Technical Papers
Apr 4, 2023

Investigating the Congruence between Gravimetric Geoid Models over India

Publication: Journal of Surveying Engineering
Volume 149, Issue 3

Abstract

A major motivation of precise geoid computation is to adopt it as a national vertical datum or as an alternative vertical reference surface to aid surveyors in calculating physical heights using the Global Navigation Satellite System (GNSS). There exist several methods of geoid computation, and only one particular method is generally used to calculate the national geoid model irrespective of the size and topographical landforms of the country. The validation of the developed geoid models is done with the complete GNSS-leveling data set. In such a case, it is hard to claim the consistency in the precision of the developed geoid model throughout the country. This study aims to identify the consistency of the geoid models over India computed using the three approaches primarily followed in Curtin University of Technology (CUT), the University of New Brunswick (UNB), and the Royal Institute of Technology (KTH). Three analyses have been done on the calculated geoid models: (1) clusterwise validation with the GNSS-leveling data, (2) intermodel comparison for the whole study area, and (3) intermodel comparison for Indian states and Union Territories (UT) only. The GNSS-leveling validation results show that the standard deviations of differences for all the methods are within a range of ±0.01  m with the exception of Uttar Pradesh West with the UNB method. However, inter-model comparison shows that the mean (meters) and standard deviation (meters) of the differences between the pairs (CUT-UNB), (CUT-KTH), and (KTH-UNB) are 0.241±0.854, 0.133±0.498, and 0.374±1.239, respectively, with maximum difference sometimes exceeding 5 m. There is only one UT and four states for which the mean value is within (0.20  m, 0.20 m) and standard deviation ±0.05  m for all the three pairs. Therefore, the analysis shows that it is difficult to calculate a precise national geoid model using any one method alone and a strategy is required to merge various regional precise geoid models or methods to develop a consistently precise national geoid model.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some gravimetric geoid models and computational codes that support the findings of this study are available from the corresponding author upon reasonable request. The three gravimetric models analyzed for pixelwise intermodel comparison are also available from the International Service for the Geoid (Goyal et al. 2021b, c, d).

Acknowledgments

Prof. Will Featherstone passed away on May 13, 2022; he contributed significantly to the discussions and the initial preparation of this paper.

