Technical Papers
May 13, 2023

Hydropower Scheduling Toolchains: Comparing Experiences in Brazil, Norway, and USA and Implications for Synergistic Research

Publication: Journal of Water Resources Planning and Management
Volume 149, Issue 7

Abstract

While hydropower scheduling is a well-defined problem, there are institutional differences that need to be identified to promote constructive and synergistic research. We study how established toolchains of computer models are organized to assist operational hydropower scheduling in Brazil, Norway, and the United States’ Colorado River System (CRS). These three systems have vast hydropower resources, with numerous, geographically widespread, and complex reservoir systems. Although the underlying objective of hydropower scheduling is essentially the same, the systems are operated in different market contexts and with different alternative uses of water, where the stakeholders’ objectives clearly differ. This in turn leads to different approaches when it comes to the scope, organization, and use of models for operational hydropower scheduling and the information flow between the models. We describe these hydropower scheduling toolchains, identify the similarities and differences, and shed light on the original ideas that motivated their creation. We then discuss the need to improve and extend the current toolchains and the opportunities to synergistic research that embrace those contextual differences.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data or computer models were used in this research.

Acknowledgments

This work was coauthored SINTEF Energy Research funded by The Research Council of Norway through Project No. 257588, Argonne National Laboratory (Contract No. DE-AC02-06CH11357), and the Pacific Northwest National Laboratory, managed by Battelle (Contract No. DE-AC05-76RL01830) for the US Department of Energy. The research was supported by the HydroWIRES Initiative of DOE’s Water Power Technologies Office (WPTO) and the Brazilian National Council for Scientific and Technological Development (Contract CNPq 409715/2021-2).

