Abstract

In general, municipal solid waste incinerator bottom ash (IBA) is mainly utilized as fillers in nonstructural concrete products due to its low reactivity. In this study, the high-strength alkali-activated materials (AAMs) using high calcium IBA was developed. A ternary contour diagram was introduced to optimize the composition of thermally activated IBA (TMBA), ground granulated blast furnace slag (GGBS), and fly ash (FA) in AAMs. The result showed that a high concentration of calcium ions in the ternary system contributed to the provision of nucleation sites for the precipitation of products, thus leading to the promotion of hardening. The optimal compressive strength (80–85 MPa) of AAMs was achieved using 60%–80% GGBS content, 10%–40% TMBA content, and 0%–10% FA content. The AAMs showed high resistance to sulphate attack, chloride penetration, and freeze-thaw when the TMBA content was less than 40%. This was attributed to a dense pore structure formation promoted by the presence of calcium minerals (anorthite, wollastonite, mayenite and gehlenite) as indicated in the X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) analysis. The embodied CO2 index of the AAMs was about 59%–87% lower than cement, and it was a cleaner cementitious material.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (Grant No.: U20A20313) and Central Government Leading Local Science and Technology Development of Hebei (Grant No.: 226Z1502G).

References

Abdollahnejad, Z., M. Mastali, B. Woof, and M. Illikainen. 2020. “High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance.” Constr. Build. Mater. 241 (Apr): 118129. https://doi.org/10.1016/j.conbuildmat.2020.118129.
Aiken, T. A., J. Kwasny, W. Sha, and K. T. Tong. 2021. “Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content.” Constr. Build. Mater. 301 (Sep): 124330. https://doi.org/10.1016/j.conbuildmat.2021.124330.
Ali, H. A., D. Xuan, and C. S. Poon. 2020. “Assessment of long-term reactivity of initially lowly-reactive solid wastes as supplementary cementitious materials (SCMs).” Constr. Build. Mater. 232 (Jan): 117192. https://doi.org/10.1016/j.conbuildmat.2019.117192.
Alnahhal, M. F., A. Hamdan, A. Hajimohammadi, and T. Kim. 2021. “Effect of rice husk ash-derived activator on the structural build-up of alkali activated materials.” Cem. Concr. Res. 150 (Dec): 106590. https://doi.org/10.1016/j.cemconres.2021.106590.
ASTM. 2015. Flow of hydraulic cement mortar. ASTM-C1437. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for compressive strength of hydraulic cement mortars (using 2 in. Or [50 mm] cube specimens). ASTM-C109. West Conshohocken, PA: ASTM.
Bakhbergen, U., C.-S. Shon, D. Zhang, K. Kryzhanovskiy, and J. R. Kim. 2022. “Assessment of Reactive powder concrete subjected to three different sodium sulfate Concentrations: Compressive strength, absorption, porosity, microstructure, and durability.” Constr. Build. Mater. 325 (Mar): 126804. https://doi.org/10.1016/j.conbuildmat.2022.126804.
Baldermann, A., V. Preissegger, S. Šimić, I. Letofsky-Papst, F. Mittermayr, and M. Dietzel. 2021. “Uptake of aqueous heavy metal ions (Co2+, Cu2+ and Zn2+) by calcium-aluminium-silicate-hydrate gels.” Cem. Concr. Res. 147 (Sep): 106521. https://doi.org/10.1016/j.cemconres.2021.106521.
Bernal, S. A., R. Mejía de Gutiérrez, and J. L. Provis. 2012. “Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends.” Constr. Build. Mater. 33 (Aug): 99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017.
Bertolini, L., M. Carsana, D. Cassago, A. Quadrio Curzio, and M. Collepardi. 2004. “MSWI ashes as mineral additions in concrete.” Cem. Concr. Res. 34 (10): 1899–1906. https://doi.org/10.1016/j.cemconres.2004.02.001.