References

Ågren, J., and J. Huang. 2017. “On standardization of regional gravity potential determination for realization of IHRS.” Accessed April 30, 2022. https://ihrs.dgfi.tum.de/fileadmin/JWG_2015/04_2_SplinterMeeting_JWG012_Kobe_2017_Agren_Huang.pdf.
Ågren, J., L. E. Sjöberg, and R. Kiamehr. 2009. “The new gravimetric quasigeoid model KTH08 over Sweden.” J. Appl. Geod. 3 (3): 143–153. https://doi.org/10.1515/JAG.2009.015.
Brown, N. J., J. C. McCubbine, W. E. Featherstone, N. Gowans, A. Woods, and I. Baran. 2018. “AUSGeoid2020 combined gravimetric–geometric model: Location-specific uncertainties and baseline-length-dependent error decorrelation.” J. Geod. 92 (12): 1457–1465. https://doi.org/10.1007/s00190-018-1202-7.
Bruinsma, S. L., C. Förste, O. Abrikosov, J.-C. Marty, M.-H. Rio, S. Mulet, and S. Bonvalot. 2013. “The new ESA satellite-only gravity field model via the direct approach.” Geophys. Res. Lett. 40 (14): 3607–3612. https://doi.org/10.1002/grl.50716.
Burrard, S. G., 1910. Vol. XIX of Levelling of precision in India. Dehradun, India: Office of the Trigonometrical Survey of India.
Claessens, S. J., 2006. Solutions to ellipsoidal boundary value problems for gravity field modeling.” Ph.D. thesis, Dept. of Spatial Sciences, Curtin Univ. of Technology.
Ellmann, A. 2005. “Computation of three stochastic modifications of Stokes’s formula for regional geoid determination.” Comput. Geosci. 31 (6): 742–755. https://doi.org/10.1016/j.cageo.2005.01.008.
Ellmann, A., S. Märdla, and T. Oja. 2020. “The 5 mm geoid model for Estonia computed by the least squares modified Stokes’s formula.” Surv. Rev. 52 (373): 352–372. https://doi.org/10.1080/00396265.2019.1583848.
Featherstone, W. E. 1994. “A new gravimetric determination of the geoid of the British Isles.” Surv. Rev. 32 (254): 464–478. https://doi.org/10.1179/sre.1994.32.254.464.
Featherstone, W. E. 2003. “Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination.” Comput. Geosci. 29 (2): 183–193. https://doi.org/10.1016/S0098-3004(02)00074-2.
Featherstone, W. E. 2013. “Deterministic, stochastic, hybrid and band-limited modifications of Hotine’s integral.” J. Geod. 87 (5): 487–500. https://doi.org/10.1007/s00190-013-0612-9.
Featherstone, W. E., J. D. Evans, and J. G. Olliver. 1998. “A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations.” J. Geod. 72 (3): 154–160. https://doi.org/10.1007/s001900050157.
Featherstone, W. E., J. F. Kirby, C. Hirt, M. S. Filmer, S. J. Claessens, N. J. Brown, G. Hu, and G. M. Johnston. 2011. “The AUSGeoid09 model of the Australian Height Datum.” J. Geod. 85 (3): 133–150. https://doi.org/10.1007/s00190-010-0422-2.
Featherstone, W. E., J. C. McCubbine, N. J. Brown, S. J. Claessens, M. S. Filmer, and J. F. Kirby. 2018. “The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates.” J. Geod. 92 (2): 149–168. https://doi.org/10.1007/s00190-017-1053-7.
Flury, J., and R. Rummel. 2009. “On the geoid–quasigeoid separation in mountain areas.” J. Geod. 83 (9): 829–847. https://doi.org/10.1007/s00190-009-0302-9.
Foroughi, I., P. Vaníček, R. W. Kingdon, M. Goli, M. Sheng, Y. Afrasteh, P. Novák, and M. C. Santos. 2019. “Sub-centimetre geoid.” J. Geod. 93 (6): 849–868. https://doi.org/10.1007/s00190-018-1208-1.
Förste, C., S. L. Bruinsma, O. Abrykosov, J.-M. Lemoine, J. C. Marty, F. Flechtner, G. Balmino, F. Barthelmes, and R. Biancale. 2014. “EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse.” GFZ Data Serv. https://doi.org/10.5880/icgem.2015.1.
GETECH. 2006. Gravity data compilation of India. Leeds, UK: Univ. of Leeds.
Goyal, R., J. Ågren, W. E. Featherstone, L. E. Sjöberg, O. Dikshit, and N. Balasubramanian. 2022. “Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed.” Surv. Rev. 54 (382): 57–69. https://doi.org/10.1080/00396265.2021.1871821.
Goyal, R., W. E. Featherstone, S. J. Claessens, O. Dikshit, and N. Balasubramanian. 2021a. “An experimental Indian gravimetric geoid model using Curtin University’s approach.” Terr. Atmos. Oceanic Sci. 32 (5-II): 813–827. https://doi.org/10.3319/TAO.2021.08.10.02.
Goyal, R., W. E. Featherstone, S. J. Claessens, O. Dikshit, and N. Balasubramanian. 2021b. “Indian gravimetric geoid model based on Curtin University’s approach with Featherstone-Evans-Olliver modification of the Stokes kernel: IndGG-CUT2021. V. 1.0.” GFZ Data Serv. https://doi.org/10.5880/isg.2021.008.
Goyal, R., W. E. Featherstone, S. J. Claessens, O. Dikshit, and N. Balasubramanian. 2021c. “Indian gravimetric geoid model based on Stokes-Helmert approach with Vaníček-Kleusberg modification of the Stokes kernel: IndGG-SH2021. V. 1.0.” GFZ Data Serv. https://doi.org/10.5880/isg.2021.009.