References

Aasgård, E. K. 2018. “Coordinated hydropower bidding in the day-ahead and balancing market.” In Proc., 6th Int. Workshop on Hydro Scheduling in Competitive Electricity Markets, edited by A. Helseth. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-03311-8_3.
Blom, E., L. Söder, and D. Risberg. 2020. “Performance of multi-scenario equivalent hydropower models.” Electr. Power Syst. Res. 187 (Oct): 106486. https://doi.org/10.1016/j.epsr.2020.106486.
Botnen, O. J., A. Ohannesen, A. Haugstad, S. Kroken, and O. Frøystein. 1992. “Modelling of hydropower scheduling in a national/international context.” In Hydropower, edited by B. E. Balkema and D. Lysne, 92. Berlin: Springer.
Botterud, A., C. O’Reilley, and A. Somani. 2021. “Valuing flexibility in evolving electricity markets: Current status and future outlook for hydropower.” IEA Hydro Annex IX, White Paper, IEA Hydropower. Paris: International Energy Agency.
Bureau of Reclamation. 2021. “Colorado River Basin secure water act section 9503(c).” Accessed April 24, 2023. https://www.usbr.gov/climate/secure/docs/2021secure/basinreports/ColoradoBasin.pdf.
Cohen, S. M., A. Dyreson, S. Turner, V. Tidwell, N. Voisin, and A. Miara. 2022. “A multi-model framework for assessing long- and short-term climate influences on the electric grid.” Appl. Energy 317 (Jul): 119193. https://doi.org/10.1016/j.apenergy.2022.119193.
Daddi, M., A. Barbieri, A. Castelletti, M. Giuliani, E. Colombo, M. Rocco, and N. Stevanato. 2020. “Integrating hydrological constraints for hydropower in energy models: The case of the Zambesi River Basin in the Southern African Power Pool.” In Proc., EGU General Assembly 2020, EGU2020-11722. Göttingen, Germany: Copernicus Publications. https://doi.org/10.5194/egusphere-egu2020-11722.
de Queiroz, A. R. 2016. “Stochastic hydro-thermal scheduling optimization: An overview.” Renewable Sustainable Energy Rev. 62 (Sep): 382–395. https://doi.org/10.1016/j.rser.2016.04.065.
Diniz, A. L. 2010. “Test cases for unit commitment and hydrothermal scheduling problems.” In Proc., IEEE PES General Meeting, New York: IEEE.
Diniz, A. L., F. D. Costa, M. E. Maceira, T. N. dos Santos, L. C. dos Santos, and R. N. Cabral. 2018. “Short/mid-term hydrothermal dispatch and spot pricing for large-scale systems—The case of Brazil.” In Proc., Power System Computation Conf. (PSCC). Dublin, Ireland: Power Systems Computation Conference.
dos Santos, L. C., A. L. Diniz, and L. Simonetti. 2018. “Accelerating dual dynamic programming for stochastic hydrothermal coordination problems.” In Proc., Power System Computation Conf. (PSCC). Dublin, Ireland: Power Systems Computation Conference.
EFI-komiteen for økonomisk drift av kraftverk. 1974. Økonomisk drift av kraftverk, Technical report (in Norwegian). Trondheim, Norway: Elektrisitetsforsyningens Forskningsinstitutt.
Egeland, O., J. Hegge, E. Kylling, and E. Nes. 1982. “The extended power pool model. Operation planning of a multi-river and multi-reservoir hydro-dominated power production system. A hierarchical approach.” In Proc., CIGRE Paper, 32. Paris: International Council on Large Electric Systems.
EPE (Empresa de Pesquisa Energética). 2023. “Webmap EPE.” Accessed April 24, 2023. https://gisepeprd2.epe.gov.br/WebMapEPE/.
Flatabo, N., G. Doorman, O. S. Grande, H. Randen, and I. Wangensteen. 2003. “Experience with the Nord pool design and implementation.” IEEE Trans. Power Syst. 18 (2): 541–547. https://doi.org/10.1109/TPWRS.2003.810694.
Flatabo, N., A. Haugstad, B. Mo, and O. B. Fosso. 1998. “Short-term and medium-term generation scheduling in the Norwegian hydro system under a competitive power market structure.” In Proc., Int. Conf. on Electrical Power System Operation and Management (EPSOM). Zürich, Switzerland: ETH Zurich.
Flatabo, N., A. Johannesen, E. Olaussen, S. Nyland, K. Hornnes, and A. Haugstad. 1988. EFI’s models for hydro scheduling. Trondheim, Norway: Elektrisitetsforsyningens Forskningsinstitutt.
Fosso, O. B., and M. M. Belsnes. 2004. “Short-term hydro scheduling in a liberalized power system.” In Proc., Int. Conf. on Power System Technology (PowerCon). New York: IEEE.
Fosso, O. B., A. Gjelsvik, A. Haugstad, B. Mo, and I. Wangensteen. 1999. “Generation scheduling in a deregulated system. The Norwegian case.” IEEE Trans. Power Syst. 14 (1): 75–81. https://doi.org/10.1109/59.744487.
Gastélum, J. R., and C. Cullom. 2013. “Application of the Colorado River simulation system model to evaluate water shortage conditions in the Central Arizona project.” Water Resour. Manage. 27 (7): 2369–2389. https://doi.org/10.1007/s11269-013-0292-5.
Gjelsvik, A., M. M. Belsnes, and A. Haugstad. 1999. “An algorithm for stochastic medium-term hydrothermal scheduling under spot price uncertainty.” In Proc., 13th Power System Computation Conference (PSCC). Trondheim, Norway: PSCC.
Gjelsvik, A., B. Mo, and A. Haugstad. 2010. “Long and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming.” In Handbook of power systems I, 33–55. Berlin: Springer.
Gjelsvik, A., and S. Wallace. 1996. Methods for stochastic medium-term scheduling in hydro-dominated power systems. Trondheim, Norway: SINTEF Energy Research.
Gjerden, K. S., H. I. Skjelbred, and B. Mo. 2016. “Increased information flow between hydropower scheduling models through extended cut sharing.” Energy Procedia 87 (Jan): 85–90. https://doi.org/10.1016/j.egypro.2015.12.361.
Hansen, K., C. Breyer, and H. Lund. 2019. “Status and perspectives on 100% renewable energy systems.” Energy 175 (May): 471–480. https://doi.org/10.1016/j.energy.2019.03.092.
