Technical Papers
Jun 7, 2023

Car-Following Models for Human-Driven Vehicles and Autonomous Vehicles: A Systematic Review

Publication: Journal of Transportation Engineering, Part A: Systems
Volume 149, Issue 8

Abstract

The focus of car-following models is to analyze the microscopic characteristics of traffic flows, with particular attention given to the interaction between adjacent vehicles. This paper presents a systematic review of existing studies on car-following models, with an emphasis on the behavior of both human-driven vehicles (HDVs) and autonomous vehicles (AVs). We classify car-following models based on their applicable background and structure. By considering driving behavior and specific model parameters, we identify the advantages and limitations of each microscopic simulation model in terms of accuracy and continuity. We also discuss model calibration methods, stability analysis, and the impact of complex traffic environments on the car-following process. Finally, we present detailed discussions of each model’s features and provide recommendations based on reviewed works and development trends for future research, including mixed traffic flow composed of AVs and HDVs.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by the Key Project (No. 52131203) and Youth Program (No. 52102375) of the National Natural Science Foundation of China, the Youth Program (No. BK20210247) of the Natural Science Foundation of Jiangsu Province, China, and the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515110260). Ziyuan Gu acknowledges the support from the High-Level Personnel Project of Jiangsu Province, China. Qixiu Cheng acknowledges the support from the Basic and Applied Basic Research Foundation of Guangdong Province, China.

References

Aghabayk, K., M. Sarvi, W. Young, and L. Kautzsch. 2013. “A novel methodology for evolutionary calibration of Vissim by multi-threading.” In Proc., Australasian Transport Research Forum 2013, 1–15. Brisbane, Australia: Australasian Transport Research Forum.
Ahmed, H. U., Y. Huang, and P. Lu. 2021. “A review of car-following models and modeling tools for human and autonomous-ready driving behaviors in micro-simulation.” Smart Cities 4 (1): 314–335. https://doi.org/10.3390/smartcities4010019.
Ahn, S., M. J. Cassidy, and J. Laval. 2004. “Verification of a simplified car-following theory.” Transp. Res. Part B Methodol. 38 (5): 431–440. https://doi.org/10.1016/S0191-2615(03)00074-2.
Alhariqi, A., Z. Gu, and M. Saberi. 2022. “Calibration of the intelligent driver model (IDM) with adaptive parameters for mixed autonomy traffic using experimental trajectory data.” Transportmetrica B: Transport Dyn. 10 (1): 421–440. https://doi.org/10.1080/21680566.2021.2007813.
An, S., L. Xu, L. Qian, G. Chen, H. Luo, and F. Li. 2020. “Car-following model for autonomous vehicles and mixed traffic flow analysis based on discrete following interval.” Physica A 560 (Dec): 125246. https://doi.org/10.1016/j.physa.2020.125246.
Angkititrakul, P., C. Miyajima, and K. Takeda. 2011. “Modeling and adaptation of stochastic driver-behavior model with application to car following.” In Proc., 2011 IEEE Intelligent Vehicles Symp. (IV), 814–819. New York: IEEE.
Asaithambi, G., V. Kanagaraj, and T. Toledo. 2016. “Driving behaviors: Models and challenges for non-lane based mixed traffic.” Transp. Dev. Econ. 2 (2): 19. https://doi.org/10.1007/s40890-016-0025-6.
Aw, A., A. Klar, T. Materne, and M. Rascle. 2002. “Derivation of continuum traffic flow models from microscopic follow-the-leader models.” SIAM J. Appl. Math. 63 (1): 259–278. https://doi.org/10.1137/S0036139900380955.
Aycin, M. F., and R. F. Benekohal. 1999. “Comparison of car-following models for simulation.” Transp. Res. Rec. 1678 (1): 116–127. https://doi.org/10.3141/1678-15.
Bando, M., K. Hasebe, K. Nakanishi, and A. Nakayama. 1998. “Analysis of optimal velocity model with explicit delay.” Phys. Rev. E 58 (5): 5429. https://doi.org/10.1103/PhysRevE.58.5429.
Bando, M., K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. 1995. “Dynamical model of traffic congestion and numerical simulation.” Phys. Rev. E 51 (2): 1035–1042. https://doi.org/10.1103/PhysRevE.51.1035.
Barlovic, R., L. Santen, A. Schadschneider, and M. Schreckenberg. 1998. “Metastable states in cellular automata for traffic flow.” Eur. Phys. J. B 5 (3): 793–800. https://doi.org/10.1007/s100510050504.
Barmpounakis, E., and N. Geroliminis. 2020. “On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment.” Transp. Res. Part C Emerging Technol. 111 (Feb): 50–71. https://doi.org/10.1016/j.trc.2019.11.023.
Bock, J., R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. 2020. “The inD Dataset: A drone dataset of naturalistic road user trajectories at german intersections.” In Proc., 2020 IEEE Intelligent Vehicles Symp. (IV), 1929–1934. New York: IEEE.
Brackstone, M., and M. McDonald. 1999. “Car-following: A historical review.” Transp. Res. Part F Traffic Psychol. Behav. 2 (4): 181–196. https://doi.org/10.1016/S1369-8478(00)00005-X.
Chakroborty, P. 2006. “Models of vehicular traffic: An engineering perspective.” Physica A 372 (1): 151–161. https://doi.org/10.1016/j.physa.2006.05.009.
Chandler, R. E., R. Herman, and E. W. Montroll. 1958. “Traffic dynamics: Studies in car following.” Oper. Res. 6 (2): 165–184. https://doi.org/10.1287/opre.6.2.165.
Chen, J., D. Sun, Y. Li, M. Zhao, W. Liu, and S. Jin. 2021. “Human–machine cooperative scheme for car-following control of the connected and automated vehicles.” Physica A 573 (Jul): 125949. https://doi.org/10.1016/j.physa.2021.125949.
Cheng, Q., Z. Liu, Y. Lin, and X. Zhou. 2021. “An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship.” Transp. Res. Part B Methodol. 153 (Jun): 246–271. https://doi.org/10.1016/j.trb.2021.09.004.
Chong, L., M. M. Abbas, and A. Medina. 2011. “Simulation of driver behavior with agent-based back-propagation neural network.” Transp. Res. Rec. 2249 (1): 44–51. https://doi.org/10.3141/2249-07.
Chong, L., M. M. Abbas, A. Medina Flintsch, and B. Higgs. 2013. “A rule-based neural network approach to model driver naturalistic behavior in traffic.” Transp. Res. Part C Emerging Technol. 32 (Jul): 207–223. https://doi.org/10.1016/j.trc.2012.09.011.
Ci, Y., L. Wu, J. Zhao, Y. Sun, and G. Zhang. 2019. “V2I-based car-following modeling and simulation of signalized intersection.” Physica A 525 (Jul): 672–679. https://doi.org/10.1016/j.physa.2019.03.062.
