Abstract

Structural health monitoring (SHM) is an important and practical procedure for ensuring the structural integrity and serviceability of civil engineering structures such as bridges, buildings, and dams. Model-driven or data-driven strategies for structural response prediction are now widely combined with advances in engineering for use in SHM applications. Engineers have recently demonstrated increasing interest in using machine learning (ML) and artificial intelligence (AI) to achieve a variety of benefits and possibilities, notably for predicting structural reactions. This study serves as a comprehensive overview of the use of ML applications for structural response prediction in the context of SHM for civil engineering structures, with a particular focus on ML, deep learning (DL), and meta-heuristic algorithms. Accordingly, this study summarizes existing knowledge, presents concepts in a simple way, highlights trends, provides methodological insights, and provides a valuable resource for researchers, stakeholders, and decision-makers to benefit from. It is observed that the use of ML, DL, and meta-heuristic algorithms to predict the response of civil engineering structures within an acceptable accuracy range can be employed for SHM, resulting in improved speed, efficiency, and accuracy compared to conventional approaches.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdu, D. M., G. Wei, and W. Yang. 2023. “Assessment of railway bridge pier settlement based on train acceleration response using machine learning algorithms.” Structures 52 (Jun): 598–608. https://doi.org/10.1016/j.istruc.2023.03.167.
Adeli, H. 2020. “Four decades of computing in civil engineering.” In Proc., CIGOS 2019, Innovation for Sustainable Infrastructure, 3–11. New York: Springer.
Agrawal, P., H. F. Abutarboush, T. Ganesh, and A. W. Mohamed. 2021. “Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019).” IEEE Access 9 (Mar): 26766–26791. https://doi.org/10.1109/ACCESS.2021.3056407.
Aguilar, V., C. Sandoval, J. M. Adam, J. Garzón-Roca, and G. Valdebenito. 2016. “Prediction of the shear strength of reinforced masonry walls using a large experimental database and artificial neural networks.” Struct. Infrastruct. Eng. 12 (12): 1661–1674. https://doi.org/10.1080/15732479.2016.1157824.
Ahmadianfar, I., M. Jamei, and X. Chu. 2021. “Prediction of local scour around circular piles under waves using a novel artificial intelligence approach.” Mar. Georesour. Geotechnol. 39 (1): 44–55. https://doi.org/10.1080/1064119X.2019.1676335.
Alipour, M., and D. K. Harris. 2020. “A big data analytics strategy for scalable urban infrastructure condition assessment using semi-supervised multi-transform self-training.” J. Civ. Struct. Health Monit. 10 (2): 313–332. https://doi.org/10.1007/s13349-020-00386-4.
Almustafa, M. K., and M. L. Nehdi. 2020. “Machine learning model for predicting structural response of RC slabs exposed to blast loading.” Eng. Struct. 221 (Oct): 111109. https://doi.org/10.1016/j.engstruct.2020.111109.
Almustafa, M. K., and M. L. Nehdi. 2021. “Machine learning prediction of structural response for FRP retrofitted RC slabs subjected to blast loading.” Eng. Struct. 244 (Oct): 112752. https://doi.org/10.1016/j.engstruct.2021.112752.
Almustafa, M. K., and M. L. Nehdi. 2022. “Novel hybrid machine learning approach for predicting structural response of RC beams under blast loading.” Structures 39 (May): 1092–1106. https://doi.org/10.1016/j.istruc.2022.04.007.
Anvari, A. T., S. Babanajad, and A. H. Gandomi. 2023. “Data-driven prediction models for total shear strength of reinforced concrete beams with fiber reinforced polymers using an evolutionary machine learning approach.” Eng. Struct. 276 (Feb): 115292. https://doi.org/10.1016/j.engstruct.2022.115292.
Asteris, P. G., and M. Nikoo. 2019. “Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures.” Neural Comput. Appl. 31 (9): 4837–4847. https://doi.org/10.1007/s00521-018-03965-1.
Bakht, B., and A. Mufti. 2018. “Evaluation of one hundred and one instrumented bridges suggests a new level of inspection should be established in the bridge design codes.” J. Civ. Struct. Health Monit. 8 (1): 3. https://doi.org/10.1007/s13349-017-0256-1.
Barkhordari, M., and M. Es-haghi. 2021. “Straightforward prediction for responses of the concrete shear wall buildings subject to ground motions using machine learning algorithms.” Int. J. Eng. 34 (7): 1586–1601. https://doi.org/10.5829/ije.2021.34.07a.04.