Haugstad, A., and O. Rismark. 1998. “Price forecasting in an open electricity market based on system simulation.” In Proc., Int. Conf. on Electrical Power Systems Operation and Management. Zürich, Switzerland: ETH Zürich.
Helseth, A., M. Fodstad, and B. Mo. 2016. “Optimal medium-term hydropower scheduling considering energy and reserve capacity markets.” IEEE Trans. Sustainable Energy 7 (3): 934–942. https://doi.org/10.1109/TSTE.2015.2509447.
Helseth, A., A. Gjelsvik, B. Mo, and U. Linnet. 2013. “A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power.” IET Gener. Transm. Distrib. 7 (12): 1426–1434. https://doi.org/10.1049/iet-gtd.2012.0639.
Helseth, A., M. Haugen, H. Farahmand, B. Mo, S. Jaehnert, and I. Stenkløv. 2021. “Assessing the benefits of exchanging spinning reserve capacity within the hydro-dominated Nordic market.” Electr. Power Syst. Res. 199 (Oct): 107393. https://doi.org/10.1016/j.epsr.2021.107393.
Helseth, A., and A. C. Melo. 2020. “Scheduling tool chains in hydro-dominated systems.” SINTEF Energy Res. Tech. Rep. 757 (2020:00757): 2020.
Helseth, A., B. Mo, H. O. Hågenvik, and L. E. Schäffer. 2022. “Hydropower scheduling with state-dependent discharge constraints: An SDDP approach.” J. Water Resour. Plann. Manage. 148 (11): 04022061. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001609.
Helseth, A., G. Warland, and B. Mo. 2013. “A hydrothermal market model for simulation of area prices including detailed network analyses.” Int. Trans. Electr. Energy Syst. 23 (8): 1396–1408. https://doi.org/10.1002/etep.1667.
Hjelmeland, M. N., J. Zou, A. Helseth, and S. Ahmed. 2018. “Nonconvex medium-term hydropower scheduling by stochastic dual dynamic integer programming.” IEEE Trans. Sustainable Energy 10 (1): 481–490. https://doi.org/10.1109/TSTE.2018.2805164.
Hveding, V. 1992. Hydropower development in Norway, edited by D. K. Lysne. Trondheim, Norway: Norwegian Institute of Technology.
Ibanez, E., T. Magee, M. Clement, G. Brinkman, M. Milligan, and E. Zagona. 2014. “Enhancing hydropower modeling in variable generation integration studies.” Energy 74 (Sep): 518–528. https://doi.org/10.1016/j.energy.2014.07.017.
Isaacson, M. S., and T. C. Fall. 1979. Report on conference on western water issues. Pasadena, CA: California Institute of Technology.
Johannesen, A., and B. Nielsen. 1962. Langtidsplanlegging ved drift av samkjørende vannkraftverker (1-magasin modell), Technical Report. [In Norwegian.]. Trondheim, Norway: Elektrisitetsforsyningens Forskningsinstitutt.
Kao, S.-C., M. Ashfaq, D. Rastogi, S. Gangrade, R. Uria Martinez, A. Fernandez, and G. Zhao. 2022. The third assessment of the effects of climate change on federal hydropower. Oak Ridge, TN: Oak Ridge National Laboratory.
Karambelkar, S. 2018. “Hydropower operations in the Colorado River Basin: Institutional analysis of opportunities and constraints, hydropower foundation.” Accessed April 24, 2023. https://www.osti.gov/biblio/1638690.
Kong, J., H. I. Skjelbred, and O. B. Fosso. 2020. “An overview on formulations and optimization methods for the unit-based short-term hydro scheduling problem.” Electr. Power Syst. Res. 178 (Jan): 106027. https://doi.org/10.1016/j.epsr.2019.106027.
Larson, R. E., L. E. Berman, M. L. Chan, A. I. Cohen, S. H. Javid, B. Sridhar, and Z. Yamayee. 1980. Research and development of a unified approach to operations scheduling for electric power under uncertainty. Palo Alto, CA: Systems Control, Inc.
Maceira, M. E., L. G. Marzano, D. D. Penna, A. L. Diniz, and T. C. Justino. 2015. “Application of CVaR risk aversion approach in the expansion and operation planning and for setting the spot price in the Brazilian hydrothermal interconnected system.” Int. J. Electr. Power Energy Syst. 72 (Nov): 126–135. https://doi.org/10.1016/j.ijepes.2015.02.025.
Maceira, M. E., A. C. Melo, J. F. Pessanha, C. Cruz, V. A. Almeida, and T. C. Justino. 2022. “Wind uncertainty modeling in long-term operation planning of hydro-dominated systems.” In Proc., Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS). New York: IEEE.
Maceira, M. E., D. D. Penna, A. L. Diniz, R. J. Pinto, A. C. Melo, C. V. Vasconcellos, and C. B. Cruz. 2018. “Twenty years of application of stochastic dual dynamic programming in official and agent studies in Brazil–Main features and improvements on the NEWAVE model.” In Proc., Power System Computation Conf. (PSCC). New York: IEEE.
Maceira, M. E., L. A. Terry, F. S. Costa, J. M. Damazio, and A. C. Melo. 2002. “Chain of optimization models for setting the energy dispatch and spot price in the Brazilian system.” In Proc., Power System Computation Conf. (PSCC). New York: IEEE.
Maceira, M. E. P., and C. V. Bezerra. 1997. “Stochastic stream flow model for hydroelectric systems.” In Probabilistic methods applied to power systems (PMAPS), New York: IEEE.
Mo, B., A. Gjelsvik, A. Grundt, and K. Kåresen. 2001. “Optimisation of hydropower operation in a liberalised market with focus on price modelling.” In Proc., IEEE Porto Power Tech. New York: IEEE.
NVE (Norges Vassdrags- og Energidirektorat). 2023. “Vannkraftdatabase.” Accessed April 24, 2023. https://www.nve.no/energi/energisystem/vannkraft/vannkraftdatabase/.
Oikonomou, K., B. Tarroja, J. Kern, and N. Voisin. 2022. “Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research.” Energy 238 (Jan): 122049. https://doi.org/10.1016/j.energy.2021.122049.
Pereira, M. V., and L. M. Pinto. 1991. “Multi-stage stochastic optimization applied to energy planning.” Math. Program. 52 (1–3): 359–375. https://doi.org/10.1007/BF01582895.
Pereira, M. V. F. 1985. “Optimal scheduling of hydrothermal systems: An overview.” IFAC Proc. Volume 18 (7): 1–9. https://doi.org/10.1016/S1474-6670(17)60409-9.