Cao, G., Z. Li, S. Jiang, Y. Tan, Z. Li, S. Long, and Z. Tong. 2022. “Experimental analysis and numerical simulation of flow behavior of fresh steel fibre reinforced concrete in magnetic field.” Constr. Build. Mater. 347 (Sep): 128505. https://doi.org/10.1016/j.conbuildmat.2022.128505.
Carvalho, R., R. V. Silva, J. de Brito, and M. F. C. Pereira. 2021. “Alkali activation of bottom ash from municipal solid waste incineration: Optimization of NaOH and Na2SiO3-based activators.” J. Cleaner Prod. 291 (Apr): 125930. https://doi.org/10.1016/j.jclepro.2021.125930.
Chinese Standard. 2009. Standard for test methods of long-term performance and durability of ordinary concrete. GB/T 50082-2009. Beijing: Chinese Standard.
Cui, K., K. Liang, J. Chang, and D. Lau. 2022. “Investigation of the macro performance, mechanism, and durability of multiscale steel fiber reinforced low-carbon ecological UHPC.” Constr. Build. Mater. 327 (Apr): 126921. https://doi.org/10.1016/j.conbuildmat.2022.126921.
Drissi, S., C. Shi, N. Li, Y. Liu, J. Liu, and P. He. 2021. “Relationship between the composition and hydration-microstructure-mechanical properties of cement-metakaolin-limestone ternary system.” Constr. Build. Mater. 302 (Oct): 124175. https://doi.org/10.1016/j.conbuildmat.2021.124175.
Fan, C., B. Wang, H. Ai, Y. Qi, and Z. Liu. 2021. “A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash.” J. Cleaner Prod. 319 (Oct): 128790. https://doi.org/10.1016/j.jclepro.2021.128790.
Gao, X., X. Yao, T. Yang, S. Zhou, H. Wei, and Z. Zhang. 2021. “Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: Compressive strength, phase assemblage and environmental benefits.” Constr. Build. Mater. 308 (Nov): 125015. https://doi.org/10.1016/j.conbuildmat.2021.125015.
Gao, X., Q. L. Yu, A. Lazaro, and H. J. H. Brouwers. 2017. “Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: Reaction kinetics, gel structure and carbon footprint.” Cem. Concr. Res. 100 (Oct): 129–139. https://doi.org/10.1016/j.cemconres.2017.06.007.
Gijbels, K., Y. Pontikes, P. Samyn, S. Schreurs, and W. Schroeyers. 2020. “Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum.” Cem. Concr. Res. 132 (Jun): 106054. https://doi.org/10.1016/j.cemconres.2020.106054.
Grosso, M., L. Biganzoli, and L. Rigamonti. 2011. “A quantitative estimate of potential aluminium recovery from incineration bottom ashes.” Resour. Conserv. Recycl. 55 (12): 1178–1184. https://doi.org/10.1016/j.resconrec.2011.08.001.
Hao, Y., G. Yang, and K. Liang. 2022. “Development of fly ash and slag based high-strength alkali-activated foam concrete.” Cem. Concr. Compos. 128 (Apr): 104447. https://doi.org/10.1016/j.cemconcomp.2022.104447.
Huang, G., Y. Ji, J. Li, L. Zhang, X. Liu, and B. Liu. 2019. “Effect of activated silica on polymerization mechanism and strength development of MSWI bottom ash alkali-activated mortars.” Constr. Build. Mater. 201 (Mar): 90–99. https://doi.org/10.1016/j.conbuildmat.2018.12.125.
Kamseu, E., A.-T. Akono, A. Nana, R. C. Kaze, and C. Leonelli. 2021. “Performance of geopolymer composites made with feldspathic solid solutions: Micromechanics and microstructure.” Cem. Concr. Compos. 124 (Nov): 104241. https://doi.org/10.1016/j.cemconcomp.2021.104241.
Li, N., C. Shi, Z. Zhang, D. Zhu, H.-J. Hwang, Y. Zhu, and T. Sun. 2018. “A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete.” Cem. Concr. Compos. 93 (Oct): 163–174. https://doi.org/10.1016/j.cemconcomp.2018.07.009.