Bijelić, N., T. Lin, and G. G. Deierlein. 2020. “Efficient intensity measures and machine learning algorithms for collapse prediction of tall buildings informed by SCEC CyberShake ground motion simulations.” Earthquake Spectra 36 (3): 1188–1207. https://doi.org/10.1177/8755293020919414.
Bolandi, H., X. Li, T. Salem, V. N. Boddeti, and N. Lajnef. 2022. “Bridging finite element and deep learning: High-resolution stress distribution prediction in structural components.” Front. Struct. Civ. Eng. 16 (11): 1365–1377. https://doi.org/10.1007/s11709-022-0882-5.
Brownjohn, J. M. W., A. De Stefano, Y.-L. Xu, H. Wenzel, and A. E. Aktan. 2011. “Vibration-based monitoring of civil infrastructure: Challenges and successes.” J. Civ. Struct. Health Monit. 1 (3): 79–95. https://doi.org/10.1007/s13349-011-0009-5.
Çakiroğlu, M. A., and A. A. Süzen. 2020. “Assessment and application of deep learning algorithms in civil engineering.” El-Cezeri J. Sci. Eng. 7 (2): 906–922. https://doi.org/10.31202/ecjse.679113.
Castellon, D. F., A. Fenerci, and O. Øiseth. 2021. “A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural networks, support vector regression and buffeting theory.” J. Wind Eng. Ind. Aerodyn. 209 (Feb): 104484. https://doi.org/10.1016/j.jweia.2020.104484.
Çevik, A., A. E. Kurtoğlu, M. Bilgehan, M. E. Gülşan, and H. M. Albegmprli. 2015. “Support vector machines in structural engineering: A review.” J. Civ. Eng. Manage. 21 (3): 261–281. https://doi.org/10.3846/13923730.2015.1005021.
Chatterjee, S., S. Sarkar, S. Hore, N. Dey, A. S. Ashour, and V. E. Balas. 2017. “Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings.” Neural Comput. Appl. 28 (8): 2005–2016. https://doi.org/10.1007/s00521-016-2190-2.
Chen, C., L. Tang, Q. Xiao, L. Zhou, H. Wang, Z. Liu, C. Xing, Y. Liu, J. Chen, and Z. Jiang. 2023. “Unsupervised anomaly detection for long-span bridges combining response forecasting by deep learning with Td-MPCA.” Structures 54 (Aug): 1815–1830. https://doi.org/10.1016/j.istruc.2023.06.033.
Chen, P., C. Jia, C. Ng, and Z. Hu. 2021. “Application of SADA method on full-scale measurement data for dynamic responses prediction of Hywind floating wind turbines.” Ocean Eng. 239 (Mar): 109814. https://doi.org/10.1016/j.oceaneng.2021.109814.
Cosgun, C. 2023. “Machine learning for the prediction of evaluation of existing reinforced concrete structures performance against earthquakes.” Structures 50 (Apr): 1994–2003. https://doi.org/10.1016/j.istruc.2023.02.127.
Damirchilo, F., A. Hosseini, M. Mellat Parast, and E. H. Fini. 2021. “Machine learning approach to predict international roughness index using long-term pavement performance data.” J. Transp. Eng. Part B. Pavements 147 (4): 04021058. https://doi.org/10.1061/JPEODX.0000312.
Dang-Vu, H., Q. D. Nguyen, T. Chung, J. Shin, and K. Lee. 2022. “Frequency-based data-driven surrogate model for efficient prediction of irregular structure’s seismic responses.” J. Earthquake Eng. 26 (14): 7319–7336. https://doi.org/10.1080/13632469.2021.1961940.
Das, S., P. Saha, and S. K. Patro. 2016. “Vibration-based damage detection techniques used for health monitoring of structures: A review.” J. Civ. Struct. Health Monit. 6 (3): 477–507. https://doi.org/10.1007/s13349-016-0168-5.
Demertzis, K., K. Kostinakis, K. Morfidis, and L. Iliadis. 2023. “An interpretable machine learning method for the prediction of R/C buildings’ seismic response.” J. Build. Eng. 63 (Mar): 105493. https://doi.org/10.1016/j.jobe.2022.105493.
Dokeroglu, T., E. Sevinc, T. Kucukyilmaz, and A. Cosar. 2019. “A survey on new generation metaheuristic algorithms.” Comput. Ind. Eng. 137 (Nov): 106040. https://doi.org/10.1016/j.cie.2019.106040.