Ciuffo, B., et al. 2021. “Requiem on the positive effects of commercial adaptive cruise control on motorway traffic and recommendations for future automated driving systems.” Transp. Res. Part C Emerging Technol. 130 (Sep): 103305. https://doi.org/10.1016/j.trc.2021.103305.
Czech, P., K. Turoń, and J. Barcik. 2018. “Autonomous vehicles: Basic issues.” Sci. J. Silesian Univ. Technol. Ser. Transp. 100 (Apr): 15–22. https://doi.org/10.20858/sjsutst.2018.100.2.
Desjardins, C., and B. Chaib-Draa. 2011. “Cooperative adaptive cruise control: A reinforcement learning approach.” IEEE Trans. Intell. Transp. Syst. 12 (4): 1248–1260. https://doi.org/10.1109/TITS.2011.2157145.
De Winter, J. C. F., R. Happee, M. H. Martens, and N. A. Stanton. 2014. “Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence.” Transp. Res. Part F Traffic Psychol. Behav. 27 (Nov): 196–217. https://doi.org/10.1016/j.trf.2014.06.016.
Dey, K. C., L. Yan, X. Wang, Y. Wang, H. Shen, M. Chowdhury, L. Yu, C. Qiu, and V. Soundararaj. 2016. “A review of communication, driver characteristics, and controls aspects of Cooperative Adaptive Cruise Control (CACC).” IEEE Trans. Intell. Transp. Syst. 17 (2): 491–509. https://doi.org/10.1109/TITS.2015.2483063.
Di, X., and R. Shi. 2021. “A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning.” Transp. Res. Part C Emerging Technol. 125 (Apr): 103008. https://doi.org/10.1016/j.trc.2021.103008.
Dong, C., H. Wang, Y. Li, W. Wang, and Z. Zhang. 2020. “Route control strategies for autonomous vehicles exiting to off-ramps.” IEEE Trans. Intell. Transp. Syst. 21 (7): 3104–3116. https://doi.org/10.1109/TITS.2019.2925319.
Eskandarian, A. 2003. “Research advances in intelligent collision avoidance and adaptive cruise control.” IEEE Intell. Transp. Syst. Mag. 4 (3): 143–153. https://doi.org/10.1109/TITS.2003.821292.
Fancher, P. S., and Z. Bareket. 1998. “Evolving model for studying driver-vehicle system performance in longitudinal control of headway.” Transp. Res. Rec. 1631 (1): 13–19. https://doi.org/10.3141/1631-03.
Federal Highway Administration. 2010. “Next generation simulation (NGSIM).” Accessed December 12, 2022. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
Ge, H. X., R. J. Cheng, and S. Q. Dai. 2005. “KdV and kink-antikink solitons in car-following models.” Physica A 357 (3–4): 466–476. https://doi.org/10.1016/j.physa.2005.03.059.
Gipps, P. G. 1981. “A behavioural car-following model for computer simulation.” Transp. Res. Part B Methodol. 15 (2): 105–111. https://doi.org/10.1016/0191-2615(81)90037-0.
Gong, H., H. Liu, and B. H. Wang. 2008. “An asymmetric full velocity difference car-following model.” Physica A 387 (11): 2595–2602. https://doi.org/10.1016/j.physa.2008.01.038.
Gong, S., and L. Du. 2018. “Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles.” Transp. Res. Part B Methodol. 116 (Oct): 25–61. https://doi.org/10.1016/j.trb.2018.07.005.
Gong, S., J. Shen, and L. Du. 2016. “Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon.” Transp. Res. Part B Methodol. 94 (Dec): 314–334. https://doi.org/10.1016/j.trb.2016.09.016.
Gong, Y., M. Abdel-Aty, J. Yuan, and Q. Cai. 2020. “Multi-Objective reinforcement learning approach for improving safety at intersections with adaptive traffic signal control.” Accid. Anal. Prev. 144 (Sep): 105655. https://doi.org/10.1016/j.aap.2020.105655.
Greenberg, H. 1959. “An analysis of traffic flow.” Oper. Res. 7 (1): 79–85. https://doi.org/10.1287/opre.7.1.79.
Greenshields, B. D., J. R. Bibbins, W. S. Channing, and H. H. Miller. 1935. “A study of traffic capacity.” In Vol. 14 of Proc., Highway Research Board, 448–477. Washington, DC: National Research Council.
Gu, Z., Z. Wang, Z. Liu, and M. Saberi. 2022. “Network traffic instability with automated driving and cooperative merging.” Transp. Res. Part C Emerging Technol. 138 (May): 103626. https://doi.org/10.1016/j.trc.2022.103626.
Gunter, G., et al. 2020. “Are commercially implemented adaptive cruise control systems string stable?” IEEE Trans. Intell. Transp. Syst. 22 (11): 6992–7003. https://doi.org/10.1109/TITS.2020.3000682.
Guo, Q., X. J. Ban, and H. A. Aziz. 2021. “Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks.” Transp. Res. Part C Emerging Technol. 128 (Jul): 103159. https://doi.org/10.1016/j.trc.2021.103159.
Hamdar, S. 2012. “Driver behavior modeling.” In Handbook of intelligent vehicles, edited by A. Eskandarian, 537–558. Berlin: Springer.
Hamdar, S. H. 2004. Towards modeling driver behavior under extreme conditions. College Park, MD: Univ. of Maryland.
Han, J., H. Shi, L. Chen, H. Li, and X. Wang. 2022. “The car-following model and its applications in the V2X environment: A historical review.” Future Internet 14 (1): 14. https://doi.org/10.3390/fi14010014.
Hart, F., O. Okhrin, and M. Treiber. 2021. “Formulation and validation of a car-following model based on deep reinforcement learningar.” Preprint, submitted September 17, 2021. http://arxiv.org/abs/2109.14268.
Harth, M., M. S. Ali, R. Kates, and K. Bogenberger. 2021. “Data-driven modelling of car-following behavior in the approach of signalized urban intersections.” In Proc., 2021 IEEE Int. Intelligent Transportation Systems Conf. (ITSC), 1721–1728. New York: IEEE.
Helbing, D., and B. Tilch. 1998. “Generalized force model of traffic dynamics.” Phys. Rev. E 58 (1): 133–138. https://doi.org/10.1103/PhysRevE.58.133.
Helly, W. 1959. “Simulation of bottlenecks in single-lane traffic flow.” In Proc., Symp. on Theory of Traffic Flow, 207–238. Warren, MI: General Motors.
Hoogendoorn, S., and R. Hoogendoorn. 2010. “Calibration of microscopic traffic-flow models using multiple data sources.” Philos. Trans. R. Soc. London, Ser. A 368 (1928): 4497–4517. https://doi.org/10.1098/rsta.2010.0189.