Liu, J., Z. Wang, G. Xie, Z. Li, X. Fan, W. Zhang, F. Xing, L. Tang, and J. Ren. 2022. “Resource utilization of municipal solid waste incineration fly ash—Cement and alkali-activated cementitious materials: A review.” Sci. Total Environ. 852 (Dec): 158254. https://doi.org/10.1016/j.scitotenv.2022.158254.
Liu, S., Y. Hao, and G. Ma. 2021. “Approaches to enhance the carbonation resistance of fly ash and slag based alkali-activated mortar- experimental evaluations.” J. Cleaner Prod. 280 (Jan): 124321. https://doi.org/10.1016/j.jclepro.2020.124321.
Liu, Y., P. Xing, and J. Liu. 2017. “Environmental performance evaluation of different municipal solid waste management scenarios in China.” Resour. Conserv. Recycl. 125 (Oct): 98–106. https://doi.org/10.1016/j.resconrec.2017.06.005.
Lu, C., Z. Zhang, J. Hu, Q. Yu, and C. Shi. 2022. “Effects of anionic species of activators on the rheological properties and early gel characteristics of alkali-activated slag paste.” Cem. Concr. Res. 162 (Dec): 106968. https://doi.org/10.1016/j.cemconres.2022.106968.
Maldonado-Alameda, A., J. Giro-Paloma, F. Andreola, L. Barbieri, J. M. Chimenos, and I. Lancellotti. 2022. “Weathered bottom ash from municipal solid waste incineration: Alkaline activation for sustainable binders.” Constr. Build. Mater. 327 (Apr): 126983. https://doi.org/10.1016/j.conbuildmat.2022.126983.
Maldonado-Alameda, A., J. Giro-Paloma, A. Rodríguez-Romero, J. Serret, A. Menargues, A. Andrés, and J. M. Chimenos. 2021. “Environmental potential assessment of MSWI bottom ash-based alkali-activated binders.” J. Hazards Mater. 416 (Aug): 125828. https://doi.org/10.1016/j.jhazmat.2021.125828.
Maldonado-Alameda, À., J. Giro-Paloma, A. Alfocea-Roig, J. Formosa, and J. M. Chimenos. 2020. “Municipal solid waste incineration bottom ash as sole precursor in the alkali-activated binder formulation.” Appl. Sci. 10 (12): 4129. https://doi.org/10.3390/app10124129.
Mian, M. M., X. Zeng, A. N. B. Nasry, and S. M. Z. F. Al-Hamadani. 2017. “Municipal solid waste management in China: A comparative analysis.” J. Mater. Cycles Waste Manage. 19 (3): 1127–1135. https://doi.org/10.1007/s10163-016-0509-9.
Mohamed, R., R. Abd Razak, M. M. A. B. Abdullah, S. Z. A. Abd Rahim, L. Yuan-Li, Subaer, A. V. Sandu, and J. J. Wysłocki. 2022. “Heat evolution of alkali-activated materials: A review on influence factors.” Constr. Build. Mater. 314 (Jan): 125651. https://doi.org/10.1016/j.conbuildmat.2021.125651.
Provis, J. L., A. Palomo, and C. Shi. 2015. “Advances in understanding alkali-activated materials.” Cem. Concr. Res. 78 (Dec): 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013.
Qiao, X. C., M. Tyrer, C. S. Poon, and C. R. Cheeseman. 2008. “Characterization of alkali-activated thermally treated incinerator bottom ash.” Waste Manage. 28 (10): 1955–1962. https://doi.org/10.1016/j.wasman.2007.09.007.
Sadeghian, G., K. Behfarnia, and M. Teymouri. 2022. “Drying shrinkage of one-part alkali-activated slag concrete.” J. Build. Eng. 51 (Jul): 104263. https://doi.org/10.1016/j.jobe.2022.104263.
