Technical Papers
Jun 19, 2024

Quantifying the Impact of Future Climate Change on Flood Susceptibility: An Integration of CMIP6 Models, Machine Learning, and Remote Sensing

Publication: Journal of Water Resources Planning and Management
Volume 150, Issue 9

Abstract

In recent years, the frequency of floods has escalated due to global warming and human activities. Addressing this challenge, our study investigates how future climate change scenarios will affect flood susceptibility in the Tajan watershed, northern Iran. The primary objective is to quantify and map the evolving risk of flooding in this region under different future climate scenarios. We applied machine learning techniques, coupled model intercomparison project phase 6 (CMIP6) climatic models, and remote sensing to achieve this goal. The CanESM5 climate model was chosen for its accuracy among four global climate models in CMIP6 to estimate future precipitation trends under shared socioeconomic pathways (SSP 2.6, 4.5, and 8.5) over two-time horizons: future (2020–2060) and far future (2061–2100). These scenarios encompass various influential factors, such as greenhouse gas emissions, urbanization, deforestation, and socioeconomic development, which played crucial roles in modulating flood susceptibility. Flood susceptibility maps were generated considering future precipitation patterns and scenarios using random forest (RF) and support vector machine (SVM) algorithms, 432 flood locations, and 15 flood influencing factors. The accuracy of our prediction was validated through multiple statistical measures, including the area under the receiver operating characteristic (AUC-ROC) curve. The results indicated that the proposed models performed well, with the RF model (AUC=0.91) demonstrating higher accuracy compared to the SVM model (AUC=0.85). From a spatial perspective, increased future precipitation under all SSP scenarios enhances the likelihood of flood occurrences in the central and downstream regions. In the far future, intensified precipitation due to changes in regional topography and climate, coupled with higher greenhouse gas concentrations, is expected to heighten flood risks, especially at higher altitudes. We hope that our study findings will inform effective flood risk management strategies and adaptation plans in response to climate-induced flood risks, both in our study area and in similar regions globally.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The employed data, code, models, and all generated maps that support the findings of this study are available from the corresponding authors upon reasonable request.

Acknowledgments

The authors would like to thank Mrs. Shari Holderread for proofreading and editing the manuscript.