Hoogendoorn, S. P., and P. H. L. Bovy. 2001. “State-of-the-art of vehicular traffic flow modelling.” J. Syst. Control Eng. 215 (4): 283–303. https://doi.org/10.1177/095965180121500402.
Hua, X. D., W. Wang, and H. Wang. 2016. “A car-following model with the consideration of vehicle-to-vehicle communication technology.” J. Phys. 65 (1): e010502. https://doi.org/10.7498/aps.65.010502.
Huang, D., Y. Wang, S. Jia, Z. Liu, and S. Wang. 2022. “A Lagrangian relaxation approach for the electric bus charging scheduling optimisation problem.” Transp. A Transp. Sci. 19 (2): 1–24. https://doi.org/10.1080/23249935.2021.2023690.
Huang, D., J. Xing, Z. Liu, and Q. An. 2021. “A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes.” Transportmetrica A: Transport Sci. 17 (4): 1272–1304. https://doi.org/10.1080/23249935.2020.1858206.
Huang, S., and W. Ren. 1999. “Use of neural fuzzy networks with mixed genetic/gradient algorithm in automated vehicle control.” IEEE Trans. Ind. Electron. 46 (6): 1090–1102. https://doi.org/10.1109/41.807993.
Huang, X., J. Sun, and J. Sun. 2018. “A car-following model considering asymmetric driving behavior based on long short-term memory neural networks.” Transp. Res. Part C Emerging Technol. 95 (Oct): 346–362. https://doi.org/10.1016/j.trc.2018.07.022.
Huo, J., X. Fu, Z. Liu, and Q. Zhang. 2022a. “Short-term estimation and prediction of pedestrian density in urban hot spots based on mobile phone data.” IEEE Trans. Intell. Transp. Syst. 23 (8): 10827–10838. https://doi.org/10.1109/TITS.2021.3096274.
Huo, J., X. Wu, C. Lyu, W. Zhang, and Z. Liu. 2022b. “Quantify the road link performance and capacity using deep learning models.” IEEE Trans. Intell. Transp. Syst. 23 (10): 18581–18591. https://doi.org/10.1109/TITS.2022.3153397.
Isele, D., R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura. 2018. “Navigating occluded intersections with autonomous vehicles using deep reinforcement learning.” In Proc., 2018 IEEE Int. Conf. on Robotics and Automation (ICRA), 2034–2039. New York: IEEE.
Jia, D., and D. Ngoduy. 2016a. “Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication.” Transp. Res. Part B Methodol. 90 (Aug): 172–191. https://doi.org/10.1016/j.trb.2016.03.008.
Jia, D., and D. Ngoduy. 2016b. “Platoon based cooperative driving model with consideration of realistic inter-vehicle communication.” Transp. Res. Part C Emerging Technol. 68 (Jul): 245–264. https://doi.org/10.1016/j.trc.2016.04.008.
Jiang, R., M. B. Hu, H. M. Zhang, Z. Y. Gao, B. Jia, and Q. S. Wu. 2015. “On some experimental features of car-following behavior and how to model them.” Transp. Res. Part B Methodol. 80 (Oct): 338–354. https://doi.org/10.1016/j.trb.2015.08.003.
Jiang, R., M.-B. Hu, H. Zhang, Z.-Y. Gao, B. Jia, Q.-S. Wu, B. Wang, and M. Yang. 2014. “Traffic experiment reveals the nature of car-following.” PLoS One 9 (4): e94351. https://doi.org/10.1371/journal.pone.0094351.
Jiang, R., Q. Wu, and Z. Zhu. 2001. “Full velocity difference model for a car-following theory.” Phys. Rev. E 64 (1): 4. https://doi.org/10.1103/PhysRevE.64.017101.
Jiang, Y., S. Wang, Z. Yao, B. Zhao, and Y. Wang. 2021. “A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons.” Phys. A Stat. Mech. Appl. 582: 126262. https://doi.org/10.1016/j.physa.2021.126262.
Jiao, S., S. Zhang, B. Zhou, Z. Zhang, and L. Xue. 2020. “An extended car-following model considering the drivers’ characteristics under a V2V communication environment.” Sustainability 12 (4): 1–18. https://doi.org/10.3390/su12041552.
Jin, W. L. 2016. “On the equivalence between continuum and car-following models of traffic flow.” Transp. Res. Part B Methodol. 93 (Nov): 543–559. https://doi.org/10.1016/j.trb.2016.08.007.
Kerner, B. S. 2016. “Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving.” Physica A 450 (May): 700–747. https://doi.org/10.1016/j.physa.2016.01.034.
Kerner, B. S. 2018a. “Autonomous driving in framework of three-phase traffic theory.” Procedia Comput. Sci. 130 (Aug): 785–790. https://doi.org/10.1016/j.procs.2018.04.136.
Kerner, B. S. 2018b. “Physics of automated driving in framework of three-phase traffic theory.” Phys. Rev. E 97 (4): e042303. https://doi.org/10.1103/PhysRevE.97.042303.
Kerner, B. S. 2019. “Autonomous driving in the framework of three-phase traffic theory.” In Complex dynamics of traffic management, encyclopedia of complexity and systems science series, edited by B. S. Kerner, 343–385. New York: Springer.
Kesting, A., M. Treiber, and D. Helbing. 2010. “Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity.” Philos. Trans. R. Soc. London, Ser. A 368 (1928): 4585–4605. https://doi.org/10.1098/rsta.2010.0084.
Kesting, A., M. Treiber, M. Schönhof, and D. Helbing. 2008. “Adaptive cruise control design for active congestion avoidance.” Transp. Res. Part C Emerging Technol. 16 (6): 668–683. https://doi.org/10.1016/j.trc.2007.12.004.
Kianfar, R., et al. 2012. “Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge.” IEEE Trans. Intell. Transp. Syst. 13 (3): 994–1007. https://doi.org/10.1109/TITS.2012.2186513.
Knoop, V. L., M. Wang, I. Wilmink, D. M. Hoedemaeker, M. Maaskant, and E. J. Van der Meer. 2019. “Platoon of SAE level-2 automated vehicles on public roads: Setup, traffic interactions, and stability.” Transp. Res. Rec. 2673 (9): 311–322. https://doi.org/10.1177/0361198119845885.
Kometani, E., and T. Sasaki. 1959. “A safety index for traffic with linear spacing.” Oper. Res. 7 (6): 704–720. https://doi.org/10.1287/opre.7.6.704.
Krajewski, R., J. Bock, L. Kloeker, and L. Eckstein. 2018. “The highD dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems.” In Proc., IEEE Conf. on Intelligent Transportation Systems, ITSC, 2118–2125. New York: IEEE.
Krajewski, R., T. Moers, J. Bock, L. Vater, and L. Eckstein. 2020. “The rounD dataset: A drone dataset of road user trajectories at roundabouts in Germany.” In Proc., 2020 IEEE 23rd Int. Conf. on Intelligent Transportation Systems (ITSC), 1–6. New York: IEEE.