Sasaki, K., K. Kurumisawa, and K. Ibayashi. 2019. “Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite.” Constr. Build. Mater. 216 (Aug): 337–346. https://doi.org/10.1016/j.conbuildmat.2019.05.022.
Schade, T., F. Bellmann, and B. Middendorf. 2022. “Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material.” Cem. Concr. Res. 153 (Mar): 106706. https://doi.org/10.1016/j.cemconres.2021.106706.
Schneider, M., M. Romer, M. Tschudin, and H. Bolio. 2011. “Sustainable cement production—present and future.” Cem. Concr. Res. 41 (7): 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019.
Shen, P., H. Zheng, J. Lu, and C. S. Poon. 2021. “Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete.” Resour. Conserv. Recycl. 174 (Nov): 105736. https://doi.org/10.1016/j.resconrec.2021.105736.
Shen, P., H. Zheng, D. Xuan, J.-X. Lu, and C. S. Poon. 2020. “Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete.” Cem. Concr. Compos. 114 (Nov): 103814. https://doi.org/10.1016/j.cemconcomp.2020.103814.
Shi, C., D. Jiao, J. Zhang, D. Wang, Y. Zhang, N. Farzadnia, and X. Hu. 2018. “Design of high performance concrete with multiple performance requirements for #2 Dongting Lake Bridge.” Constr. Build. Mater. 165 (Mar): 825–832. https://doi.org/10.1016/j.conbuildmat.2018.01.083.
Shin, T. Y., and J. H. Kim. 2022. “First step in modeling the flow table test to characterize the rheology of normally vibrated concrete.” Cem. Concr. Res. 152 (Feb): 106678. https://doi.org/10.1016/j.cemconres.2021.106678.
Song, B., X. Hu, S. Liu, and C. Shi. 2022. “Chloride binding of early CO2-cured Portland cement-fly ash-GGBS ternary pastes.” Cem. Concr. Compos. 134 (Nov): 104793. https://doi.org/10.1016/j.cemconcomp.2022.104793.
Sun, B., G. Ye, and G. de Schutter. 2022a. “A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials.” Constr. Build. Mater. 326 (Apr): 126843. https://doi.org/10.1016/j.conbuildmat.2022.126843.
Sun, K., H. A. Ali, D. Xuan, J. Ban, and C. S. Poon. 2022b. “Utilization of APC residues from sewage sludge incineration process as activator of alkali-activated slag/glass powder material.” Cem. Concr. Compos. 133 (Oct): 104680. https://doi.org/10.1016/j.cemconcomp.2022.104680.
Sun, Y., S. Zhang, A. V. Rahul, Y. Tao, F. Van Bockstaele, K. Dewettinck, G. Ye, and G. De Schutter. 2022c. “Rheology of alkali-activated slag pastes: New insight from microstructural investigations by cryo-SEM.” Cem. Concr. Res. 157 (Jul): 106806. https://doi.org/10.1016/j.cemconres.2022.106806.
Tang, P., M. V. A. Florea, P. Spiesz, and H. J. H. Brouwers. 2016. “Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute.” Cem. Concr. Compos. 70 (Jul): 194–205. https://doi.org/10.1016/j.cemconcomp.2016.03.015.
Tian, K., Y. Wang, B. Dong, G. Fang, and F. Xing. 2022. “Engineering and micro-properties of alkali-activated slag pastes with Bayer red mud.” Constr. Build. Mater. 351 (Oct): 128869. https://doi.org/10.1016/j.conbuildmat.2022.128869.
van de Wouw, P. M. F., E. Loginova, M. V. A. Florea, and H. J. H. Brouwers. 2020. “Compositional modelling and crushing behaviour of MSWI bottom ash material classes.” Waste Manage. 101 (Jan): 268–282. https://doi.org/10.1016/j.wasman.2019.10.013.