References

Abdelkareem, M., and A. M. Mansour. 2023. “Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques.” Nat. Hazards 117 (3): 2269–2295. https://doi.org/10.1007/s11069-023-05942-x.
Abedi, R., R. Costache, H. Shafizadeh-Moghadam, and Q. B. Pham. 2022. “Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees.” Geocarto Int. 37 (19): 5479–5496. https://doi.org/10.1080/10106049.2021.1920636.
Alaminie, A. A., G. Amarnath, S. K. Padhee, S. Ghosh, S. A. Tilahun, M. A. Mekonnen, G. Assefa, A. Seid, F. A. Zimale, and M. R. Jury. 2023. “Nested hydrological modeling for flood prediction using CMIP6 inputs around Lake Tana, Ethiopia.” J. Hydrol.: Reg. Stud. 46 (Apr): 101343. https://doi.org/10.1016/j.ejrh.2023.101343.
Al Baky, M. A., M. Islam, and S. Paul. 2020. “Flood hazard, vulnerability and risk assessment for different land use classes using a flow model.” Earth Syst. Environ. 4 (1): 225–244. https://doi.org/10.1007/s41748-019-00141-w.
Andaryani, S., V. Nourani, A. T. Haghighi, and S. Keesstra. 2021. “Integration of hard and soft supervised machine learning for flood susceptibility mapping.” J. Environ. Manage. 291 (Aug): 112731. https://doi.org/10.1016/j.jenvman.2021.112731.
Arabameri, A., K. Rezaei, A. Cerdà, C. Conoscenti, and Z. Kalantari. 2019. “A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran.” Sci. Total Environ. 660 (Apr): 443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021.
Arnell, N. W., and S. N. Gosling. 2016. “The impacts of climate change on river flood risk at the global scale.” Clim. Change 134 (3): 387–401. https://doi.org/10.1007/s10584-014-1084-5.
Asencios, H., W. Lavado, E. Sabino, J. Qquenta and O. Felipe. 2023. “Climate change effects on flooding at Lurin river basin, Peru, Copernicus Meetings.” In Proc., EGU General Assembly Conf. Abstracts. Munich, Germany: European Geosciences Union. https://doi.org/10.5194/egusphere-egu23-9028.
Breiman, L. 2001. “Random forests.” Mach. Learn. 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Chakrabortty, R., S. C. Pal, S. Janizadeh, M. Santosh, P. Roy, I. Chowdhuri, and A. Saha. 2021. “Impact of climate change on future flood susceptibility: An evaluation based on deep learning algorithms and GCM model.” Water Resour. Manage. 35 (Sep): 4251–4274. https://doi.org/10.1007/s11269-021-02944-x.
Choubin, B., E. Moradi, M. Golshan, J. Adamowski, F. Sajedi-Hosseini, and A. Mosavi. 2019. “An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines.” Sci. Total Environ. 651 (Feb): 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064.
Copernicus Climate Change Service, Climate Data Store. 2021. “CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).” Accessed March 3, 2021. https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.c866074c?tab=overview.
Crévolin, V., E. Hassanzadeh, and S.-C. Bourdeau-Goulet. 2023. “Updating the intensity-duration-frequency curves in major Canadian cities under changing climate using CMIP5 and CMIP6 model projections.” Sustainable Cities Soc. 92 (May): 104473. https://doi.org/10.1016/j.scs.2023.104473.
Deng, Z., Z. Wang, X. Wu, C. Lai, and W. Liu. 2023. “Effect difference of climate change and urbanization on extreme precipitation over the Guangdong-Hong Kong-Macao Greater Bay Area.” Atmos. Res. 282 (Feb): 106514. https://doi.org/10.1016/j.atmosres.2022.106514.
Gädeke, A., M. Wortmann, C. Menz, A. S. Islam, M. Masood, V. Krysanova, S. Lange, and F. F. Hattermann. 2022. “Climate impact emergence and flood peak synchronization projections in the Ganges, Brahmaputra and Meghna basins under CMIP5 and CMIP6 scenarios.” Environ. Res. Lett. 17 (9): 094036. https://doi.org/10.1088/1748-9326/ac8ca1.
Gai, L., J. P. Nunes, J. E. Baartman, H. Zhang, F. Wang, A. de Roo, C. J. Ritsema, and V. Geissen. 2019. “Assessing the impact of human interventions on floods and low flows in the Wei River Basin in China using the LISFLOOD model.” Sci. Total Environ. 653 (Feb): 1077–1094. https://doi.org/10.1016/j.scitotenv.2018.10.379.
Gatera, A., M. Kuradusenge, G. Bajpai, C. Mikeka, and S. Shrivastava. 2023. “Comparison of random forest and support vector machine regression models for forecasting road accidents.” Sci. Afr. 21 (Sep): e01739. https://doi.org/10.1016/j.sciaf.2023.e01739.
