Technical Papers
Mar 26, 2024

Solution for the Robust Estimation of Heterogeneous Data Fusion Based on Classification Estimation

Publication: Journal of Surveying Engineering
Volume 150, Issue 3

Abstract

Data fusion is an important issue as multi-source observation technology is widely used in geoscience. Although the problem of robust estimation exists widely in the data fusion, few solutions have been reported. This paper investigates a solution for the robust estimation of heterogeneous data fusion implementing classification, robust estimation, and data fusion. A new approach based on Msplit estimation is constructed to define accurate scales for multi-source observation data and, adopting the Institute of Geodesy and Geophysics (IGG)III weight function, an iterative algorithm is proposed for the above problem. Finally, two instances are considered in verifying the feasibility of the presented solution.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author upon request: the simulation results, code of simulation, and estimation computations for MATLAB R2016a.

Acknowledgments

The authors are grateful to the editors and two reviewers for their careful work and helpful comments, which led to a significant improvement in this paper. This work is sponsored by the Natural Science Foundation of China (Grant No. 41601501).

References

Amiri-Simkooei, A. R. 2007. Least-squares variance component estimation: Theory and GPS applications. Delft, Netherlands: Delft Univ. of Technology. https://doi.org/10.1007/s00190-007-0157-x.
Amiri-Simkooei, A. R. 2016. “Non-negative least-squares variance component estimation with application to GPS time series.” J. Geod. 90 (5): 451–466. https://doi.org/10.1007/s00190-016-0886-9.
Amiri-Simkooei, A. R. 2018. “Parameters estimation in 3D affine and similarity transformation: Implementation of variance component estimation.” J. Geod. 92 (11): 1285–1297. https://doi.org/10.1007/s00190-018-1119-1.
Amiri-Simkooei, A. R., P. J. G. Teunissen, and C. C. J. M. Tiberius. 2009. “Application of least-squares variance component estimation to GPS observables.” J. Surv. Eng. 135 (4): 149–160. https://doi.org/10.1061/(ASCE)0733-9453(2009)135:4(149).
Bofeng, L. 2016. “Stochastic modeling of triple-frequency BeiDou signals: Estimation, assessment and impact analysis.” J. Geod. 90 (7): 593–610. https://doi.org/10.1007/s00190-016-0896-7.
Cao, Y., Z. Li, and F. Amelung. 2019. “Mapping ground displacement by a multiple phase difference-based InSAR approach: With stochastic model estimation and turbulent troposphere mitigation.” J. Geod. 93 (9): 1313–1333. https://doi.org/10.1007/s00190-019-01248-8.
Duchnowski, R. 2011. “Robustness of strategy for testing levelling mark stability based on rank tests.” Surv. Rev. 43 (323): 687–699. https://doi.org/10.1179/003962611X13117748892551.
Duchnowski, R., and Z. Wiśniewski. 2019. “Robustness of Msplit(q) estimation: A theoretical approach.” Stud. Geophys. Geod. 63 (3): 390–417. https://doi.org/10.1007/s11200-018-0548-x.
Duchnowski, R., and P. Wyszkowska. 2023. “Tolerance for growing errors of observations as a measure describing global robustness of Msplit estimation and providing new information on other methods.” J. Surv. Eng. 149 (4): 05023004. https://doi.org/10.1061/JSUED2.SUENG-1451.
Efron, B., and R. Tibshirani. 1986. “Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy.” Stat. Sci. 1 (1): 54–75. https://doi.org/10.1214/ss/1177013815.
Hampel, F. R. 1971. “A general qualitative definition of robustness.” Ann. Math. Stat. 42 (6): 1887–1896. https://doi.org/10.1214/aoms/1177693054.
Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust statistics, the approach based on influence functions. New York: Wiley.
Henderson, C. R. 1953. “Estimation of variance and covariance components.” Biometrics 9 (2): 226–252. https://doi.org/10.2307/3001853.