Kuang, H., M. T. Wang, F. H. Lu, K. Z. Bai, and X. L. Li. 2019. “An extended car-following model considering multi-anticipative average velocity effect under V2V environment.” Physica A 527 (Aug): 121268. https://doi.org/10.1016/j.physa.2019.121268.
Larsson, J., M. F. Keskin, B. Peng, B. Kulcsár, and H. Wymeersch. 2021. “Pro-social control of connected automated vehicles in mixed-autonomy multi-lane highway traffic.” Commun. Transp. Res. 1 (Aug): 100019. https://doi.org/10.1016/j.commtr.2021.100019.
Laval, J. A., C. S. Toth, and Y. Zhou. 2014. “A parsimonious model for the formation of oscillations in car-following models.” Transp. Res. Part B Methodol. 70 (Dec): 228–238. https://doi.org/10.1016/j.trb.2014.09.004.
Lee, G. 1966. “A generalization of linear car-following theory.” Oper. Res. 14 (4): 595–606. https://doi.org/10.1287/opre.14.4.595.
Li, L., X. M. Chen, and L. Zhang. 2016. “A global optimization algorithm for trajectory data based car-following model calibration.” Transp. Res. Part C Emerging Technol. 68 (Jul): 311–332. https://doi.org/10.1016/j.trc.2016.04.011.
Li, L., W. Jiang, M. Shi, and T. Wu. 2022a. “Dynamic target following control for autonomous vehicles with deep reinforcement learning.” In Proc., 2022 Int. Conf. on Advanced Robotics and Mechatronics (ICARM), 386–391. New York: IEEE.
Li, L., X. Peng, F. Y. Wang, D. Cao, and L. Li. 2018. “A situation-aware collision avoidance strategy for car-following.” IEEE/CAA J. Autom. Sin. 5 (5): 1012–1016. https://doi.org/10.1109/JAS.2018.7511198.
Li, S., K. Li, R. Rajamani, and J. Wang. 2011. “Model predictive multi-objective vehicular adaptive cruise control.” IEEE Trans. Control Syst. Technol. 19 (3): 556–566. https://doi.org/10.1109/TCST.2010.2049203.
Li, S., Y. Liu, and X. Qu. 2022b. “Model controlled prediction: A reciprocal alternative of model predictive control.” IEEE/CAA J. Autom. Sin. 9 (6): 1107–1110. https://doi.org/10.1109/JAS.2022.105611.
Li, Y., W. Chen, S. Peeta, and Y. Wang. 2020. “Platoon control of connected multi-vehicle systems under V2X communications: Design and experiments.” IEEE Trans. Intell. Transp. Syst. 21 (5): 1891–1902. https://doi.org/10.1109/TITS.2019.2905039.
Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. 2015. “Continuous control with deep reinforcement learning.” Preprint, submitted July 25, 2019. http://arxiv.org/abs/1509.02971.
Lin, Y., J. McPhee, and N. L. Azad. 2020. “Anti-jerk on-ramp merging using deep reinforcement learning.” In Proc., 2020 IEEE Intelligent Vehicles Symposium (IV), 7–14. New York: IEEE.
Lin, Y., J. McPhee, and N. L. Azad. 2021. “Comparison of deep reinforcement learning and model predictive control for adaptive cruise control.” IEEE Trans. Intell. Veh. 6 (2): 221–231. https://doi.org/10.1109/TIV.2020.3012947.
Litman, T. 2015. Autonomous vehicle implementation predictions. Victoria, BC, Canada: Victoria Transport Policy Institute.
Liu, Y., R. Jia, J. Ye, and X. Qu. 2022a. “How machine learning informs ride-hailing services: A survey.” Commun. Transp. Res. 2 (Dec): 100075. https://doi.org/10.1016/j.commtr.2022.100075.
Liu, Y., Z. Liu, and R. Jia. 2019. “DeepPF: A deep learning based architecture for metro passenger flow prediction.” Transp. Res. Part C Emerging Technol. 101 (Apr): 18–34. https://doi.org/10.1016/j.trc.2019.01.027.
Liu, Y., C. Lyu, Z. Liu, and J. Cao. 2021a. “Exploring a large-scale multi-modal transportation recommendation system.” Transp. Res. Part C Emerging Technol. 126 (May): 103070. https://doi.org/10.1016/j.trc.2021.103070.
Liu, Y., C. Lyu, Y. Zhang, Z. Liu, W. Yu, and X. Qu. 2021b. “DeepTSP: Deep traffic state prediction model based on large-scale empirical data.” Commun. Transp. Res. 1 (Dec): 100012. https://doi.org/10.1016/j.commtr.2021.100012.
Liu, Y., F. Wu, C. Lyu, S. Li, J. Ye, and X. Qu. 2022b. “Deep dispatching: A deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform.” Transp. Res. Part E Logist. Transp. Rev. 161 (May): 102694. https://doi.org/10.1016/j.tre.2022.102694.
Ma, X. 2006. “A neural-fuzzy framework for modeling car-following behavior.” In Proc., 2006 IEEE Int. Conf. on Systems, Man and Cybernetics, 1178–1183. New York: IEEE.
Mahmassani, H. S. 2016. “50th anniversary invited article—Autonomous vehicles and connected vehicle systems: Flow and operations considerations.” Transp. Sci. 50 (4): 1140–1162. https://doi.org/10.1287/trsc.2016.0712.
Makridis, M., K. Mattas, A. Anesiadou, and B. Ciuffo. 2021. “OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems.” Transp. Res. Part C Emerging Technol. 125 (Apr): 103047. https://doi.org/10.1016/j.trc.2021.103047.
Makridis, M., K. Mattas, and B. Ciuffo. 2019. “Response time and time headway of an adaptive cruise control. An empirical characterization and potential impacts on road capacity.” IEEE Trans. Intell. Transp. Syst. 21 (4): 1677–1686. https://doi.org/10.1109/TITS.2019.2948646.
Mar, J., F. J. Lin, H. T. Lin, and L. C. Hsu. 2003. “The car following collision prevention controller based on the fuzzy basis function network.” Fuzzy Sets Syst. 139 (1): 167–183. https://doi.org/10.1016/S0165-0114(02)00371-8.
Mcity. 2020 “Mcity test facility.” Accessed December 12, 2022. https://mcity.umich.edu/our-work/mcity-test-facility.
Michaels, R. M. 1963. “Perceptual factors in car following.” In Proc., 2nd ISTTF, 44–59. London: International Symposium on Theory of Traffic Flow.
Milanes, V., S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura. 2014. “Cooperative adaptive cruise control in real traffic situations.” IEEE Trans. Intell. Transp. Syst. 15 (1): 296–305. https://doi.org/10.1109/TITS.2013.2278494.