Walkley, B., R. San Nicolas, M.-A. Sani, G. J. Rees, J. V. Hanna, J. S. J. van Deventer, and J. L. Provis. 2016. “Phase evolution of C─ (N)─ A─ S─ H/N─ A─ S─ H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors.” Cem. Concr. Res. 89 (Nov): 120–135. https://doi.org/10.1016/j.cemconres.2016.08.010.
Wongsa, A., K. Boonserm, C. Waisurasingha, V. Sata, and P. Chindaprasirt. 2017. “Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix.” J. Cleaner Prod. 148 (Apr): 49–59. https://doi.org/10.1016/j.jclepro.2017.01.147.
Xiang, J., J. Qiu, Z. Li, J. Chen, and Y. Song. 2022. “Eco-friendly treatment for MSWI bottom ash applied to supplementary cementing: Mechanical properties and heavy metal leaching concentration evaluation.” Constr. Build. Mater. 327 (Apr): 127012. https://doi.org/10.1016/j.conbuildmat.2022.127012.
Xiong, G., and X. Guo. 2022. “Effects and mechanism of superplasticizers and precursor proportions on the fresh properties of fly ash—Slag powder based geopolymers.” Constr. Build. Mater. 350 (Oct): 128734. https://doi.org/10.1016/j.conbuildmat.2022.128734.
Xuan, D., and C. S. Poon. 2018. “Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment.” J. Hazards Mater. 344 (Feb): 73–80. https://doi.org/10.1016/j.jhazmat.2017.10.002.
Xuan, D., P. Tang, and C. S. Poon. 2019. “MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder.” Cem. Concr. Compos. 95 (Jan): 128–136. https://doi.org/10.1016/j.cemconcomp.2018.10.018.
Xuan, D., B. Zhan, C. S. Poon, and W. Zheng. 2016. “Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products.” Constr. Build. Mater. 113 (Jun): 664–672. https://doi.org/10.1016/j.conbuildmat.2016.03.109.
Yang, J., Z. Sun, N. De Belie, and D. Snoeck. 2022. “Mitigating plastic shrinkage cracking in alkali-activated slag systems by internal curing with superabsorbent polymers.” Cem. Concr. Compos. 134 (Nov): 104784. https://doi.org/10.1016/j.cemconcomp.2022.104784.
Yang, Z., R. Ji, L. Liu, X. Wang, and Z. Zhang. 2018. “Recycling of municipal solid waste incineration by-product for cement composites preparation.” Constr. Build. Mater. 162 (Feb): 794–801. https://doi.org/10.1016/j.conbuildmat.2017.12.081.
Ye, N., J. Yang, X. Ke, J. Zhu, Y. Li, C. Xiang, H. Wang, L. Li, and B. Xiao. 2014. “Synthesis and characterization of geopolymer from Bayer red mud with thermal pretreatment.” J. Am. Ceram. Soc. 97 (5): 1652–1660. https://doi.org/10.1111/jace.12840.
Yön, M. Ş., and M. Karataş. 2022. “Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag.” J. Build. Eng. 61 (Dec): 105263. https://doi.org/10.1016/j.jobe.2022.105263.
Zhang, B., Y. Ma, Y. Yang, D. Zheng, Y. Wang, and T. Ji. 2023a. “Improving the high temperature resistance of alkali-activated slag paste using municipal solid waste incineration bottom ash.” J. Build. Eng. 72 (Aug): 106664. https://doi.org/10.1016/j.jobe.2023.106664.
Zhang, B., B. Yan, and Y. Li. 2023b. “Study on mechanical properties, freeze–thaw and chlorides penetration resistance of alkali activated granulated blast furnace slag-coal gangue concrete and its mechanism.” Constr. Build. Mater. 366 (Feb): 130218. https://doi.org/10.1016/j.conbuildmat.2022.130218.
Zhang, B., H. Zhu, Y. Cheng, G. F. Huseien, and K. W. Shah. 2022a. “Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: A critical review.” Constr. Build. Mater. 318 (Feb): 125993. https://doi.org/10.1016/j.conbuildmat.2021.125993.