Dong, J., X. Yan, and S. Li. 2018. “Cable force monitoring and prediction for cable group of long-span cable-supported bridges.” J. Civ. Struct. Health Monit. 8 (4): 597–605. https://doi.org/10.1007/s13349-018-0301-8.
Doroudi, R., and S. H. H. Lavassani. 2021. “Connection of coupled buildings: A state-of-the-art review.” Structures 33 (Oct): 1299–1326. https://doi.org/10.1016/j.istruc.2021.05.017.
Doroudi, R., S. H. H. Lavassani, and M. Shahrouzi. 2023. “Predicting acceleration response of super-tall buildings by support vector regression.” Struct. Des. Tall Special Build. 32 (16): e2049. https://doi.org/10.1002/tal.2049.
Doroudi, R., S. H. H. Lavassani, M. Shahrouzi, and M. Dadgostar. 2022. “Identifying the dynamic characteristics of super tall buildings by multivariate empirical mode decomposition.” Struct. Control Health Monit. 29 (11): e3075. https://doi.org/10.1002/stc.3075.
Entezami, A., H. Sarmadi, and B. Saeedi Razavi. 2020. “An innovative hybrid strategy for structural health monitoring by modal flexibility and clustering methods.” J. Civ. Struct. Health Monit. 10 (5): 845–859. https://doi.org/10.1007/s13349-020-00421-4.
Eshkevari, S. S., M. Takáč, S. N. Pakzad, and M. Jahani. 2021. “DynNet: Physics-based neural architecture design for nonlinear structural response modeling and prediction.” Eng. Struct. 229 (Mar): 111582. https://doi.org/10.1016/j.engstruct.2020.111582.
Fang, C., H. Tang, Y. Li, and J. Zhang. 2020. “Stochastic response of a cable-stayed bridge under non-stationary winds and waves using different surrogate models.” Ocean Eng. 199 (Mar): 106967. https://doi.org/10.1016/j.oceaneng.2020.106967.
Feng, D., and M. Q. Feng. 2018. “Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection–A review.” Eng. Struct. 156 (Mar): 105–117. https://doi.org/10.1016/j.engstruct.2017.11.018.
Flah, M., I. Nunez, W. Ben Chaabene, and M. L. Nehdi. 2021. “Machine learning algorithms in civil structural health monitoring: A systematic review.” Arch. Comput. Methods Eng. 28 (4): 2621–2643. https://doi.org/10.1007/s11831-020-09471-9.
Gandomi, A. H., X.-S. Yang, S. Talatahari, and A. H. Alavi. 2013. Metaheuristic applications in structures and infrastructures. Oxford, UK: Newnes.
Ghannadi, P., and S. S. Kourehli. 2019. “Data-driven method of damage detection using sparse sensors installation by SEREPa.” J. Civ. Struct. Health Monit. 9 (4): 459–475. https://doi.org/10.1007/s13349-019-00345-8.
Gharehbaghi, S., H. Yazdani, and M. Khatibinia. 2020. “Estimating inelastic seismic response of reinforced concrete frame structures using a wavelet support vector machine and an artificial neural network.” Neural Comput. Appl. 32 (8): 2975–2988. https://doi.org/10.1007/s00521-019-04075-2.
Gharehbaghi, V. R., E. Noroozinejad Farsangi, M. Noori, T. Yang, S. Li, A. Nguyen, C. Málaga-Chuquitaype, P. Gardoni, and S. Mirjalili. 2021. “A critical review on structural health monitoring: Definitions, methods, and perspectives.” Arch. Comput. Methods Eng. 29 (Oct): 1–27. https://doi.org/10.1007/s11831-021-09665-9.
Ghazvineh, S., G. Nouri, V. Gharehbaghi, S. H. H. Lavasani, E. N. Farsangi, and M. Noori. 2023. “7 Vibration-based damage detection using a novel hybrid CNN-SVM approach.” In Data-centric structural health monitoring: Mechanical, aerospace and complex infrastructure systems, 137. Berlin: Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110791426-007.
Ghazvineh, S., G. Nouri, S. H. H. Lavassani, V. Gharehbaghi, and A. Nguyen. 2021. “Application of 2-D convolutional neural networks for damage detection in steel frame structures.” Preprint, submitted October 29, 2021. http://arxiv.org/abs/2110.15895.