Milanés, V., and S. E. Shladover. 2014. “Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data.” Transp. Res. Part C Emerging Technol. 48 (Nov): 285–300. https://doi.org/10.1016/j.trc.2014.09.001.
Mnih, V., et al. 2015. “Human-level control through deep reinforcement learning.” Nature 518 (7540): 529–533. https://doi.org/10.1038/nature14236.
Mo, Z., R. Shi, and X. Di. 2021. “A physics-informed deep learning paradigm for car-following models.” Transp. Res. Part C Emerging Technol. 130 (Sep): 103240. https://doi.org/10.1016/j.trc.2021.103240.
Nagel, K., and M. Schreckenberg. 1992. “A cellular automaton model for freeway traffic.” J. Phys. I 2 (12): 2221–2229. https://doi.org/10.1051/jp1:1992277.
Naing, H., W. Cai, T. Wu, and L. Yu. 2022. “Dynamic car-following model calibration with deep reinforcement learning.” In Proc., 2022 IEEE 25th Int. Conf. on Intelligent Transportation Systems (ITSC), 959–966. New York: IEEE.
Naranjo, J. E., C. Gonzàlez, R. García, and T. De Pedro. 2006. “ACC+Stop& go maneuvers with throttle and brake fuzzy control.” IEEE Trans. Intell. Transp. Syst. 7 (2): 213–225. https://doi.org/10.1109/TITS.2006.874723.
Naus, G. J. L., J. Ploeg, M. J. G. Van de Molengraft, W. P. M. H. Heemels, and M. Steinbuch. 2010a. “Design and implementation of parameterized adaptive cruise control: An explicit model predictive control approach.” Control Eng. Pract. 18 (8): 882–892. https://doi.org/10.1016/j.conengprac.2010.03.012.
Naus, G. J. L., R. P. A. Vugts, J. Ploeg, M. J. G. van De Molengraft, and M. Steinbuch. 2010b. “String-stable CACC design and experimental validation: A frequency-domain approach.” IEEE Trans. Veh. Technol. 59 (9): 4268–4279. https://doi.org/10.1109/TVT.2010.2076320.
Ngoduy, D., S. Lee, M. Treiber, M. Keyvan-Ekbatani, and H. Vu. 2019. “Langevin method for a continuous stochastic car-following model and its stability conditions.” Transp. Res. Part C Emerging Technol. 105 (Feb): 599–610. https://doi.org/10.1016/j.trc.2019.06.005.
Nigam, A., and S. Srivastava. 2023. “Hybrid deep learning models for traffic stream variables prediction during rainfall.” Multimodal Transp. 2 (1): 100052. https://doi.org/10.1016/j.multra.2022.100052.
Olstam, J. J., and A. Tapani. 2004. Comparison of car-following models. Linköping, Sweden: Swedish National Road and Transport Research Institute.
Ossen, S., and S. P. Hoogendoorn. 2008. “Validity of trajectory-based calibration approach of car-following models in presence of measurement errors.” Transp. Res. Rec. 2088 (1): 117–125. https://doi.org/10.3141/2088-13.
Pan, T., R. Guo, W. H. K. Lam, R. Zhong, W. Wang, and B. He. 2021. “Integrated optimal control strategies for freeway traffic mixed with connected automated vehicles: A model-based reinforcement learning approach.” Transp. Res. Part C Emerging Technol. 123 (Feb): 102987. https://doi.org/10.1016/j.trc.2021.102987.
Panwai, S., and H. Dia. 2005. “Comparative evaluation of microscopic car-following behavior.” IEEE Trans. Intell. Transp. Syst. 6 (3): 314–325. https://doi.org/10.1109/TITS.2005.853705.
Papathanasopoulou, V., and C. Antoniou. 2015. “Towards data-driven car-following models.” Transp. Res. Part C Emerging Technol. 55 (Jun): 496–509. https://doi.org/10.1016/j.trc.2015.02.016.
Peng, B., M. F. Keskin, B. Kulcsár, and H. Wymeersch. 2021. “Connected autonomous vehicles for improving mixed traffic efficiency in unsignalized intersections with deep reinforcement learning.” Commun. Transp. Res. 1 (Dec): 100017. https://doi.org/10.1016/j.commtr.2021.100017.
Peng, G., S. Yang, D. Xia, and X. Li. 2019. “Delayed-feedback control in a car-following model with the combination of V2V communication.” Physica A 526 (Jul): 120912. https://doi.org/10.1016/j.physa.2019.04.148.
Pipes, L. A. 1953. “An operational analysis of traffic dynamics.” J. Appl. Phys. 24 (3): 274–281. https://doi.org/10.1063/1.1721265.
Przybyla, J., J. Taylor, J. Jupe, and X. Zhou. 2015. “Estimating risk effects of driving distraction: A dynamic errorable car-following model.” Transp. Res. Part C Emerging Technol. 50 (Jan): 117–129. https://doi.org/10.1016/j.trc.2014.07.013.
Punzo, V., B. Ciuffo, and M. Montanino. 2012. “Can results of car-following model calibration based on trajectory data be trusted?” Transp. Res. Rec. 2315 (1): 11–24. https://doi.org/10.3141/2315-02.
Punzo, V., and F. Simonelli. 2005. “Analysis and comparison of microscopic traffic flow models with real traffic microscopic data.” Transp. Res. Rec. 1934 (1): 53–63. https://doi.org/10.1177/0361198105193400106.
Punzo, V., Z. Zheng, and M. Montanino. 2021. “About calibration of car-following dynamics of automated and human-driven vehicles: Methodology, guidelines and codes.” Transp. Res. Part C Emerging Technol. 128 (Jul): 103165. https://doi.org/10.1016/j.trc.2021.103165.
Qu, X., J. Zhang, and S. Wang. 2017. “On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications.” Transp. Res. Part B Methodol. 104 (Oct): 256–271. https://doi.org/10.1016/j.trb.2017.07.003.
Rajput, P., M. Chaturvedi, and V. Patel. 2022. “Road condition monitoring using unsupervised learning based bus trajectory processing.” Multimodal Transp. 1 (4): 100041. https://doi.org/10.1016/j.multra.2022.100041.
Reuschel, A. 1950. “Fahrzeugbewegungen in der Kolonne.” Osterr. Ing. Archiv. 4 (1): 193–215.
Saifuzzaman, M., and Z. Zheng. 2014. “Incorporating human-factors in car-following models: A review of recent developments and research needs.” Transp. Res. Part C Emerging Technol. 48 (Nov): 379–403. https://doi.org/10.1016/j.trc.2014.09.008.
Schakel, W. J., B. Van Arem, and B. D. Netten. 2010. “Effects of cooperative adaptive cruise control on traffic flow stability.” In Proc., 13th Int. IEEE Conf. on Intelligent Transportation Systems, 759–764. New York: IEEE.
SEU (Southeast University). 2019. “SEU vehicle trajectory data.” Accessed December 12, 2022. http://seutraffic.com/.