Gholami, F., A. Nemati, Y. Li, and J. Zhang. 2022. “Calculation of runoff computation cost and sensitivity analysis of topological attributes.” Remote Sens. Appl.: Soc. Environ. 26 (Apr): 100714. https://doi.org/10.1016/j.rsase.2022.100714.
Gholami, F., Z. Sedighifar, P. Ghaforpur, Y. Li, and J. Zhang. 2023. “Spatial–temporal analysis of various land use classifications and their long-term alteration’s impact on hydrological components: Using remote sensing, SAGA-GIS, and ARCSWAT model.” Environ. Sci. Water Res. Technol. 9 (4): 1161–1181. https://doi.org/10.1039/D2EW00138A.
Guo, Y., Y.-P. Xu, X. Yu, J. Xie, H. Chen, and Y. Si. 2023. “Impacts of GCM credibility on hydropower production robustness under climate change: CMIP5 vs CMIP6.” J. Hydrol. 618 (Mar): 129233. https://doi.org/10.1016/j.jhydrol.2023.129233.
Hajian, F., A. P. Dykes, and S. Cavanagh. 2019. “Assessment of the flood hazard arising from land use change in a forested catchment in northern Iran.” J. Flood Risk Manage. 12 (4): e12481. https://doi.org/10.1111/jfr3.12481.
Hengl, T., M. Nussbaum, M. N. Wright, G. B. Heuvelink, and B. Gräler. 2018. “Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables.” PeerJ 6 (Aug): e5518. https://doi.org/10.7717/peerj.5518.
Heo, J.-H., H. Ahn, J.-Y. Shin, T. R. Kjeldsen, and C. Jeong. 2019. “Probability distributions for a quantile mapping technique for a bias correction of precipitation data: A case study to precipitation data under climate change.” Water 11 (7): 1475. https://doi.org/10.3390/w11071475.
Hettiarachchi, S., C. Wasko, and A. Sharma. 2018. “Increase in flood risk resulting from climate change in a developed urban watershed–the role of storm temporal patterns.” Hydrol. Earth Syst. Sci. 22 (3): 2041–2056. https://doi.org/10.5194/hess-22-2041-2018.
Hooshyaripor, F., S. Faraji-Ashkavar, F. Koohyian, Q. Tang, and R. Noori. 2020. “Annual flood damage influenced by El Niño in the Kan River basin, Iran.” Nat. Hazards Earth Syst. Sci. 20 (10): 2739–2751. https://doi.org/10.5194/nhess-20-2739-2020.
Hussain, S., and S. Karuppannan. 2023. “Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan.” Geol. Ecol. Landscapes 7 (1): 46–58. https://doi.org/10.1080/24749508.2021.1923272.
Imani, T., M. Delghandi, S. Emamgholizadeh, and Z. Ganji-Noroozi. 2023. “Evaluating uncertainty in climate change impacts on peak discharge and flood volume in the Qaran Talar watershed, Iran.” J. Water Climate Change 14 (4): 1300–1313.
Iosub, M., I. Minea, O. E. Chelariu, and A. Ursu. 2020. “Assessment of flash flood susceptibility potential in Moldavian Plain (Romania).” J. Flood Risk Manage. 13 (4): e12588. https://doi.org/10.1111/jfr3.12588.
Jahangir, M. H., S. M. M. Reineh, and M. Abolghasemi. 2019. “Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm.” Weather Climate Extremes 25. https://doi.org/0.1016/j.wace.2019.100215.
Jiang, D., D. Hu, Z. Tian, and X. Lang. 2020. “Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon.” Adv. Atmos. Sci. 37 (10): 1102–1118. https://doi.org/10.1007/s00376-020-2034-y.
Jiang, Z., S. Yang, Z. Liu, Y. Xu, Y. Xiong, S. Qi, Q. Pang, J. Xu, F. Liu, and T. Xu. 2022. “Coupling machine learning and weather forecast to predict farmland flood disaster: A case study in Yangtze River basin.” Environ. Modell. Software 155 (Sep): 105436. https://doi.org/10.1016/j.envsoft.2022.105436.
Khosravi, K., B. T. Pham, K. Chapi, A. Shirzadi, H. Shahabi, I. Revhaug, I. Prakash, and D. T. Bui. 2018. “A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.” Sci. Total Environ. 627 (Jun): 744–755. https://doi.org/10.1016/j.scitotenv.2018.01.266.
Khosravi, K., H. Shahabi, B. T. Pham, J. Adamowski, A. Shirzadi, B. Pradhan, J. Dou, H.-B. Ly, G. Gróf, and H. L. Ho. 2019. “A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods.” J. Hydrol. 573 (Jun): 311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073.
Li, X., and Z. Li. 2023. “Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models.” Clim. Dyn. 61 (7–8): 3893–3910. https://doi.org/10.1007/s00382-023-06778-8.
Liu, J., J. Wang, J. Xiong, W. Cheng, Y. Li, Y. Cao, Y. He, Y. Duan, W. He, and G. Yang. 2022. “Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region.” Geocarto Int. 37 (25): 9817–9846. https://doi.org/10.1080/10106049.2022.2025918.
Maghsood, F. F., H. Moradi, A. R. Massah Bavani, M. Panahi, R. Berndtsson, and H. Hashemi. 2019. “Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios.” Water 11 (2): 273. https://doi.org/10.3390/w11020273.