Ghimire, S., P. Guéguen, S. Giffard-Roisin, and D. Schorlemmer. 2022. “Testing machine learning models for seismic damage prediction at a regional scale using building-damage dataset compiled after the 2015 Gorkha Nepal earthquake.” Earthquake Spectra 38 (4): 2970–2993. https://doi.org/10.1177/87552930221106495.
Guan, X., H. Burton, M. Shokrabadi, and Z. Yi. 2021. “Seismic drift demand estimation for steel moment frame buildings: From mechanics-based to data-driven models.” J. Struct. Eng. 147 (6): 04021058. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003004.
Han, Q., Q. Ma, J. Xu, and M. Liu. 2021. “Structural health monitoring research under varying temperature condition: A review.” J. Civ. Struct. Health Monit. 11 (1): 149–173. https://doi.org/10.1007/s13349-020-00444-x.
He, J., L. Jiang, L. Jiang, T. Wen, Y. Hu, W. Guo, and J. Sun. 2023. “Estimation of blast-induced peak response of concrete-filled double-skin tube columns by intelligence-based technique.” Thin-Walled Struct. 186 (Mar): 110670. https://doi.org/10.1016/j.tws.2023.110670.
Huang, P., and Z. Chen. 2021. “Deep learning for nonlinear seismic responses prediction of subway station.” Eng. Struct. 244 (Oct): 112735. https://doi.org/10.1016/j.engstruct.2021.112735.
Hung, S.-L., and H. Adeli. 1994. “Object-oriented backpropagation and its application to structural design.” Neurocomputing 6 (1): 45–55. https://doi.org/10.1016/0925-2312(94)90033-7.
Jiang, S., L. Zhao, and C. Du. 2022. “Structural deformation prediction model based on extreme learning machine algorithm and particle swarm optimization.” Struct. Health Monit. 21 (6): 2786–2803. https://doi.org/10.1177/14759217211072237.
Junda, E., C. Málaga-Chuquitaype, and K. Chawgien. 2023. “Interpretable machine learning models for the estimation of seismic drifts in CLT buildings.” J. Build. Eng. 70 (Jun): 106365. https://doi.org/10.1016/j.jobe.2023.106365.
Kazemi, F., N. Asgarkhani, and R. Jankowski. 2023. “Predicting seismic response of SMRFs founded on different soil types using machine learning techniques.” Eng. Struct. 274 (Jan): 114953. https://doi.org/10.1016/j.engstruct.2022.114953.
Kim, D., K. Kwon, K. Pham, J.-Y. Oh, and H. Choi. 2022. “Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization.” Autom. Constr. 140 (Aug): 104331. https://doi.org/10.1016/j.autcon.2022.104331.
Kim, S., and T. Kim. 2022. “Machine-learning-based prediction of vortex-induced vibration in long-span bridges using limited information.” Eng. Struct. 266 (Sep): 114551. https://doi.org/10.1016/j.engstruct.2022.114551.
Kumar, S., K. Patel, S. Chaudhary, and A. Nagpal. 2021. “Rapid prediction of long-term deflections in steel-concrete composite bridges through a neural network model.” Int. J. Steel Struct. 21 (2): 590–603. https://doi.org/10.1007/s13296-021-00458-1.
Lake, B. M., R. Salakhutdinov, and J. B. Tenenbaum. 2015. “Human-level concept learning through probabilistic program induction.” Science 350 (6266): 1332–1338. https://doi.org/10.1126/science.aab3050.
Lee, J. H., J. Shin, and M. J. Realff. 2018. “Machine learning: Overview of the recent progresses and implications for the process systems engineering field.” Comput. Chem. Eng. 114 (Jun): 111–121. https://doi.org/10.1016/j.compchemeng.2017.10.008.
Li, C., H. Li, and X. Chen. 2022. “Fast seismic response estimation of tall pier bridges based on deep learning techniques.” Eng. Struct. 266 (Sep): 114566. https://doi.org/10.1016/j.engstruct.2022.114566.
Li, H., and J. Ou. 2016. “The state of the art in structural health monitoring of cable-stayed bridges.” J. Civ. Struct. Health Monit. 6 (1): 43–67. https://doi.org/10.1007/s13349-015-0115-x.
Li, J., Z. He, and X. Zhao. 2021a. “A data-driven building’s seismic response estimation method using a deep convolutional neural network.” IEEE Access 9 (Mar): 50061–50077. https://doi.org/10.1109/ACCESS.2021.3065837.
