Abstract

Leaks are a constant problem in water distribution systems, resulting in wasted resources, environmental impacts, and financial losses. Thus, it is crucial to develop effective and agile methods to detect network leaks. In this context, this study proposes a leak detection methodology using three different processes. The first consists of treating monitoring data through independent component analysis, and the other two detection processes use the interquartile range (IQR) and matrix profile (MP) techniques, respectively. The methodology is evaluated based on a set of benchmark data. The results indicate that the proposed approach is effective in detecting leaks, with some cases being detected in a few minutes after the beginning of the leak. It is worth mentioning that the IQR method presented better performance in detecting leaks with abrupt onset, whereas the MP method was more efficient in leaks with gradual increase in flow. In summary, the proposed methodology offers a robust and promising approach for fast and accurate leak detection in water distribution networks.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was funded by National Council for Scientific and Technological Development (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001.

References

Adedeji, K. B., Y. Hamam, B. T. Abe, and A. M. Abu-Mahfouz. 2017. “Towards achieving a reliable leakage detection and localization algorithm for application in water piping networks: An overview.” IEEE Access 5 (Sep): 20272–20285. https://doi.org/10.1109/ACCESS.2017.2752802.
Asyali, M. H., D. Colak, O. Demirkaya, and M. S. Inan. 2006. “Gene xpression profile classification: A review.” Curr. Bioinf. 1 (1): 55–73. https://doi.org/10.2174/157489306775330615.
Brentan, B., P. Rezende, D. Barros, G. Meirelles, E. Luvizotto Jr., and J. Izquierdo. 2021. “Cyber-attack detection in water distribution systems based on blind sources separation technique.” Water 13 (6): 795. https://doi.org/10.3390/w13060795.
Brentan, B. M., E. Luvizotto Jr., M. Herrera, J. Izquierdo, and R. Pérez-Garca. 2017. “Hybrid regression model for near real-time urban water demand forecasting.” J. Comput. Appl. Math. 309 (Jun): 532–541. https://doi.org/10.1016/j.cam.2016.02.009.
Brown, G. D., S. Yamada, and T. J. Sejnowski. 2001. “Independent component analysis at the neural cocktail party.” Trends Neurosci. 24 (1): 54–63. https://doi.org/10.1016/S0166-2236(00)01683-0.
Chew, A. W. Z., Z. Y. Wu, R. Kalfarisi, X. Meng, and J. Pok. 2023. “Generalized acoustic data analysis framework for leakage detection and localization in field operational water distribution networks.” J. Water Resour. Plann. Manage. 149 (11): 04023056. https://doi.org/10.1061/JWRMD5.WRENG-6122.
Comon, P. 2004. “Blind identification and source separation in 2/spl times/3 under-determined mixtures.” IEEE Trans. Signal Process. 52 (1): 11–22. https://doi.org/10.1109/TSP.2003.820073.
Comon, P., and C. Jutten. 2010. Handbook of blind source separation: Independent component analysis and applications. Cambridge, MA: Academic Press.
Cugueró-Escofet, M. À., V. Puig, and J. Quevedo. 2017. “Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the barcelona water network.” Control Eng. Pract. 63 (Mar): 1–12. https://doi.org/10.1016/j.conengprac.2017.03.003.
Daniel, I., J. Pesantez, S. Letzgus, M. A. Khaksar Fasaee, F. Alghamdi, E. Berglund, G. Mahinthakumar, and A. Cominola. 2022. “A sequential pressure-based algorithm for data-driven leakage identification and model-based localization in water distribution networks.” J. Water Resour. Plann. Manage. 148 (6): 04022025. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001535.
Darsana, P., and K. Varija. 2018. “Leakage detection studies for water supply systems–A review.” In Proc., Water Resources Management: Select Proc., ICWEES-2016, 141–150. Berlin: Springer.
Dos Santos, C. C., and A. J. Pereira Filho. 2014. “Water demand forecasting model for the metropolitan area of São Paulo, Brazil.” Water Resour. Manage. 28 (13): 4401–4414. https://doi.org/10.1007/s11269-014-0743-7.
Gao, J., S. Qi, W. Wu, D. Li, T. Ruan, L. Chen, T. Shi, C. Zheng, and Y. Zhuang. 2014. “Study on leakage rate in water distribution network using fast independent component analysis.” Procedia Eng. 89 (Mar): 934–941. https://doi.org/10.1016/j.proeng.2014.11.527.
