1963). Stress waves in solids, Dover, New York.
Krieg, R. D. (1978). “A simple constitutive description for soils and crushable foams.” Rep. SC-DR-7260883, Sandia National Laboratory, Albuquerque, N.M.
Kurkjian, C. R. (1985). Strength of inorganic glass, Plenum, New York.
Malier, Y. (1992). High Performance Concrete, E & FN Spon, London.
Margolin, L. G. (1983). “Elasticity moduli of a cracked body.” Int. J. Fract., 22, 65–79.
Mastilovic, S., and Krajcinovic, D. (1999). “High-velocity expansion of a cavity within a brittle material.” J. Mech. Phys. Solids, 47, 577–600.
Rajendran, A. M. (1994). “Modeling the impact behavior of AD85 ceramic under multiaxial loading.” Int. J. Impact Eng., 15(6), 749–768.
Ravi-Chandar, K., and Knauss, W. G. (1982). “Dynamic crack–tip stresses under stress wave loading. A comparison of theory and experiment.” Int. J. Fract., 20(3), 209–222.
Ravi-Chandar, K., and Knauss, W. G. (1984a). “An experimental investigation into dynamic fracture: I. Crack initiation and arrest.” Int. J. Fract., 25(4), 247–262.
Ravi-Chandar, K., and Knauss, W. G. (1984b). “An experimental investigation into dynamic fracture: II. Microstructural aspects.” Int. J. Fract., 26(1), 65–80.
Ravi-Chandar, K., and Knauss, W. G. (1984c). “An experimental investigation into dynamic fracture: III. Steady-state crack propagation and crack branching.” Int. J. Fract., 26(2), 141–154.
Ravi-Chandar, K., and Knauss, W. G. (1984d). “An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks.” Int. J. Fract., 26(3), 189–200.
Richard, P., and Cheyrezy, M. (1995). “Composition of reactive power concretes.” Cem. Concr. Res., 25(7), 1501–1511.
Riou, P., Denoual, C., and Cottenot, C. E. (1998). “Visualization of the damage evolution in impacted silicon carbide ceramics.” Int. J. Impact Eng., 21(4), 225–235.
Schwer, L. E., Rosinsky, R., and Day, J. (1988). “An axisymmetric lagrangian technique for predicting earth penetration including penetrator response.” Int. J. Numer. Analyt. Meth. Geomech., 12, 235–262.
Sharon, E., Gross, S. P., and Fineberg, J. (1995). “Local crack branching as a mechanism for instability in dynamic fracture.” Phys. Rev. Lett., 74(24), 5096–5099.
Shockey, D. A., Curran, D. R., Seaman, L., Rosenberg, J. T., and Petersen, C. F. (1974). “Fragmentation of rocks under dynamic loads.” Int. J. Rock Mech. Min. Sci., 11, 303–317.
Sieradzki, K., and Dienes, G. J. (1988). “Atomistics of crack propagation.” Acta Metall., 36(3), 651–663.
Strassburger, E., and Senf, H. (1994). “Experimental investigations of wave and fracture phenomena in impacted ceramics.” EMI Rep. 3/94, Ernst-Mach-Institute, Freiburg, Germany.
Strassburger, E., and Senf, H. (1995). “Experimental investigations of wave and fracture phenomena in impacted ceramics and glasses.” Rep. ARL-CR-214, Army Research Laboratory, Adelphi, Md.
Strassburger, E., Senf, H., and Rothenhäusler, H. (1994). “Fracture propagation during impact in three types of ceramics.” J. Phys. IV, 8, 653–658.
Swenson, D. V., and Taylor, L. M. (1983). “A finite-element model for the analysis of tailored pulse stimulation of boreholes.” Int. J. Numer. Analyt. Meth. Geomech., 7, 469–484.
Weibull, W. (1939). “A statistical theory of the strength of materials.” Rep. 151, Royal Swedish Institute of Engineering Research, Stockholm, Sweden.
Weibull, W. (1951). “A statistical distribution function of wide applicability.” J. Appl. Mech., 18(3), 293–297.
Zhou, S. J., Lomdahl, P. S., Thomson, R., and Holian, B. L. (1996). “Dynamic crack processes via molecular dynamics.” Phys. Rev. Lett., 76(13), 2318–2321.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 134Issue 4April 2008
Pages: 302 - 315

History

Received: Mar 1, 2005
Accepted: Mar 23, 2007
Published online: Apr 1, 2008
Published in print: Apr 2008

Permissions

Request permissions for this article.

Notes

Note. Associate Editor: George Z. Voyiadjis

Authors

Affiliations

Pascal Forquin
Assistant Professor, LPMM, CNRS-UMR7554, Univ. Paul Verlaine, Ile du Saulcy, F-57045 Metz Cedex 1, France; formerly, DGA/CTA-Dépt. MSP, 16 bis avenue Prieur de la Côte d’Or, F-94114 Arcueil Cedex, France.
François Hild
Research Professor, LMT-Cachan, ENS de Cachan, CNRS-UMR 8535, Univ. Paris 6, 61 Ave. du Président Wilson, F-94235 Cachan Cedex, France (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share