Li, T., Y. Pan, K. Tong, C. E. Ventura, and C. W. de Silva. 2021b. “Attention-based sequence-to-sequence learning for online structural response forecasting under seismic excitation.” IEEE Trans. Syst. Man Cybern.: Syst. 52 (4): 2184–2200. https://doi.org/10.1109/TSMC.2020.3048696.
Liao, Y., R. Lin, R. Zhang, and G. Wu. 2023. “Attention-based LSTM (AttLSTM) neural network for seismic response modeling of bridges.” Comput. Struct. 275 (Jan): 106915. https://doi.org/10.1016/j.compstruc.2022.106915.
Lim, S., and S. Chi. 2019. “Xgboost application on bridge management systems for proactive damage estimation.” Adv. Eng. Inf. 41 (Aug): 100922. https://doi.org/10.1016/j.aei.2019.100922.
Limongelli, M. P. 2020. “SHM for informed management of civil structures and infrastructure.” J. Civ. Struct. Health Monit. 10 (5): 739–741. https://doi.org/10.1007/s13349-020-00439-8.
Liu, F., J. Li, and L. Wang. 2023. “PI-LSTM: Physics-informed long short-term memory network for structural response modeling.” Eng. Struct. 292 (Oct): 116500. https://doi.org/10.1016/j.engstruct.2023.116500.
Liu, X., F. Kang, C. Ma, and H. Li. 2021a. “Concrete arch dam behavior prediction using kernel-extreme learning machines considering thermal effect.” J. Civ. Struct. Health Monit. 11 (2): 283–299. https://doi.org/10.1007/s13349-020-00452-x.
Liu, Z., L. Zhang, J. Li, and M. Mamluki. 2021b. “Predicting the seismic response of the short structures by considering the whale optimization algorithm.” Energy Rep. 7 (Nov): 4071–4084. https://doi.org/10.1016/j.egyr.2021.06.095.
Lu, P., S. Chen, and Y. Zheng. 2012. “Artificial intelligence in civil engineering.” Math. Probl. Eng. 2012 (Dec): 145974. https://doi.org/10.1155/2012/145974.
Lu, X., Y. Xu, Y. Tian, B. Cetiner, and E. Taciroglu. 2021. “A deep learning approach to rapid regional post-event seismic damage assessment using time-frequency distributions of ground motions.” Earthquake Eng. Struct. Dyn. 50 (6): 1612–1627. https://doi.org/10.1002/eqe.3415.
Mangalathu, S., and J.-S. Jeon. 2018. “Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques.” Eng. Struct. 160 (Apr): 85–94. https://doi.org/10.1016/j.engstruct.2018.01.008.
Manzoor, B., I. Othman, S. Durdyev, S. Ismail, and M. H. Wahab. 2021. “Influence of artificial intelligence in civil engineering toward sustainable development–A systematic literature review.” Appl. Syst. Innovation 4 (3): 52. https://doi.org/10.3390/asi4030052.
Martinez, P., M. Al-Hussein, and R. Ahmad. 2019. “A scientometric analysis and critical review of computer vision applications for construction.” Autom. Constr. 107 (Mar): 102947. https://doi.org/10.1016/j.autcon.2019.102947.
Mata, J., F. Salazar, J. Barateiro, and A. Antunes. 2021. “Validation of machine learning models for structural dam behaviour interpretation and prediction.” Water 13 (19): 2717. https://doi.org/10.3390/w13192717.
Mehrabi, P., S. Honarbari, S. Rafiei, S. Jahandari, and M. Alizadeh Bidgoli. 2021. “Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques.” J. Ambient Intell. Hum. Comput. 12 (11): 10105–10123. https://doi.org/10.1007/s12652-020-02776-4.
Morfidis, K., and K. Kostinakis. 2017. “Seismic parameters’ combinations for the optimum prediction of the damage state of R/C buildings using neural networks.” Adv. Eng. Software 106 (Apr): 1–16. https://doi.org/10.1016/j.advengsoft.2017.01.001.
Mousavi, M., A. TohidiFar, and A. Alvanchi. 2022. “BIM and machine learning in seismic damage prediction for non-structural exterior infill walls.” Autom. Constr. 139 (Jul): 104288. https://doi.org/10.1016/j.autcon.2022.104288.
Naser, M. Z., S. Thai, and H.-T. Thai. 2021. “Evaluating structural response of concrete-filled steel tubular columns through machine learning.” J. Build. Eng. 34 (Feb): 101888. https://doi.org/10.1016/j.jobe.2020.101888.