Gharghabi, S., Y. Ding, C.-C. M. Yeh, K. Kamgar, L. Ulanova, and E. Keogh. 2017. “Matrix profile VIII: Domain agnostic online semantic segmentation at superhuman performance levels.” In Proc., 2017 IEEE Int. Conf. on Data Mining (ICDM), 117–126. New York: IEEE.
Goulet, J.-A., S. Coutu, and I. F. Smith. 2013. “Model falsification diagnosis and sensor placement for leak detection in pressurized pipe networks.” Adv. Eng. Inf. 27 (2): 261–269. https://doi.org/10.1016/j.aei.2013.01.001.
Guidotti, R., and M. D’Onofrio. 2021. “Matrix profile-based interpretable time series classifier.” Front. Artif. Intell. 4 (Mar): 699448. https://doi.org/10.3389/frai.2021.699448.
He, G., T. Zhang, F. Zheng, and Q. Zhang. 2018. “An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.” Water Res. 143 (Mar): 165–175. https://doi.org/10.1016/j.watres.2018.06.041.
Hongyu, K., V. L. M. Sandanielo, and G. J. de Oliveira Junior. 2016. “Análise de componentes principais: Resumo teórico, aplicação e interpretação.” ES Eng. Sci. 5 (1): 83–90. https://doi.org/10.18607/ES201653398.
Huang, Y.-C., C.-C. Lin, and H.-D. Yeh. 2015. “An optimization approach to leak detection in pipe networks using simulated annealing.” Water Resour. Manage. 29 (11): 4185–4201. https://doi.org/10.1007/s11269-015-1053-4.
Hunaidi, O., A. Wang, M. Bracken, T. Gambino, and C. Fricke. 2004. “Acoustic methods for locating leaks in municipal water pipe networks.” In Proc., Int. Conf. on Water Demand Management, 1–14. Princeton, NJ: Citeseer.
Jeong, J., E. Park, W. S. Han, K. Kim, S. Choung, and I. M. Chung. 2017. “Identifying outliers of non-gaussian groundwater state data based on ensemble estimation for long-term trends.” J. Hydrol. 548 (Mar): 135–144. https://doi.org/10.1016/j.jhydrol.2017.02.058.
Lan, S.-Y., R.-Q. Chen, and W.-L. Zhao. 2021. “Anomaly detection on it operation series via online matrix profile.” Preprint, submitted August 27, 2021. http://arxiv.org/abs/2108.12093.
Li, H., X. Wu, X. Wan, and W. Lin. 2022a. “Time series clustering via matrix profile and community detection.” Adv. Eng. Inf. 54 (Mar): 101771. https://doi.org/10.1016/j.aei.2022.101771.
Li, Z., J. Wang, H. Yan, S. Li, T. Tao, and K. Xin. 2022b. “Fast detection and localization of multiple leaks in water distribution network jointly driven by simulation and machine learning.” J. Water Resour. Plann. Manage. 148 (9): 05022005. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001574.
Ministério do Desenvolvimento Regional and SNS (Secretaria Nacional de Saneamento), Sistema Nacional de Informações sobre Saneamento. 2017. Diagnóstico dos Serviços de Água e Esgotos, 22. Brasil: Ministério do Desenvolvimento Regional.
Min, K. W., T. Kim, S. Lee, Y. H. Choi, and J. H. Kim. 2022. “Detecting and localizing leakages in water distribution systems using a two-phase model.” J. Water Resour. Plann. Manage. 148 (10): 04022051. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001599.
Mounce, S., J. Boxall, and J. Machell. 2010. “Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows.” J. Water Resour. Plann. Manage. 136 (3): 309–318. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000030.
Muharemi, F., D. Logofătu, and F. Leon. 2019. “Machine learning approaches for anomaly detection of water quality on a real-world data set.” J. Inf. Telecommun. 3 (3): 294–307. https://doi.org/10.1080/24751839.2019.1565653.
Nichiforov, C., I. Stancu, I. Stamatescu, and G. Stamatescu. 2020. “Information extraction approach for energy time series modelling.” In Proc., 2020 24th Int. Conf. on System Theory, Control and Computing (ICSTCC), 886–891. New York: IEEE.
Oliveira, J. V. D. 2016. “Estudo da Decomposição em Valores Singulares e Análise Dos Componentes Principais.” Dissertação, Universidade Federal Fluminense, Volta Redonda – RJ.
Olshausen, B. A., and D. J. Field. 2004. “Sparse coding of sensory inputs.” Curr. Opin. Neurobiol. 14 (4): 481–487. https://doi.org/10.1016/j.conb.2004.07.007.
Ormsbee, L. E., and S. Lingireddy. 1997. “Calibrating hydraulic network models.” J. Am. Water Works Assn. 89 (2): 42–50. https://doi.org/10.1002/j.1551-8833.1997.tb08177.x.