Goyal, R., W. E. Featherstone, S. J. Claessens, O. Dikshit, and N. Balasubramanian. 2021d. “Indian gravimetric geoid model based on the KTH method of least squares modification of the Stokes formula with additive corrections: IndGG-LSMSA2021. V. 1.0.” GFZ Data Serv. https://doi.org/10.5880/isg.2021.010.
Goyal, R., W. E. Featherstone, O. Dikshit, and N. Balasubramanian. 2021e. “Comparison and validation of satellite-derived digital surface/elevation models over India.” J. Indian Soc. Remote Sens. 49 (4): 971–986. https://doi.org/10.1007/s12524-020-01273-7.
Goyal, R., W. E. Featherstone, D. Tsoulis, and O. Dikshit. 2020. “Efficient spatial-spectral computation of local planar gravimetric terrain corrections from high-resolution digital elevation models.” Geophys. J. Int. 221 (3): 1820–1831. https://doi.org/10.1093/gji/ggaa107.
Heck, B. 2003. “On Helmert’s methods of condensation.” J. Geod. 77 (3): 155–170. https://doi.org/10.1007/s00190-003-0318-5.
Heiskanen, W. A., and H. Moritz. 1967. Physical geodesy. San Francisco: W. H. Freeman and Co.
Helmert, F. R. 1884. Mathematical and physical theories of higher geodesy, Part-II: The physical theories. Leipzig, Germany: B.G. Teubner.
IBM. 2010. “Mineral scenario of the states of India.” Accessed April 30, 2022. https://ibm.gov.in/writereaddata/files/09182018162439Mineral%20Scenario%20pdf.pdf.
Ince, E. S., F. Barthelmes, S. Reißland, K. Elger, C. Förste, F. Flechtner, and H. Schuh. 2019. “ICGEM–15 years of successful collection and distribution of global gravitational models, associated services, and future plans.” Earth Syst. Sci. Data 11 (2): 647–674. https://doi.org/10.5194/essd-11-647-2019.
Jekeli, C. 1981. The downward continuation to the Earth’s surface of truncated spherical and ellipsoidal harmonic series of the gravity and height anomalies. Columbus, OH: Ohio State Univ.
Li, X. 2018. “Using radial basis functions in airborne gravimetry for local geoid improvement.” J. Geod. 92 (5): 471–485. https://doi.org/10.1007/s00190-017-1074-2.
Martinec, Z., and P. Vaníček. 1994. “Indirect effect of topography in the Stokes-Helmert technique for a spherical approximation of the geoid.” Manuscr. Geod. 19: 213–219.
Mishra, U. N. 2018. “A comparative evaluation of methods for development of Indian geoid model.” Ph.D. thesis, Dept. of Civil Engineering, Indian Institute of Technology Roorkee.
Molodensky, M. S., V. F. Eremeev, and M. I. Yurkina. 1962. Methods for study of the external gravity field and figure of the Earth. Jerusalem: Israel Program for Scientific Translations.
Moritz, H. 1968. On the use of the terrain correction in solving Molodensky’s problem., Columbus, OH: Ohio State Univ.
Moritz, H. 1980. Advanced physical geodesy. Advances in planetary geology. Tunbridge, UK: Abacus Press.
NGS. 2017. “Blueprint for 2022, Part 2: Geopotential coordinates. NOAA Technical Report NOS NGS 64.” Accessed May 30, 2022. https://geodesy.noaa.gov/PUBS_LIB/NOAA_TR_NOS_NGS_0064.pdf.
Novák, P. 2000. “Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem.” Ph.D. thesis, Dept. of Geodesy and Geomatics Engineeing, Univ. of New Brunswick.
Ophaug, V., and C. Gerlach. 2017. “On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation.” J. Geod. 91 (Nov): 1367–1382. https://doi.org/10.1007/s00190-017-1030-1.
Ophaug, V., and C. Gerlach. 2020. “Correction to: On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation.” J. Geod. 94 (6): 60. https://doi.org/10.1007/s00190-020-01375-7.
Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor. 2012. “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008).” J. Geophys. Res. Solid Earth 117 (B4): B04406. https://doi.org/10.1029/2011JB008916.
Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor. 2013. “Correction to ‘The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)’.” J. Geophys. Res. Solid Earth 118 (5): 2633. https://doi.org/10.1002/jgrb.50167.
Ramouz, S., Y. Afrasteh, M. Reguzzoni, A. Safari, and A. Saadat. 2019. “IRG2018: A regional geoid model in Iran using least squares collocation.” Stud. Geophys. Geod. 63 (Apr): 191–214. https://doi.org/10.1007/s11200-018-0116-4.
Reguzzoni, M., et al. 2021. “Open access to regional geoid models: The International Service for the Geoid.” Earth Syst. Sci. Data 13 (4): 1653–1666. https://doi.org/10.5194/essd-13-1653-2021.
Riley, S. J., S. D. DeGloria, and R. Elliot. 1999. “A terrain ruggedness index that quantifies topographic heterogeneity.” Intermountain J. Sci. 5 (1–4): 23–27.
Saadat, A., A. Safari, and D. Needell. 2018. “IRG2016: RBF-based regional geoid model of Iran.” Stud. Geophys. Geod. 62 (Jul): 380–407. https://doi.org/10.1007/s11200-016-0679-x.
Sánchez, L., R. Čunderlík, N. Dayoub, K. Mikula, Z. Minarechová, Z. Šíma, V. Vatrt, and M. Vojtíšková. 2016. “A conventional value for the geoid reference potential W0.” J. Geod. 90 (9): 815–835. https://doi.org/10.1007/s00190-016-0913-x.