Pereira, M. V. F. 1989. “Optimal stochastic operations scheduling of large hydroelectric systems.” Electr. Power Energy Syst. 11 (3): 161–169. https://doi.org/10.1016/0142-0615(89)90025-2.
Pérez-Díaz, J. I., M. Belsnes, and A. L. Diniz. 2022. “Optimization of hydropower operation.” Compr. Renewable Energy 6 (Nov): 84–104. https://doi.org/10.1016/j.egyr.2020.08.009.
Pinto, R. J., C. L. Borges, and M. E. Maceira. 2013. “An efficient parallel algorithm for large scale hydrothermal system operation planning.” IEEE Trans. Power Syst. 28 (4): 4888–4896. https://doi.org/10.1109/TPWRS.2012.2236654.
Ploussard, Q., T. D. Veselka, and C. S. Palmer. 2022. Economic analysis of changes in hydropower operations at the Flaming Gorge Dam and the Aspinall unit due to the upper Colorado River endangered fish recovery program.. Lemont, IL: Argonne National Laboratory.
Riemer-Sorensen, S., and G. H. Rosenlund. 2020. “Deep reinforcement learning for long term hydropower production scheduling.” In Proc., Int. Conf. on Smart Energy Systems and Technologies (SEST). New York: IEEE.
Santos, T. N., A. L. Diniz, C. H. Saboia, R. N. Cabral, and L. F. Cerqueira. 2020. “Hourly pricing and day-ahead dispatch setting in Brazil: The Dessem model.” Electr. Power Syst. Res. 189 (Dec): 106709. https://doi.org/10.1016/j.epsr.2020.106709.
Schäffer, L. E., A. Adeva-Bustos, T. H. Bakken, A. Helseth, and M. Korpås. 2020. “Modelling of environmental constraints for hydropower optimization problems—A review.” In Proc., Int. Conf. on the European Energy Market (EEM). New York: IEEE.
Skjelbred, H. I. 2019. “Unit-based short-term hydro scheduling in competitive electricity markets.” Ph.D. thesis, Dept. of Electric Power Engineering, Norwegian Univ. of Science and Technology.
Smith, R., E. Zagona, J. Kasprzyk, N. Bonham, E. A. Butler, J. Prairie, and C. Jerla. 2022. “Decision science can help address the challenges of long-term planning in the Colorado River Basin.” J. Am. Water Resour. Assoc. 58 (5): 735–745. https://doi.org/10.1111/1752-1688.12985.
SSB (Statistisk Sentralbyrå). 2023. “Electricity.” Accessed April 24, 2023. https://www.ssb.no/en/energi-og-industri/statistikker/elektrisitet/aar.
Stage, S., and Y. Larsson. 1961. “Incremental cost of water power.” Trans. Am. Inst. Electr. Eng. 80 (3): 361–364. https://doi.org/10.1109/AIEEPAS.1961.4501045.
Terry, L. A., M. V. Pereira, T. A. Neto, L. F. Silva, and P. R. Sales. 1986. “Coordinating the energy generation of the Brazilian national hydrothermal electrical generating system.” INFORMS J. Appl. Anal. 16 (1): 16–38. https://doi.org/10.1287/inte.16.1.16.
The Secretary of the Interior Washington. 2007. “Colorado River interim guidelines for lower basin shortages and the coordinated operations for Lake Powell and Lake Mead.” Accessed April 24, 2023. https://www.usbr.gov/lc/region/programs/strategies/RecordofDecision.pdf.
Treistman, F., M. E. Maceira, J. M. Damazio, and C. B. Cruz. 2020. “Periodic time series model with annual component applied to operation planning of hydrothermal systems.” In Proc., 2020 Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS). New York: IEEE.
Turner, S. W., and N. Voisin. 2022. “Simulation of hydropower at subcontinental to global scales: A state-of-the-art review.” Environ. Res. Lett. 17 (2): 023002. https://doi.org/10.1088/1748-9326/ac4e38.
UWM (University of Wisconsin-Milwaukee). 2023. “Climate change impacts on hydropower in the Colorado River Basin.” Accessed April 24, 2023. https://uwm.edu/centerforwaterpolicy/wp-content/uploads/sites/170/2013/10/Colorado_Energy_Final.pdf.
Voisin, N., D. M. Bain, J. Macknick, and R. S. O’Neil. 2020. Improving hydropower representation in power system models—Report summary of PNNL-NREL technical workshop. Salt Lake City: Pacific Northwest National Laboratory.
Wangensteen, I. 2007. Power system economics—The Nordic electricity market. Trondheim, Norway: Tapir Academic Press.
Warland, G., A. Haugstad, and E. S. Huse. 2008. “Including thermal unit start-up costs in a long-term hydro-thermal scheduling model.” In Proc., Power System Computation Conf. (PSCC). Lisbon, Portugal: Redes Energéticas Nacionais.
Wheeler, K., T. Magee, and E. Zagona. 2002. “Alternative policies on the Colorado River.” In Proc., Summer Conf. of the Natural Resources Law Center. Boulder, CO: Univ. of Colorado.
Wheeler, K. G., D. E. Rosenberg, and J. C. Schmidt. 2019. Water resource modeling of the Colorado River: Present and future strategies. Logan, UT: Quinney College of Natural Resources, Utah State Univ.
Wolfgang, O., A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen, and G. Doorman. 2009. “Hydro reservoir handling in Norway before and after deregulation.” Energy 34 (10): 1642–1651. https://doi.org/10.1016/j.energy.2009.07.025.
Woodson, D., B. Rajagopalan, S. Baker, R. Smith, J. Prairie, E. Towler, and E. Zagona. 2021. “Stochastic decadal projections of Colorado River Stream flow and reservoir pool elevations conditioned on temperature projections.” Water Resour. Res. 57 (12): e2021WR030936. https://doi.org/10.1029/2021WR030936.
Yi, J., J. W. Labadie, and S. Stitt. 2003. “Dynamic optimal unit commitment and loading in hydropower systems.” J. Water Resour. Plann. Manage. 129 (5): 388–398. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:5(388).
Zagona, E. A., T. J. Fulp, R. Shane, T. Magee, and H. M. Goranflo. 2001. “River Ware: A generalized tool for complex reservoir system modeling.” J. Am. Water Resour. Assoc. 37 (4): 913–929. https://doi.org/10.1111/j.1752-1688.2001.tb05522.x.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 149Issue 7July 2023