Shi, H., D. Chen, N. Zheng, X. Wang, Y. Zhou, and B. Ran. 2023. “A deep reinforcement learning based distributed control strategy for connected automated vehicles in mixed traffic platoon.” Transp. Res. Part C Emerging Technol. 148 (Mar): 104019. https://doi.org/10.1016/j.trc.2023.104019.
Shi, H., Y. Zhou, K. Wu, X. Wang, Y. Lin, and B. Ran. 2021. “Connected automated vehicle cooperative control with a deep reinforcement learning approach in a mixed traffic environment.” Transp. Res. Part C Emerging Technol. 133 (Dec): 103421. https://doi.org/10.1016/j.trc.2021.103421.
Shladover, S., J. VanderWerf, M. A. Miller, N. Kourjanskaia, and H. Krishnan. 2001. “Development and performance evaluation of AVCSS deployment sequences to advance from today’s driving environment to full automation.” Accessed December 12, 2022. https://escholarship.org/uc/item/33w2d55j.
Shladover, S. E., D. Su, and X. Y. Lu. 2012. “Impacts of cooperative adaptive cruise control on freeway traffic flow.” Transp. Res. Rec. 2324 (1): 63–70. https://doi.org/10.3141/2324-08.
Silver, D., et al. 2017. “Mastering the game of Go without human knowledge.” Nature 550 (7676): 354–359. https://doi.org/10.1038/nature24270.
Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot. 2016. “Mastering the game of Go with deep neural networks and tree search.” Nature 529 (7587): 484–489. https://doi.org/10.1038/nature16961.
Su, P. P., J. Ma, T. W. Lochrane, D. J. Dailey, and D. Hale. 2016. “Integrated adaptive cruise control car-following model based on trajectory data.” In Proc., 95th Transportation Research Board Annual Meeting, 35–47. Washington, DC: National Academies of Sciences.
Sun, J., Z. Zheng, and J. Sun. 2018a. “Stability analysis methods and their applicability to car-following models in conventional and connected environments.” Transp. Res. Part B Methodol. 109 (Mar): 212–237. https://doi.org/10.1016/j.trb.2018.01.013.
Sun, L., A. Jafaripournimchahi, and W. Hu. 2020. “A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment.” Physica A 556 (Oct): 124589. https://doi.org/10.1016/j.physa.2020.124589.
Sun, Y., H. Ge, and R. Cheng. 2018b. “An extended car-following model under V2V communication environment and its delayed-feedback control.” Physica A 508 (Oct): 349–358. https://doi.org/10.1016/j.physa.2018.05.102.
Swaroop, D., and K. R. Rajagopal. 2001. “A review of constant time headway policy for automatic vehicle following.” In Proc., ITSC 2001. 2001 IEEE Intelligent Transportation Systems, 65–69. New York: IEEE.
Taylor, J., X. Zhou, N. M. Rouphail, and R. J. Porter. 2015. “Method for investigating intradriver heterogeneity using vehicle trajectory data: A dynamic time warping approach.” Transp. Res. Part B Methodol. 73 (Mar): 59–80. https://doi.org/10.1016/j.trb.2014.12.009.
Tian, J., H. Zhang, M. Treiber, R. Jiang, Z.-Y. Gao, and B. Jia. 2019. “On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model.” Transp. Res. Part B Methodol. 129 (Nov): 334–350. https://doi.org/10.1016/j.trb.2019.09.014.
Tolebi, G., N. S. Dairbekov, D. Kurmankhojayev, and R. Mussabayev. 2018. “Reinforcement Learning Intersection Controller.” In Proc., 2018 14th Int. Conf. on Electronics Computer and Computation (ICECCO), 206–212. New York: IEEE.
Tordeux, A., S. Lassarre, and M. Roussignol. 2010. “An adaptive time gap car-following model.” Transp. Res. Part B Methodol. 44 (8–9): 1115–1131. https://doi.org/10.1016/j.trb.2009.12.018.
Treiber, M., and D. Helbing. 2003. “Memory effects in microscopic traffic models and wide scattering in flow-density data.” Phys. Rev. E 68 (4): e046119. https://doi.org/10.1103/PhysRevE.68.046119.
Treiber, M., A. Hennecke, and D. Helbing. 2000. “Congested traffic states in empirical observations and microscopic simulations.” Phys. Rev. E 62 (2): 1805–1824. https://doi.org/10.1103/PhysRevE.62.1805.
Treiber, M., and A. Kesting. 2013a. “Microscopic calibration and validation of car-following models—A systematic approach.” Procedia Soc. Behav. Sci. 80 (Jun): 922–939. https://doi.org/10.1016/j.sbspro.2013.05.050.
Treiber, M., and A. Kesting. 2013b. Traffic flow dynamics: Data, models and simulation. Berlin: Springer.
Treiber, M., and A. Kesting. 2017. “The intelligent driver model with stochasticity -New insights into traffic flow oscillations.” Transp. Res. Procedia 23 (Jan): 174–187. https://doi.org/10.1016/j.trpro.2017.05.011.
Treiber, M., A. Kesting, and D. Helbing. 2006. “Delays, inaccuracies and anticipation in microscopic traffic models.” Physica A 360 (1): 71–88. https://doi.org/10.1016/j.physa.2005.05.001.
Underwood, R. T. 1961. Speed, volume, and density relationship. New Haven, CT: National Research Council.
Van Arem, B., C. J. G. Van Driel, and R. Visser. 2006. “The impact of cooperative adaptive cruise control on traffic-flow characteristics.” IEEE Trans. Intell. Transp. Syst. 7 (4): 429–436. https://doi.org/10.1109/TITS.2006.884615.
Wang, C., Y. Xie, H. Huang, and P. Liu. 2021. “A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling.” Accid. Anal. Prev. 157 (Jul): 106157. https://doi.org/10.1016/j.aap.2021.106157.
Wang, H., W. Wang, J. Chen, C. Xu, and Y. Li. 2019a. “Can we trust the speed–spacing relationship estimated by car-following model from non-stationary trajectory data?” Transp. A Transp. Sci. 15 (2): 263–284. https://doi.org/10.1080/23249935.2018.1466211.
Wang, J., S. Peeta, and X. He. 2019b. “Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles.” Transp. Res. Part B Methodol. 126 (Aug): 139–168. https://doi.org/10.1016/j.trb.2019.05.022.
Wang, M., W. Daamen, S. P. Hoogendoorn, and B. Van Arem. 2016. “Cooperative car-following control: Distributed algorithm and impact on moving jam features.” IEEE Trans. Intell. Transp. Syst. 17 (5): 1459–1471. https://doi.org/10.1109/TITS.2015.2505674.
Wang, P., C. Chan, and A. D. L. Fortelle. 2018a. “A reinforcement learning based approach for automated lane change maneuvers.” In Proc., 2018 IEEE Intelligent Vehicles Symp. (IV), 1379–1384. New York: IEEE.