Holl, P. W., and R. E. Welsch. 1977. “Robust regression using iteratively reweighted least-squares.” Commun. Stat. Theor. Methods 6 (9): 813–827. https://doi.org/10.1080/03610927708827533.
Hu, A., Z. Li, B. Carter, S. Wu, X. Wang, R. Norman, and K. Zhang. 2019. “Helmert-VCE- aided fast-WTLS approach for global ionospheric VTEC modelling using data from GNSS, satellite altimetry and radio occultation.” J. Geod. 93 (6): 877–888. https://doi.org/10.1007/s00190-018-1210-7.
Hu, Y., X. Fang, W. Zeng, and H. Kutterer. 2023. “Multiframe transformation with variance component estimation.” IEEE Trans. Geosci. Remote Sens. 61 (Aug): 1–10. https://doi.org/10.1109/TGRS.2023.3302322.
Huber, P. J. 1964. “Robust estimation of a location parameter.” Ann. Math. Stat. 35 (1): 73–101. https://doi.org/10.1214/aoms/1177703732.
Kargoll, B., M. Omidalizarandi, I. Loth, J. A. Paffenholz, and H. Alkhatib. 2018. “An iteratively reweighted least-squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations.” J. Geod. 92 (3): 271–297. https://doi.org/10.1007/s00190-017-1062-6.
Koch, K. R. 1978. “Schätzung von varianzkomponenten.” Allg. Vermess.-Nachr. 85: 264–269.
Koch, K. R. 1999. Parameter estimation and hypothesis testing in linear models. Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-662-03976-2.
Koch, K. R. 2013. “Robust estimation by expectation maximization algorithm.” J. Geod. 87 (2): 107–116. https://doi.org/10.1007/s00190-012-0582-3.
Kur, T., and T. Liwosz. 2022. “Simulation of the use of variance component estimation in relative weighting of Inter-satellite links and GNSS measurements.” Remote Sens. 14 (24): 6387. https://doi.org/10.3390/rs14246387.
Nie, Y., Y. Shen, R. Pail, and Q. Chen. 2022. “Efficient variance component estimation for large-scale least-squares problems in satellite geodesy.” J. Geod. 96 (2): 13. https://doi.org/10.1007/s00190-022-01599-9.
Qu, W., H. Chen, Q. Zhang, Y. Gao, Q. Wang, and M. Hao. 2021. “A robust estimation algorithm for the increasing breakdown point based on quasi-accurate detection and its application to parameter estimation of the GNSS crustal deformation model.” J. Geod. 95 (11): 125. https://doi.org/10.1007/s00190-021-01574-w.
Rao, C. R. 1971. “Estimation of variance and covariance components-MINQUE theory.” J. Multivar. Anal. 1 (3): 257–275. https://doi.org/10.1016/0047-259X(71)90001-7.
Rousseeuw, P. 1984. “Least median of squares regression.” J. Am. Stat. Assoc. 79 (388): 871–880. https://doi.org/10.1080/01621459.1984.10477105.
Rousseeuw, P. J., and A. M. Leroy. 1987. Robust regression and outlier detection. New York: Wiley.
Shao, J., and C. F. J. Wu. 1989. “A general theory for jackknife variance estimation.” Ann. Stat. 17 (3): 1176–1197. https://doi.org/10.1214/aos/1176347263.
Sjöberg, L. E. 1995. “The best quadratic minimum bias non-negative estimator for an additive two-variance component model.” Manuscr. Geod. 20 (2): 139–143.
Sjöberg, L. E. 2011. “On the best quadratic minimum bias non-negative estimator of a two-variance component model.” J. Geodetic Sci. 1 (3): 280–285. https://doi.org/10.2478/v10156-011-0006-y.
Suraci, S. S., L. C. de Oliveira, I. Klein, and R. R. Goldschmidt. 2023. “Optimal minimum L1-norm criteria for outlier identification in GNSS and leveling networks.” J. Surv. Eng. 149 (4): 04023016. https://doi.org/10.1061/JSUED2.SUENG-1452.
Tenuissen, P. J. G. 1988. Towards a least-squares framework for adjusting and testing of both functional and stochastic model. Delft, Netherlands: Geodetic Computing Centre.
Teunissen, P. J. G., and A. R. Amiri-Simkooei. 2008. “Least-squares variance component estimation.” J. Geod. 82 (2): 65–82. https://doi.org/10.1007/s00190-007-0157-x.
Wang, L., and Q. Wu. 2022. “A variational Bayesian approach to self-tuning robust adjustment for joint inversion of nonlinear volcano source model with t-distributed random errors.” J. Surv. Eng. 148 (2): 04021032. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000391.