Sánchez, L., and M. G. Sideris. 2017. “Vertical datum unification for the International Height Reference System (IHRS).” Geophys. J. Int. 209 (2): 570–586. https://doi.org/10.1093/gji/ggx025.
Sandwell, D. T., H. Harper, B. Tozer, and W. H. F. Smith. 2021. “Gravity field recovery from geodetic altimeter missions.” Adv. Space Res. 68 (2): 1059–1072. https://doi.org/10.1016/j.asr.2019.09.011.
Sharma, B. 2022. “Geoid modelling at Survey of India.” In UNWGIC pre-event: Geo-enabling the global village. Uttarakhand, India: Survey of India.
Sjöberg, L. E. 1984. Least squares modification of Stokes and Venning Meinesz formulas by accounting for errors of truncation, potential coefficients and gravity data. Department of Geodesy, Institute of Geophysics, Technical Rep. 27. Uppsala, Sweden: Univ. of Uppsala.
Sjöberg, L. E. 1991. “Refined least squares modification of Stokes’ formula.” Manuscr. Geod. 16: 367–375.
Sjöberg, L. E. 1999. “The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy.” J. Geod. 73 (7): 362–366. https://doi.org/10.1007/s001900050254.
Sjöberg, L. E. 2000. “Topographic effects by the Stokes–Helmert method of geoid and quasi-geoid determinations.” J. Geod. 74 (2): 255–268. https://doi.org/10.1007/s001900050284.
Sjöberg, L. E. 2003a. “A computational scheme to model the geoid by the modified Stokes formula without gravity reductions.” J. Geod. 77 (7–8): 423–432. https://doi.org/10.1007/s00190-003-0338-1.
Sjöberg, L. E. 2003b. “Ellipsoidal corrections to order e2 of geopotential coefficients and Stokes’ formula.” J. Geod. 77 (3–4): 139–147. https://doi.org/10.1007/s00190-003-0321-x.
Sjöberg, L. E. 2003c. “A solution to the downward continuation effect on the geoid determined by Stokes’ formula.” J. Geod. 77 (1–2): 94–100. https://doi.org/10.1007/s00190-002-0306-1.
Sjöberg, L. E. 2010. “A strict formula for geoid-to-quasigeoid separation.” J. Geod. 84 (11): 699–702. https://doi.org/10.1007/s00190-010-0407-1.
Stokes, G. G. 1849. “On the variation of gravity and the surface of the Earth.” Trans. Camb. Philos. Soc. 8: 672–695.
Svensson, R., J. Ågren, P.-A. Olsson, P.-O. Eriksson, and M. Lilje. 2006. “The new Swedish height system RH2000 and geoid model SWEN 05LR.” In Proc., 23rd FIG Congress. Copenhagen, Denmark: Gesellschaft für Geodäsie and International Federation of Surveyors.
Tiwari, A. 2022. “India state and country shapefile.” Accessed February 28, 2022. https://github.com/AnujTiwari/India-State-and-Country-Shapefile-Updated-Jan-2020.
Tscherning, C. C. 2013. “Geoid determination by 3D least-squares collocation.” In Vol. 110 of Geoid determination. Lecture notes in earth system sciences, edited by F. Sansò and M. Sideris, 311–336. Berlin: Springer.
Vaníček, P., J. Huang, P. Novák, S. Pagiatakis, M. Véronneau, Z. Martinec, and W. E. Featherstone. 1999. “Determination of the boundary values for the Stokes-Helmert problem.” J. Geod. 73 (4): 180–192. https://doi.org/10.1007/s001900050235.
Vaníček, P., and A. Kleusberg. 1987. “The Canadian geoid—Stokesian approach.” Manuscr. Geod. 12: 86–98.
Vaníček, P., and Z. Martinec. 1994. “The Stokes-Helmert scheme for the evaluation of a precise geoid.” Manuscr. Geod. 19: 119–128.
Vaníček, P., and L. E. Sjöberg. 1991. “Reformulation of Stokes's theory for higher than second-degree reference field and modification of integration kernels.” J. Geophys. Res. 96 (B4): 6529–6539. https://doi.org/10.1029/90JB02782.
Véronneau, M., and J. Huang. 2016. “The Canadian geodetic vertical datum of 2013 (CGVD2013).” GEOMATICA 70 (1): 9–19. https://doi.org/10.5623/cig2016-101.
Wang, Y. M., et al. 2021. “Colorado geoid computation experiment: Overview and summary.” J. Geod. 95 (Dec): 127. https://doi.org/10.1007/s00190-021-01567-9.
Yamazaki, D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O’Loughlin, J. C. Neal, C. C. Sampson, S. Kanae, and P. D. Bates. 2017. “A high-accuracy map of global terrain elevations.” Geophys. Res. Lett. 44 (11): 5844–5853. https://doi.org/10.1002/2017GL072874.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 149Issue 3August 2023

History

Received: Jun 10, 2022
Accepted: Mar 3, 2023
Published online: Apr 4, 2023
Published in print: Aug 1, 2023
Discussion open until: Sep 4, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Research Associate, National Centre for Geodesy, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India (corresponding author). Email: [email protected]
S. J. Claessens [email protected]
Senior Lecturer, School of Earth and Planetary Sciences, Curtin Univ. of Technology, GPO Box U1987, Perth, WA 6845, Australia. Email: [email protected]
W. E. Featherstone
Deceased May 13, 2022; formerly, Professor, School of Earth and Planetary Sciences, Curtin Univ. of Technology, GPO Box U1987, Perth, WA 6845, Australia.
Professor, Dept. of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share