Nguyen, H., H. Moayedi, L. K. Foong, H. A. H. Al Najjar, W. A. W. Jusoh, A. S. A. Rashid, and J. Jamali. 2020. “Optimizing ANN models with PSO for predicting short building seismic response.” Eng. Comput. 36 (3): 823–837. https://doi.org/10.1007/s00366-019-00733-0.
Nguyen, H. D., N. D. Dao, and M. Shin. 2021. “Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting.” Eng. Struct. 242 (Mar): 112518. https://doi.org/10.1016/j.engstruct.2021.112518.
Ning, C., Y. Xie, and L. Sun. 2023. “LSTM, WaveNet, and 2D CNN for nonlinear time history prediction of seismic responses.” Eng. Struct. 286 (Jul): 116083. https://doi.org/10.1016/j.engstruct.2023.116083.
Oh, B. K., and J. Kim. 2021. “Optimal architecture of a convolutional neural network to estimate structural responses for safety evaluation of the structures.” Measurement 177 (Jun): 109313. https://doi.org/10.1016/j.measurement.2021.109313.
Oh, B. K., H. S. Park, and B. Glisic. 2023. “Time-dependent structural response estimation method for concrete structures using time information and convolutional neural networks.” Eng. Struct. 275 (Jan): 115193. https://doi.org/10.1016/j.engstruct.2022.115193.
Oh, B. K., Y. Park, and H. S. Park. 2020. “Seismic response prediction method for building structures using convolutional neural network.” Struct. Control Health Monit. 27 (5): e2519. https://doi.org/10.1002/stc.2519.
Oraee, M., M. R. Hosseini, E. Papadonikolaki, R. Palliyaguru, and M. Arashpour. 2017. “Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review.” Int. J. Project Manage. 35 (7): 1288–1301. https://doi.org/10.1016/j.ijproman.2017.07.001.
Osman, A. I. A., A. N. Ahmed, M. F. Chow, Y. F. Huang, and A. El-Shafie. 2021. “Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia.” Ain Shams Eng. J. 12 (2): 1545–1556. https://doi.org/10.1016/j.asej.2020.11.011.
Park, H. S., T. Hong, D.-E. Lee, B. K. Oh, and B. Glisic. 2022. “Long-term structural response prediction models for concrete structures using weather data, fiber-optic sensing, and convolutional neural network.” Expert Syst. Appl. 201 (Sep): 117152. https://doi.org/10.1016/j.eswa.2022.117152.
Parsa, P., and H. Naderpour. 2021. “Shear strength estimation of reinforced concrete walls using support vector regression improved by Teaching–learning-based optimization, Particle Swarm optimization, and Harris Hawks Optimization algorithms.” J. Build. Eng. 44 (Dec): 102593. https://doi.org/10.1016/j.jobe.2021.102593.
Peng, H., J. Yan, Y. Yu, and Y. Luo. 2012. “Time series estimation based on deep Learning for structural dynamic nonlinear prediction.” Structures 29 (Feb): 1016–1031. https://doi.org/10.1016/j.istruc.2020.11.049.
Pereira, M., and B. Glisic. 2022. “A hybrid approach for prediction of long-term behavior of concrete structures.” J. Civ. Struct. Health Monit. 12 (4): 891–911. https://doi.org/10.1007/s13349-022-00582-4.
Petersen, Ø. W., O. Øiseth, and E.-M. Lourens. 2019. “The use of inverse methods for response estimation of long-span suspension bridges with uncertain wind loading conditions.” J. Civ. Struct. Health Monit. 9 (1): 21–36. https://doi.org/10.1007/s13349-018-0319-y.
Radovanovic, S., V. Milivojevic, D. Divac, and N. Milivojevic. 2015. “Prediction of concrete dam deformation using artificial neural network.” In Proc., 4th Int. Conf. on Soft Computing Technology in Civil, Structural and Environmental Engineering, 1–4. Prague, Czech Republic: Civil-Comp Press.
Soleimani-Babakamali, M. H., and M. Z. Esteghamati. 2022. “Estimating seismic demand models of a building inventory from nonlinear static analysis using deep learning methods.” Eng. Struct. 266 (Sep): 114576. https://doi.org/10.1016/j.engstruct.2022.114576.
Spencer, B. F., Jr., V. Hoskere, and Y. Narazaki. 2019. “Advances in computer vision-based civil infrastructure inspection and monitoring.” Engineering 5 (2): 199–222. https://doi.org/10.1016/j.eng.2018.11.030.