Wang, P., and C.-Y. Chan. 2018. “Autonomous ramp merge maneuver based on reinforcement learning with continuous action spacear.” Preprint, submitted March 25, 2018. http://arxiv.org/abs/1803.09203.
Wang, X., R. Jiang, L. Li, Y. Lin, X. Zheng, and F. Wang. 2018b. “Capturing car-following behaviors by deep learning.” IEEE Trans. Intell. Transp. Syst. 19 (3): 910–920. https://doi.org/10.1109/TITS.2017.2706963.
Wang, X., R. Jiang, L. Li, Y. L. Lin, and F. Y. Wang. 2019c. “Long memory is important: A test study on deep-learning based car-following model.” Physica A 514 (Jan): 786–795. https://doi.org/10.1016/j.physa.2018.09.136.
Wei, Y., C. Avcı, J. Liu, B. Belezamo, N. Aydın, P. T. Li, and X. Zhou. 2017. “Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models.” Transp. Res. Part B Methodol. 106 (Dec): 102–129. https://doi.org/10.1016/j.trb.2017.10.012.
Wen, X., S. Jian, and D. He. 2022. “Modeling human driver behaviors when following autonomous vehicles: An inverse reinforcement learning approach.” In Proc., 2022 IEEE 25th Int. Conf. on Intelligent Transportation Systems (ITSC), 1375–1380. New York: IEEE.
Wiedemann, R. 1974. “Simulation des straßenverkehrsflusses.” Master’s thesis, der Universitiit Karlsruhe, Germany, Schriftenreihe des Instituts für Verkehrswesen.
Wilson, R. E., and J. A. Ward. 2011. “Car-following models: Fifty years of linear stability analysis—A mathematical perspective.” Transp. Plan. Technol. 34 (1): 3–18. https://doi.org/10.1080/03081060.2011.530826.
Wolfram, S. 1986. Theory and applications of cellular automata. Singapore: World Scientific.
Wu, C., Y. Li, and Y. Li. 2019. “Trajectory tracking control for connected vehicle platoon considering time delays.” In Proc., 2018 Chinese Automation Congress, CAC 2018, 1328–1333. New York: IEEE.
Wu, J., and X. Qu. 2022. “Intersection control with connected and automated vehicles: A review.” J. Intell. Connected Veh. 5 (3): 260–269. https://doi.org/10.1108/JICV-06-2022-0023.
Xie, J., X. Xu, F. Wang, and H. Jiang. 2021. “Modeling human-like longitudinal driver model for intelligent vehicles based on reinforcement learning.” Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. 235 (8): 2226–2241. https://doi.org/10.1177/0954407020983579.
Xu, T., and J. A. Laval. 2019. “Analysis of a two-regime stochastic car-following model: Explaining capacity drop and oscillation instabilities.” Transp. Res. Rec. 2673 (10): 610–619. https://doi.org/10.1177/0361198119850464.
Xu, Z., S. Liu, Z. Wu, X. Chen, K. Zeng, K. Zheng, and H. Su. 2021. “PATROL: A velocity control framework for autonomous vehicle via spatial-temporal reinforcement learning.” In Proc., 30th ACM Int. Conf. on Information & Knowledge Management, 2271–2280. Gold Coast, QLD, Australia: Association for Computing Machinery.
Yang, D., L. Zhu, Y. Liu, D. Wu, and B. Ran. 2019. “A novel car-following control model combining machine learning and kinematics models for automated vehicles.” IEEE Trans. Intell. Transp. Syst. 20 (6): 1991–2000. https://doi.org/10.1109/TITS.2018.2854827.
Yang, L., R. M. Wang, X. M. Zhao, Z. G. Xu, and Y. P. Yang. 2021. “CAVTest: A closed connected and automated vehicles test field of Chang’an University in China.” SAE Int. J. Connected Autom. Veh. 4 (4): 423–435. https://doi.org/10.4271/12-04-04-0032.
Yavas, M. U., T. Kumbasar, and N. K. Ure. 2023. “Toward learning human-like, safe and comfortable car-following policies with a novel deep reinforcement learning approach.” IEEE Access 11 (Feb): 16843–16854. https://doi.org/10.1109/ACCESS.2023.3245831.
Ye, H., G. Y. Li, and B. F. Juang. 2019. “Deep reinforcement learning based resource allocation for V2V communications.” IEEE Trans. Veh. Technol. 68 (4): 3163–3173. https://doi.org/10.1109/TVT.2019.2897134.
Yu, H., R. Jiang, Z. He, Z. Zheng, L. Li, R. Liu, and X. Chen. 2021. “Automated vehicle-involved traffic flow studies: A survey of assumptions, models, speculations, and perspectives.” Transp. Res. Part C Emerging Technol. 127 (Jun): 103101. https://doi.org/10.1016/j.trc.2021.103101.
Yuan, Y., Q. Wang, and X. T. Yang. 2020. “Modeling stochastic microscopic traffic behaviors: A Physics regularized gaussian process approachar.” Preprint, submitted July 17, 2020. http://arxiv.org/abs/2007.10109.
Zadeh, L. A. 1973. “Outline of a new approach to the analysis of complex systems and decision processes.” IEEE Trans. Syst. Man Cybern. SMC-3 (1): 28–44. https://doi.org/10.1109/TSMC.1973.5408575.
Zhang, T., G. Kahn, S. Levine, and P. Abbeel. 2016. “Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search.” In Proc., 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), 528–535. New York: IEEE.
Zhang, Y., P. Sun, Y. Yin, L. Lin, and X. Wang. 2018. “Human-like autonomous vehicle speed control by deep reinforcement learning with double Q-learning.” In Proc., 2018 IEEE Intelligent Vehicles Symp. (IV), 1251–1256. New York: IEEE.
Zhao, W., D. Ngoduy, S. Shepherd, R. Liu, and M. Papageorgiou. 2018. “A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection.” Transp. Res. Part C Emerging Technol. 95: 802–821. https://doi.org/10.1016/j.trc.2018.05.025.
Zhao, X., Z. Wang, Z. Xu, Y. Wang, X. Li, and X. Qu. 2020. “Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle.” Transp. Res. Part C Emerging Technol. 114 (May): 205–224. https://doi.org/10.1016/j.trc.2020.02.018.
Zhao, Z., Z. Wang, K. Han, R. Gupta, P. Tiwari, G. Wu, and M. J. Barth. 2022. “Personalized car following for autonomous driving with inverse reinforcement learning.” In Proc., 2022 Int. Conf. on Robotics and Automation (ICRA), 2891–2897. New York: IEEE.
Zheng, Y., B. Ran, X. Qu, J. Zhang, and Y. Lin. 2020. “Cooperative lane changing strategies to improve traffic operation and safety nearby freeway off-ramps in a connected and automated vehicles environment.” IEEE Trans. Intell. Transp. Syst. 21 (11): 4605–4614. https://doi.org/10.1109/TITS.2019.2942050.