History

Received: Jul 3, 2022
Accepted: Feb 3, 2023
Published online: May 13, 2023
Published in print: Jul 1, 2023
Discussion open until: Oct 13, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

SINTEF Energy Research, Energy Systems Division, Trondheim 7041, Norway (corresponding author). ORCID: https://orcid.org/0000-0003-4877-442X. Email: [email protected]
Albert C. G. Melo, Ph.D.
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 22290-160, Brazil.
Quentin M. Ploussard, Ph.D. https://orcid.org/0000-0001-8209-5469
Argonne National Laboratory, Energy Systems Division, 9700 S. Cass Ave., Lemont, IL 60439. ORCID: https://orcid.org/0000-0001-8209-5469
Birger Mo, Ph.D.
SINTEF Energy Research, Energy Systems Division, Trondheim 7041, Norway.
Maria E. P. Maceira, Ph.D.
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 22290-160, Brazil.
Audun Botterud, Ph.D.
Argonne National Laboratory, Energy Systems Division, 9700 S. Cass Ave., Lemont, IL 60439; Massachusetts Institute of Technology, Laboratory for Decisions and Information Systems, 77 Massachusetts Ave., Cambridge, MA 02139.
Pacific Northwest National Laboratory, Energy and Environment Directorate, P.O. Box 999, Richland, WA 99352; Univ. of Washington, Civil and Environmental Engineering, Seattle, WA 98195. ORCID: https://orcid.org/0000-0002-6848-449X

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share