Mahdizadeh Gharakhanlou, N., and L. Perez. 2022. “Spatial prediction of current and future flood susceptibility: Examining the implications of changing climates on flood susceptibility using machine learning models.” Entropy 24 (11): 1630. https://doi.org/10.3390/e24111630.
Mind’je, R., L. Li, A. C. Amanambu, L. Nahayo, J. B. Nsengiyumva, A. Gasirabo, and M. Mindje. 2019. “Flood susceptibility modeling and hazard perception in Rwanda.” Int. J. Disaster Risk Reduct. 38 (Aug): 101211. https://doi.org/10.1016/j.ijdrr.2019.101211.
Mohanty, M. P., and S. P. Simonovic. 2021. “Changes in floodplain regimes over Canada due to climate change impacts: Observations from CMIP6 models.” Sci. Total Environ. 792 (Oct): 148323. https://doi.org/10.1016/j.scitotenv.2021.148323.
Mountrakis, G., J. Im, and C. Ogole. 2011. “Support vector machines in remote sensing: A review.” ISPRS J. Photogramm. Remote Sens. 66 (3): 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001.
Muis, S., B. Güneralp, B. Jongman, J. C. Aerts, and P. J. Ward. 2015. “Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data.” Sci. Total Environ. 538 (Dec): 445–457. https://doi.org/10.1016/j.scitotenv.2015.08.068.
Nachappa, T. G., S. T. Piralilou, K. Gholamnia, O. Ghorbanzadeh, O. Rahmati, and T. Blaschke. 2020. “Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory.” J. Hydrol. 590 (Nov): 125275. https://doi.org/10.1016/j.jhydrol.2020.125275.
Nguyen, H. D., Q.-H. Nguyen, Q. V. V. Du, T. H. T. Nguyen, T. G. Nguyen, and Q.-T. Bui. 2021. “A novel combination of Deep Neural Network and Manta Ray Foraging Optimization for flood susceptibility mapping in Quang Ngai province, Vietnam.” Geocarto Int. 37 (25): 7531–7555. https://doi.org/10.1080/10106049.2021.1975832.
Park, S.-J., and D.-K. Lee. 2020. “Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms.” Environ. Res. Lett. 15 (9): 094052. https://doi.org/10.1088/1748-9326/aba5b3.
Pastén-Zapata, E., J. M. Jones, H. Moggridge, and M. Widmann. 2020. “Evaluation of the performance of Euro-CORDEX Regional Climate Models for assessing hydrological climate change impacts in Great Britain: A comparison of different spatial resolutions and quantile mapping bias correction methods.” J. Hydrol. 584 (May): 124653. https://doi.org/10.1016/j.jhydrol.2020.124653.
Rathjens, H., K. Bieger, R. Srinivasan, I. Chaubey, and J. Arnold. 2016. CMhyd user manual: Documentation for preparing simulated climate change data for hydrologic impact studies. Beltsville, MD: USDA Agricultural Research Service.
Reshmidevi, T., D. N. Kumar, R. Mehrotra, and A. Sharma. 2018. “Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs.” J. Hydrol. 556 (Jan): 1192–1204. https://doi.org/10.1016/j.jhydrol.2017.02.016.
Sadler, J., J. Goodall, M. Morsy, and K. Spencer. 2018. “Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest.” J. Hydrol. 559 (Apr): 43–55. https://doi.org/10.1016/j.jhydrol.2018.01.044.
Seleem, O., G. Ayzel, A. C. T. de Souza, A. Bronstert, and M. Heistermann. 2022. “Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany.” Geomatics Nat. Hazards Risk 13 (1): 1640–1662. https://doi.org/10.1080/19475705.2022.2097131.
Shafizadeh-Moghadam, H., R. Valavi, H. Shahabi, K. Chapi, and A. Shirzadi. 2018. “Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.” J. Environ. Manage. 217 (Jul): 1–11. https://doi.org/10.1016/j.jenvman.2018.03.089.
Szczurek, A., D. Gonstał, and M. Maciejewska. 2023. “The gas sensing drone with the lowered and lifted measurement platform.” Sensors 23 (3): 1253. https://doi.org/10.3390/s23031253.
Tang, S., P. Gleckler, S. Xie, J. Lee, M.-S. Ahn, C. Covey, and C. Zhang. 2021. “Evaluating the diurnal and semidiurnal cycle of precipitation in CMIP6 models using satellite-and ground-based observations.” J. Clim. 34 (8): 3189–3210. https://doi.org/10.1175/JCLI-D-20-0639.1.
Tehrany, M. S., B. Pradhan, S. Mansor, and N. Ahmad. 2015. “Flood susceptibility assessment using GIS-based support vector machine model with different kernel types.” Catena 125 (Feb): 91–101. https://doi.org/10.1016/j.catena.2014.10.017.
Teutschbein, C., and J. Seibert. 2012. “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods.” J. Hydrol. 456 (Aug): 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