Rajabi, M. M., P. Komeilian, X. Wan, and R. Farmani. 2023. “Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks.” Water Res. 238 (Jan): 120012. https://doi.org/10.1016/j.watres.2023.120012.
Rashid, S., S. Qaisar, H. Saeed, and E. Felemban. 2014. “A method for distributed pipeline burst and leakage detection in wireless sensor networks using transform analysis.” Int. J. Distrib. Sens. Netw. 10 (7): 939657. https://doi.org/10.1155/2014/939657.
Shi, J., N. Yu, E. Keogh, H. K. Chen, and K. Yamashita. 2019. “Discovering and labeling power system events in synchrophasor data with matrix profile.” In Proc., 2019 IEEE Sustainable Power and Energy Conf. (iSPEC), 1827–1832. New York: IEEE.
Steffelbauer, D. B., J. Deuerlein, D. Gilbert, E. Abraham, and O. Piller. 2022. “Pressure-leak duality for leak detection and localization in water distribution systems.” J. Water Resour. Plann. Manage. 148 (3): 04021106. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001515.
Vrachimis, S. G., D. G. Eliades, R. Taormina, Z. Kapelan, A. Ostfeld, S. Liu, M. Kyriakou, P. Pavlou, M. Qiu, and M. M. Polycarpou. 2022. “Battle of the leakage detection and isolation methods.” J. Water Resour. Plann. Manage. 148 (12): 04022068. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601.
Wan, X., W. Wang, J. Liu, and T. Tong. 2014. “Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.” BMC Med. Res. Methodol. 14 (Jan): 1–13. https://doi.org/10.1186/1471-2288-14-135.
Wang, X., J. Li, S. Liu, X. Yu, and Z. Ma. 2022. “Multiple leakage detection and isolation in district metering areas using a multistage approach.” J. Water Resour. Plann. Manage. 148 (6): 04022021. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001558.
Xu, T., S. Chen, S. Guo, X. Huang, J. Li, and Z. Zeng. 2019. “A small leakage detection approach for oil pipeline using an inner spherical ball.” Process Saf. Environ. Prot. 124 (Mar): 279–289. https://doi.org/10.1016/j.psep.2018.11.009.
Yeh, C.-C. M., Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, and E. Keogh. 2016. “Matrix profile I: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets.” In Proc., 2016 IEEE 16th Int. Conf. on Data Mining (ICDM), 1317–1322. New York: IEEE.
Zaman, D., M. K. Tiwari, A. K. Gupta, and D. Sen. 2020. “A review of leakage detection strategies for pressurised pipeline in steady-state.” Eng. Fail. Anal. 109 (Jan): 104264. https://doi.org/10.1016/j.engfailanal.2019.104264.
Zhang, Q., Z. Y. Wu, M. Zhao, J. Qi, Y. Huang, and H. Zhao. 2016. “Leakage zone identification in large-scale water distribution systems using multiclass support vector machines.” J. Water Resour. Plann. Manage. 142 (11): 04016042. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000661.
Zymbler, M., and E. Ivanova. 2021. “Matrix profile-based approach to industrial sensor data analysis inside RDBMS.” Mathematics 9 (17): 2146. https://doi.org/10.3390/math9172146.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 150Issue 9September 2024

History

Received: Apr 20, 2023
Accepted: Apr 9, 2024
Published online: Jul 3, 2024
Published in print: Sep 1, 2024
Discussion open until: Dec 3, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, School of Civil Engineering, Architecture and Urban Design, Universidade de Campinas, Campinas 13083-889, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3664-8701. Email: [email protected]
Thacio Carvalho Pereira [email protected]
Dept. of Hydraulic Engineering and Water Resources, Universidade Federal de Minas Gerais, Belo Horizonte 31270, Brazil. Email: [email protected]
Professor, Dept. of Hydraulic Engineering and Water Resources, Universidade Federal de Minas Gerais, Belo Horizonte 31270, Brazil. ORCID: https://orcid.org/0000-0002-1971-3970. Email: [email protected]
Professor, Dept. of Hydraulic Engineering and Water Resources, Universidade Federal de Minas Gerais, Belo Horizonte 31270, Brazil. ORCID: https://orcid.org/0000-0002-9731-2320. Email: [email protected]
Professor, Dept. of Hydraulic Engineering and Water Resources, Universidade Federal de Minas Gerais, Belo Horizonte 31270, Brazil. ORCID: https://orcid.org/0000-0003-0616-2281. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share