Wang, L., and H. Xiao. 2023. “MINQUE method variance component estimation for the mixed additive and multiplicative random error model.” J. Surv. Eng. 149 (4): 04023013. https://doi.org/10.1061/JSUED2.SUENG-1396.
Wiśniewski, Z. 2009. “Estimation of parameters in a split functional model of geodetic observations (Msplit estimation).” J. Geod. 83 (2): 105–120. https://doi.org/10.1007/s00190-008-0241-x.
Wiśniewski, Z. 2010. “Msplit(q) estimation: Estimation of parameters in a multi split functional model of geodetic observations.” J. Geod. 84 (6): 355–372. https://doi.org/10.1007/s00190-010-0373-7.
Wiśniewski, Z., and M. H. Zienkiewicz. 2021. “Estimators of covariance matrices in Msplit(q) estimation.” Surv. Rev. 53 (378): 263–279. https://doi.org/10.1080/00396265.2020.1733817.
Wyszkowska, P., and R. Duchnowski. 2019. “Msplit estimation based on L1 norm condition.” J. Surv. Eng. 145 (3): 04019006. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000286.
Wyszkowska, P., and R. Duchnowski. 2020. “Iterative process of Msplit(q) estimation.” J. Surv. Eng. 146 (3): 06020002. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000318.
Wyszkowska, P., and R. Duchnowski. 2022. “Processing TLS heterogeneous data by applying robust Msplit estimation.” Measurement 197 (Jun): 111298. https://doi.org/10.1016/j.measurement.2022.111298.
Xu, P. 2005. “Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness.” J. Geod. 79 (1–3): 146–159. https://doi.org/10.1007/s00190-005-0454-1.
Yang, C., C. Wei, H. Ding, Y. Wei, S. Zhu, and Z. Li. 2023. “Inversion of glacier 3D displacement from Sentinel-1 and Landsat 8 images based on variance component estimation: A case study in Shishapangma Peak, Tibet, China.” Remote Sens. 15 (1): 4. https://doi.org/10.3390/rs15010004.
Yang, L., and Y. Shen. 2020. “Robust M estimation for 3D correlated vector observations based on modified bifactor weight reduction model.” J. Geod. 94 (3): 1–17. https://doi.org/10.1007/s00190-020-01351-1.
Yang, L., Y. Shen, and B. Li. 2019. “M-estimation using unbiased median variance estimate.” J. Geod. 93 (6): 911–925. https://doi.org/10.1007/s00190-018-1215-2.
Yang, Y. 1999. “Robust estimation of geodetic datum transformation.” J. Geod. 73 (5): 268–274. https://doi.org/10.1007/s001900050243.
Yang, Y., L. Song, and T. Xu. 2002. “Robust estimator for correlated observations based on bifactor equivalent weights.” J. Geod. 76 (6): 353–358. https://doi.org/10.1007/s00190-002-0256-7.
Zienkiewicz, M. H. 2015. “Application of Msplit estimation to determine control points displacements in networks with unstable reference system.” Surv. Rev. 47 (342): 174–180. https://doi.org/10.1179/1752270614Y.0000000105.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 150Issue 3August 2024

History

Received: Sep 5, 2023
Accepted: Jan 23, 2024
Published online: Mar 26, 2024
Published in print: Aug 1, 2024
Discussion open until: Aug 26, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Associate Professor, School of Urban and Environmental Sciences, Huaiyin Normal Univ., No.111, Changjiang West Rd., Huai’an City, Jiangsu Province 223300, PR China (corresponding author). Email: [email protected]
Xinchuan Li [email protected]
Associate Professor, School of Urban and Environmental Sciences, Huaiyin Normal Univ., No.111, Changjiang West Rd., Huai’an City, Jiangsu Province 223300, PR China. Email: [email protected]
Lecturer, School of Urban and Environmental Sciences, Huaiyin Normal Univ., No.111, Changjiang West Rd., Huai’an City, Jiangsu Province 223300, PR China. Email: [email protected]
Lecturer, School of Urban and Environmental Sciences, Huaiyin Normal Univ., No.111, Changjiang West Rd., Huai’an City, Jiangsu Province 223300, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share