Tadesse, Z., K. Patel, S. Chaudhary, and A. Nagpal. 2012. “Neural networks for prediction of deflection in composite bridges.” J. Constr. Steel Res. 68 (1): 138–149. https://doi.org/10.1016/j.jcsr.2011.08.003.
Thacker, S., D. Adshead, M. Fay, S. Hallegatte, M. Harvey, H. Meller, N. O’Regan, J. Rozenberg, G. Watkins, and J. W. Hall. 2019. “Infrastructure for sustainable development.” Nat. Sustainability 2 (4): 324–331. https://doi.org/10.1038/s41893-019-0256-8.
Thai, H.-T. 2022. “Machine learning for structural engineering: A state-of-the-art review.” Structures 38 (Apr): 448–491. https://doi.org/10.1016/j.istruc.2022.02.003.
Thaler, D., M. Stoffel, B. Markert, and F. Bamer. 2021. “Machine-learning-enhanced tail end prediction of structural response statistics in earthquake engineering.” Earthquake Eng. Struct. Dyn. 50 (8): 2098–2114. https://doi.org/10.1002/eqe.3432.
Torky, A. A., and S. Ohno. 2021. “Deep learning techniques for predicting nonlinear multi-component seismic responses of structural buildings.” Comput. Struct. 252 (Aug): 106570. https://doi.org/10.1016/j.compstruc.2021.106570.
Van Eck, N., and L. Waltman. 2010. “Software survey: VOSviewer, a computer program for bibliometric mapping.” Scientometrics 84 (2): 523–538. https://doi.org/10.1007/s11192-009-0146-3.
Vanluchene, R., and R. Sun. 1990. “Neural networks in structural engineering.” Comput.-Aided Civ. Infrastruct. Eng. 5 (3): 207–215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x.
Wang, X., Z. Li, and A. Shafieezadeh. 2021b. “Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: Exploring optimized machine learning models.” Eng. Struct. 236 (Jun): 112142. https://doi.org/10.1016/j.engstruct.2021.112142.
Wang, X., Y. Liu, and H. Xin. 2021a. “Bond strength prediction of concrete-encased steel structures using hybrid machine learning method.” Structures 32 (Aug): 2279–2292. https://doi.org/10.1016/j.istruc.2021.04.018.
Wang, X., C. Miao, and X. Wang. 2021c. “Prediction analysis of deflection in the construction of composite box-girder bridge with corrugated steel webs based on MEC-BP neural networks.” Structures 32 (Aug): 691–700. https://doi.org/10.1016/j.istruc.2021.03.011.
Wen, W., C. Zhang, and C. Zhai. 2022. “Rapid seismic response prediction of RC frames based on deep learning and limited building information.” Eng. Struct. 267 (Sep): 114638. https://doi.org/10.1016/j.engstruct.2022.114638.
Wong, W., and C. I. Ming. 2019. “A review on metaheuristic algorithms: Recent trends, benchmarking and applications.” In Proc., 2019 7th Int. Conf. on Smart Computing & Communications (ICSCC), 1–5. New York: IEEE.
Woo, S., J. Park, J. Park, and L. Manuel. 2019. “Wind field-based short-term turbine response forecasting by stacked dilated convolutional LSTMs.” IEEE Trans. Sustainable Energy 11 (4): 2294–2304. https://doi.org/10.1109/TSTE.2019.2954107.
Wu, T.-Y., R.-T. Wu, P.-H. Wang, T.-K. Lin, and K.-C. Chang. 2023. “Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks.” Eng. Struct. 286 (Jul): 116130. https://doi.org/10.1016/j.engstruct.2023.116130.
Xie, Y., M. Ebad Sichani, J. E. Padgett, and R. DesRoches. 2020. “The promise of implementing machine learning in earthquake engineering: A state-of-the-art review.” Earthquake Spectra 36 (4): 1769–1801. https://doi.org/10.1177/8755293020919419.
Xu, J., D. Dang, Q. Ma, X. Liu, and Q. Han. 2022. “A novel and robust data anomaly detection framework using LAL-AdaBoost for structural health monitoring.” J. Civ. Struct. Health Monit. 12 (2): 305–321. https://doi.org/10.1007/s13349-021-00544-2.
Ye, X., T. Jin, and C. Yun. 2019. “A review on deep learning-based structural health monitoring of civil infrastructures.” Smart Struct. Syst 24 (5): 567–585. https://doi.org/10.12989/sss.2019.24.5.567.