Zhou, J., and F. Zhu. 2021. “Analytical analysis of the effect of maximum platoon size of connected and automated vehicles.” Transp. Res. Part C Emerging Technol. 122 (Jan): 102882. https://doi.org/10.1016/j.trc.2020.102882.
Zhou, M., X. Qu, and S. Jin. 2016. “On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model-based approach.” IEEE Trans. Intell. Transp. Syst. 18 (6): 1422–1428. https://doi.org/10.1109/TITS.2016.2606492.
Zhou, M., X. Qu, and X. Li. 2017a. “A recurrent neural network based microscopic car following model to predict traffic oscillation.” Transp. Res. Part C Emerging Technol. 84 (Nov): 245–264. https://doi.org/10.1016/j.trc.2017.08.027.
Zhou, M., Y. Yu, and X. Qu. 2020. “Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: A reinforcement learning approach.” IEEE Trans. Intell. Transping Syst. 21 (1): 433–443. https://doi.org/10.1109/TITS.2019.2942014.
Zhou, X. S., Q. Cheng, X. Wu, P. Li, B. Belezamo, J. Lu, and M. Abbasi. 2022. “A meso-to-macro cross-resolution performance approach for connecting polynomial arrival queue model to volume-delay function with inflow demand-to-capacity ratio.” Multimodal Transp. 1 (2): 100017. https://doi.org/10.1016/j.multra.2022.100017.
Zhou, Y., S. Ahn, M. Chitturi, and D. A. Noyce. 2017b. “Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty.” Transp. Res. Part C Emerging Technol. 83 (Oct): 61–76. https://doi.org/10.1016/j.trc.2017.07.011.
Zhou, Y., S. Ahn, M. Wang, and S. Hoogendoorn. 2019a. “Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach.” Transp. Res. Procedia 38 (Feb): 441–461. https://doi.org/10.1016/j.trpro.2019.05.024.
Zhou, Y., M. Wang, and S. Ahn. 2019b. “Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability.” Transp. Res. Part B Methodol. 128 (Oct): 69–86. https://doi.org/10.1016/j.trb.2019.07.001.
Zhu, L., Y. Tang, and D. Yang. 2021. “Cellular automata-based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles.” Phys. A Stat. Mech. Appl. 584: 126368. https://doi.org/10.1016/j.physa.2021.126368.
Zhu, M., X. Wang, A. Tarko, and S. E. Fang. 2018a. “Modeling car-following behavior on urban expressways in Shanghai: A naturalistic driving study.” Transp. Res. Part C Emerging Technol. 93 (Aug): 425–445. https://doi.org/10.1016/j.trc.2018.06.009.
Zhu, M., X. Wang, and Y. Wang. 2018b. “Human-like autonomous car-following model with deep reinforcement learning.” Transp. Res. Part C Emerging Technol. 97 (Dec): 348–368. https://doi.org/10.1016/j.trc.2018.10.024.
Zhu, M., Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke. 2020. “Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving.” Transp. Res. Part C Emerging Technol. 117 (Aug): 102662. https://doi.org/10.1016/j.trc.2020.102662.
Zhu, W.-X., and H. M. Zhang. 2018a. “Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model.” Phys. A Stat. Mech. Appl. 496 (Apr): 274–285. https://doi.org/10.1016/j.physa.2017.12.103.
Zhu, W.-X., and L.-D. Zhang. 2018b. “A new car-following model for autonomous vehicles flow with mean expected velocity field.” Phys. A Stat. Mech. Appl. 492 (Feb): 2154–2165. https://doi.org/10.1016/J.PHYSA.2017.11.133.
ZTD. 2018. “Zen taffic data.” Accessed December 12, 2022. https://zen-traffic-data.net/english/.
Zuo, Y., X. Fu, Z. Liu, and D. Huang. 2021. “Short-term forecasts on individual accessibility in bus system based on neural network model.” J. Transp. Geogr. 93 (May): 103075. https://doi.org/10.1016/j.jtrangeo.2021.103075.

Information & Authors

Information

Published In

Go to Journal of Transportation Engineering, Part A: Systems
Journal of Transportation Engineering, Part A: Systems
Volume 149Issue 8August 2023

History

Received: Dec 11, 2022
Accepted: Mar 13, 2023
Published online: Jun 7, 2023
Published in print: Aug 1, 2023
Discussion open until: Nov 7, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, School of Transportation, Southeast Univ., Nanjing 210096, China. Email: [email protected]
Yunyang Shi [email protected]
Ph.D. Candidate, School of Transportation, Southeast Univ., Nanjing 210096, China. Email: [email protected]
Weiping Tong [email protected]
Lecturer, School of Transportation, Southeast Univ., Nanjing 210096, China. Email: [email protected]
Associate Professor, School of Transportation, Southeast Univ., Nanjing 210096, China. ORCID: https://orcid.org/0000-0002-2059-4809. Email: [email protected]
Research Assistant Professor, Dept. of Logistics and Maritime Studies, Hong Kong Polytechnic Univ., Kowloon, Hong Kong, China; Associate Professor, Shenzhen Research Institute, Hong Kong Polytechnic Univ., Shenzhen, China (corresponding author). ORCID: https://orcid.org/0000-0001-8772-7584. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Dynamic coordinated strategy for parking guidance in a mixed driving parking lot involving human-driven and autonomous vehicles, Electronic Research Archive, 10.3934/era.2024026, 32, 1, (523-550), (2024).
  • Fusing Physics-Based and Data-Driven Models for Car-Following Modeling: A Particle Filter Approach, Journal of Transportation Engineering, Part A: Systems, 10.1061/JTEPBS.TEENG-8556, 150, 12, (2024).
  • A Modeling Method for Complex Traffic Flow on Highways Based on the Fusion of Heterogeneous Data from Multiple Sensors, Journal of Transportation Engineering, Part A: Systems, 10.1061/JTEPBS.TEENG-8207, 150, 6, (2024).
  • Dynamic Systems Modeling and Integrated Transportation Demand-and-Supply Management with a Polynomial Arrival Queue Model, Journal of Transportation Engineering, Part A: Systems, 10.1061/JTEPBS.TEENG-8136, 150, 4, (2024).
  • Exploring Optimal Signal Plans for Isolated Signalized Intersections with Central Pedestrian Refuges, Journal of Transportation Engineering, Part A: Systems, 10.1061/JTEPBS.TEENG-8053, 150, 5, (2024).
  • Integrated self-consistent macro-micro traffic flow modeling and calibration framework based on trajectory data, Transportation Research Part C: Emerging Technologies, 10.1016/j.trc.2023.104439, 158, (104439), (2024).
  • Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model, Mathematics, 10.3390/math11194075, 11, 19, (4075), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share