Usta, D. F. B., M. Teymouri, and U. Chatterjee. 2022. “Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios.” Arabian J. Geosci. 15 (5): 1–16. https://doi.org/10.1007/s12517-022-09709-9.
Wang, Q., Y. Xu, Y. Wang, Y. Zhang, J. Xiang, Y. Xu, and J. Wang. 2020. “Individual and combined impacts of future land-use and climate conditions on extreme hydrological events in a representative basin of the Yangtze River Delta, China.” Atmos. Res. 236 (May): 104805. https://doi.org/10.1016/j.atmosres.2019.104805.
Wang, X., J. Wang, X. Wang, and C. Yu. 2022. “A pseudo-spectral Fourier collocation method for inhomogeneous elliptical inclusions with partial differential equations.” Mathematics 10 (3): 296. https://doi.org/10.3390/math10030296.
Worqlul, A. W., Y. T. Dile, E. K. Ayana, J. Jeong, A. A. Adem, and T. Gerik. 2018. “Impact of climate change on streamflow hydrology in headwater catchments of the Upper Blue Nile Basin, Ethiopia.” Water 10 (2): 120. https://doi.org/10.3390/w10020120.
Wu, Y., Y. Liu, W. Zhou, and J. Zhang. 2022. “The mid-Holocene East Asian summer monsoon simulated by PMIP4-CMIP6 and PMIP3-CMIP5: Model uncertainty and its possible sources.” Global Planet. Change 219 (Dec): 103986. https://doi.org/10.1016/j.gloplacha.2022.103986.
Xiang, Y., Y. Wang, Y. Chen, and Q. Zhang. 2022. “Impact of climate change on the hydrological regime of the Yarkant River Basin, China: An assessment using three SSP scenarios of CMIP6 GCMs.” Remote Sens. 14 (1): 115. https://doi.org/10.3390/rs14010115.
Yazdandoost, F., S. Moradian, A. Izadi, and A. Aghakouchak. 2021. “Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison.” Atmos. Res. 250 (Mar): 105369. https://doi.org/10.1016/j.atmosres.2020.105369.
Yousefi, S., H. R. Pourghasemi, S. N. Emami, O. Rahmati, S. Tavangar, S. Pouyan, J. P. Tiefenbacher, S. Shamsoddini, and M. Nekoeimehr. 2020. “Assessing the susceptibility of schools to flood events in Iran.” Sci. Rep. 10 (1): 1–15. https://doi.org/10.1038/s41598-020-75291-3.
Zabihi, M., F. Mirchooli, A. Motevalli, A. K. Darvishan, H. R. Pourghasemi, M. A. Zakeri, and F. Sadighi. 2018. “Spatial modelling of gully erosion in Mazandaran Province, northern Iran.” Catena 161 (Feb): 1–13. https://doi.org/10.1016/j.catena.2017.10.010.
Zamani, Y., S. A. Hashemi Monfared, and M. Hamidianpour. 2020. “A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: The case of Northeastern Iran.” Theor. Appl. Climatol. 142 (3): 1613–1623. https://doi.org/10.1007/s00704-020-03406-x.
Zarrin, A., and A. Dadashi-Roudbari. 2021. “Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble.” Theor. Appl. Climatol. 144 (1): 643–660. https://doi.org/10.1007/s00704-021-03568-2.
Zarrin, A., A. Dadashi-Roudbari, and S. Hassani. 2022. “Future changes in precipitation extremes over Iran: Insight from a CMIP6 bias-corrected multi-model ensemble.” Pure Appl. Geophys. 179 (1): 441–464. https://doi.org/10.1007/s00024-021-02904-x.
Zhao, G., B. Pang, Z. Xu, D. Peng, and L. Xu. 2019. “Assessment of urban flood susceptibility using semi-supervised machine learning model.” Sci. Total Environ. 659 (Apr): 940–949. https://doi.org/10.1016/j.scitotenv.2018.12.217.
Zhu, Y.-Y., and S. Yang. 2020. “Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5.” Adv. Clim. Change Res. 11 (3): 239–251. https://doi.org/10.1016/j.accre.2020.08.001.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 150Issue 9September 2024

History

Received: Aug 2, 2023
Accepted: Apr 3, 2024
Published online: Jun 19, 2024
Published in print: Sep 1, 2024
Discussion open until: Nov 19, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Research Assistant, School of Automation, Qingdao Univ., Qingdao, Shandong 266071, China (corresponding author). ORCID: https://orcid.org/0000-0002-3416-4551. Email: [email protected]
Professor, College of Environmental Science and Engineering, Qingdao Univ., Qingdao, Shandong 266071, China. Email: [email protected]
Junlong Zhang [email protected]
Assistant Professor, College of Environmental Science and Engineering, Qingdao Univ., Qingdao, Shandong 266071, China. Email: [email protected]
Alireza Nemati [email protected]
Research Assistant, Dept. of Mechanical and Aerospace Engineering, Univ. of California Davis, Davis, CA 95616. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share