Zhang, D., Y. Chen, C. Zhang, G. Xue, J. Zhang, M. Zhang, L. Wang, and N. Li. 2023a. “Prediction of seismic acceleration response of precast segmental self-centering concrete filled steel tube single-span bridges based on machine learning method.” Eng. Struct. 279 (Mar): 115574. https://doi.org/10.1016/j.engstruct.2022.115574.
Zhang, K., H.-M. Lyu, S.-L. Shen, A. Zhou, and Z.-Y. Yin. 2020a. “Evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements.” Tunnelling Underground Space Technol. 106 (Dec): 103594. https://doi.org/10.1016/j.tust.2020.103594.
Zhang, P., H. Li, Q. P. Ha, Z.-Y. Yin, and R.-P. Chen. 2020b. “Reinforcement learning based optimizer for improvement of predicting tunneling-induced ground responses.” Adv. Eng. Inf. 45 (Mar): 101097. https://doi.org/10.1016/j.aei.2020.101097.
Zhang, R., Z. Chen, S. Chen, J. Zheng, O. Büyüköztürk, and H. Sun. 2019. “Deep long short-term memory networks for nonlinear structural seismic response prediction.” Comput. Struct. 220 (Aug): 55–68. https://doi.org/10.1016/j.compstruc.2019.05.006.
Zhang, R., Y. Liu, and H. Sun. 2020c. “Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling.” Eng. Struct. 215 (Jul): 110704. https://doi.org/10.1016/j.engstruct.2020.110704.
Zhang, R., L. Meng, Z. Mao, and H. Sun. 2021. “Spatiotemporal deep learning for bridge response forecasting.” J. Struct. Eng. 147 (6): 04021070. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003022.
Zhang, Y., Z. Wang, H. Kuang, F. Fu, and A. Yu. 2023b. “Prediction of surface settlement in shield-tunneling construction process using PCA-PSO-RVM machine learning.” J. Perform. Constr. Facil. 37 (3): 04023012. https://doi.org/10.1061/JPCFEV.CFENG-4363.
Zhao, C., Y. Zhu, and Z. Zhou. 2022a. “Machine learning-based approaches for predicting the dynamic response of RC slabs under blast loads.” Eng. Struct. 273 (Dec): 115104. https://doi.org/10.1016/j.engstruct.2022.115104.
Zhao, W., P. Chen, X. Liu, and L. Wang. 2022b. “Impact response prediction and optimization of SC walls using machine learning algorithms.” Structures 45 (Nov): 390–399. https://doi.org/10.1016/j.istruc.2022.09.036.
Zhou, J., S. Zhu, Y. Qiu, D. J. Armaghani, A. Zhou, and W. Yong. 2022. “Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm.” Acta Geotech. 17 (4): 1343–1366. https://doi.org/10.1007/s11440-022-01450-7.
Zhu, J., and W. Zhang. 2016. “Numerical simulation of wind and wave fields for coastal slender bridges.” J. Bridge Eng. 22 (3): 04016125. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001002.
Zhu, S., M. Ohsaki, and X. Guo. 2021. “Prediction of non-linear buckling load of imperfect reticulated shell using modified consistent imperfection and machine learning.” Eng. Struct. 226 (Jan): 111374. https://doi.org/10.1016/j.engstruct.2020.111374.
Zinno, R., S. S. Haghshenas, G. Guido, K. Rashvand, A. Vitale, and A. Sarhadi. 2022. “The state of the art of artificial intelligence approaches and new technologies in structural health monitoring of bridges.” Appl. Sci. 13 (1): 97. https://doi.org/10.3390/app13010097.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 29Issue 3August 2024

History

Published online: Mar 18, 2024
Published in print: Aug 1, 2024
Discussion open until: Aug 18, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Faculty of Engineering, Kharazmi Univ., Tehran 15719-14911, Iran. ORCID: https://orcid.org/0000-0003-4937-0953. Email: [email protected]
Associate Professor, Faculty of Engineering, Kharazmi Univ., Tehran 15719-14911, Iran (corresponding author). ORCID: https://orcid.org/0000-0002-2936-599X. Email: [email protected]
Faculty of Engineering, Kharazmi Univ., Tehran 15719-14911, Iran. ORCID: https://orcid.org/0000-0002-2714-1300. Email: [email protected]
Seyed Hossein Hosseini Lavassani [email protected]
Associate Professor, Faculty of Engineering, Kharazmi Univ., Tehran 15719-14911, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share