Zhang, R., Y. Zhang, T. Liu, Q. Wan, and D. Zheng. 2022b. “Effect of high alumina-based solid waste on efflorescence behavior of alkali-activated steel slag.” Constr. Build. Mater. 349 (Sep): 128804. https://doi.org/10.1016/j.conbuildmat.2022.128804.
Zhang, S., Z. Ghouleh, and Y. Shao. 2021. “Green concrete made from MSWI residues derived eco-cement and bottom ash aggregates.” Constr. Build. Mater. 297 (Aug): 123818. https://doi.org/10.1016/j.conbuildmat.2021.123818.
Zhang, W., M. Xue, H. Lin, X. Duan, Y. Jin, and F. Su. 2023c. “Effect of polyether shrinkage reducing admixture on the drying shrinkage properties of alkali-activated slag.” Cem. Concr. Compos. 136 (Feb): 104865. https://doi.org/10.1016/j.cemconcomp.2022.104865.
Zhao, Q., C. Ma, B. Huang, and X. Lu. 2023. “Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer.” J. Cleaner Prod. 384 (Jan): 135547. https://doi.org/10.1016/j.jclepro.2022.135547.
Zheng, Y., F. Rao, L. Yang, and S. Zhong. 2023. “Comparison of ternary and dual combined waste-derived alkali activators on the durability of volcanic ash-based geopolymers.” Cem. Concr. Compos. 136 (Feb): 104886. https://doi.org/10.1016/j.cemconcomp.2022.104886.
Zhu, W., X. Chen, L. J. Struble, and E.-H. Yang. 2018. “Characterization of calcium-containing phases in alkali-activated municipal solid waste incineration bottom ash binder through chemical extraction and deconvoluted Fourier transform infrared spectra.” J. Cleaner Prod. 192 (Aug): 782–789. https://doi.org/10.1016/j.jclepro.2018.05.049.
Zhu, W., X. Chen, L. J. Struble, and E.-H. Yang. 2019. “Quantitative characterization of aluminosilicate gels in alkali-activated incineration bottom ash through sequential chemical extractions and deconvoluted nuclear magnetic resonance spectra.” Cem. Concr. Compos. 99 (May): 175–180. https://doi.org/10.1016/j.cemconcomp.2019.03.014.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 10October 2024

History

Received: Sep 5, 2023
Accepted: Mar 8, 2024
Published online: Jul 22, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 22, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Guangzhao Yang [email protected]
Graduate Student, School of Civil Engineering, Tianjin Univ., Tianjin 300072, China. Email: [email protected]
Director, Tusun (Tianjin) Environment Technology Co. Ltd., Saida Jiuwei Rd., Xiqing District, Tianjin 300380, China. Email: [email protected]
Professor, Tianjin Key Laboratory of Prefabricated Buildings and Intelligent Construction, Hebei Univ. of Technology, Tianjin 300401, China (corresponding author). ORCID: https://orcid.org/0000-0002-1974-7636. Email: [email protected]
Rongwei Yang [email protected]
Associate Professor, School of Civil Engineering, Tianjin Univ., Tianjin 300072, China. Email: [email protected]
Professor, Tianjin Key Laboratory of Prefabricated Buildings and Intelligent Construction, Hebei Univ. of Technology, Tianjin 300401, China. Email: [email protected]
Dept. of Architecture and Civil Engineering, City Univ. of Hong Kong, Hung Hom, Kowloon 999077, Hong Kong. ORCID: https://orcid.org/0000-0002-5374-7445. Email: [email protected]
Jian-Xin Lu [email protected]
Research Assistant Professor, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon 999077, Hong Kong. Email: [email protected]
Guangqi Xiong, Ph.D. [email protected]
Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon 999077, Hong Kong. Email: [email protected]
Senior Engineer, CCCC Tianjin Dredging Co. Ltd., No. 41 Taierzhuang Rd., Hexi District, Tianjin 300202, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share